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Abstract.  Structural damage detection using modal strain energy (MSE) is one of the most efficient and 

reliable structural health monitoring techniques. However, some of the existing MSE methods have been 

validated for special types of structures such as beams or steel truss bridges which demands improving the 

available methods. The purpose of this study is to improve an efficient modal strain energy method to detect 

and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain 

energy method was mathematically developed and then numerically applied to a fixed-end beam and a 

three-story frame including single and multiple damage scenarios in absence and presence of up to five per 

cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the 

first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode 

shapes of each intact and damaged structure at any damage scenario were then separately used in the 

improved formulation using MATLAB to detect the location and quantify the severity of damage as 

compared to those obtained from previous method. It was found that the improved method is more accurate, 

efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively 

used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen 

structural damages. 
 

Keywords:  modal strain energy; degree-of-freedom (DOF); finite element method (FEM); vibration based 

damage detection; structural damage 

 
 
1. Introduction 
 

Increasing the importance and complexity of infrastructures demands more reliable and precise 

techniques to detect structural damage. Structural health monitoring (SHM) as a new emerging 

technology has delivered some effective techniques that are successfully used to detect the damage 

of structures (Chan and Thambiratnam 2011). Vibration based damage detection (VBDD) methods 

such as MSE methods are a significant group of SHM techniques.  

Shi et al. (2000) established an MSE based method to detect the damage using the change in 
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MSE in each element. Shi’s approach is simple and capable of detecting single or multiple 

structural damages accurately. The sensitivity of the MSE was derived as a function of the 

analytical mode shape and stiffness matrix. The results also showed that the proposed approach is 

capable of locating single and multiple damages that are contaminated with some percentage of 

noise effect. Although in this approach only the incomplete measured mode shapes and analytical 

system matrices are used for damage detection, there is a need to improve the method to more 

accurately detect the damage and quantify its severity.  

Kisa and Gurel (2005) developed a numerical model to investigate the vibration analysis in 

cracked cantilever composite beams. The model employs finite element analysis and component 

mode synthesis method which is based on total strain energy of the system. Having modal data, the 

method was capable of identifying the location and dimension of the defect (crack) in the beam. 

However, the method is unique for detecting crack in cantilever composite beams with special 

cross section. Also it requires more studies for the same type of structure with other boundary 

conditions. 

Asgarian et al. (2009) numerically applied an MSE method on a 3D four-story frame of a jacket 

offshore platform for damage detection. Modal strain energy change ratio (MSECR) and cross 

modal strain energy (CMSE) were used for locating and quantifying the damage respectively. 

Although this method performs well for this kind of structures, it is not capable of detecting the 

damage in all directions of vertical bracings of the case study demonstrated. Also it needs 

experimental studies to be applicable for this type of structures in reality. Shih et al. (2009) 

blended a multi-criteria procedure incorporating modal flexibility and modal strain energy 

methods that were applied to a plate and a beam structures. The purpose was to identify single and 

multi-damages via a structural model simulation technique. Nine damage scenarios were 

considered in each element. For single damage, it was found that modal flexibility changes (MFC) 

and MSE changes provided similar results with no locating error. Although for multiple-damage 

scenarios MSE changes increased the accuracy of the damage locating in the plate, the simulation 

of multiple-damage needs more investigation. 

Brehm et al. (2010) enhanced a purely mathematical modal assurance criteria (MAC) called 

energy-based modal assurance criteria (EMAC) in terms of MSE. A numerical model and a 

benchmark study (cantilever truss) were presented to show the efficiency of the proposed method. 

The method sufficiently reduces uncertainties about mode shapes particularly when limited spatial 

information is available. However, this methodology cannot replace a cautious preparation of 

modal tests. Srinivas et al. (2010) proposed a multi-stage approach to detect structural damage 

using MSE and genetic algorithm (GA)-based optimization technique. The method was 

successfully applied to a simply supported beam and a plane truss. Although it is mentioned that 

the method can be used for damage detection in large-scale structures, no case study for this type 

of structure has been reported. 

Yan et al. (2010) combined an CMSE with the niche genetic algorithms (GAs). The method 

was numerically used to detect the damage of an airfoil with composite materials. However, 

experimental works have not been reported in order to detect the structural damage in bridges or 

buildings. Wu and Sun (2011) compared and improved two damage identification methods which 

were based on MSE. Numerical studies showed that Shi’s MSECR method is more accurate than 

Stubbs damage index method (SDIM). Even though both methods are noise sensitive and have 

limited robustness in damage identification. To improve these concerns and also modal expansion 

method, more studies are required. Hu et al. (2011) presented the surface crack detection in an 

aluminum circular hollow cylinder using MSE and scanning damage index methods. The 

106



 

 

 

 

 

 

An improved modal strain energy method for structural damage detection, 2D simulation 

 

 

experimental results indicate the accuracy of the method. However, this method still needs to be 

more simplified for large structures and be applicable for different type of structures and different 

size of damages. 

Wang et al. (2010) improved a modal strain energy correlation (MSEC) method using a 

theoretically derived MSE-to-damage sensitivity variable. Although this method was more 

efficient, noise contamination might give false alarms. Wang’s method was further developed and 

validated for complicated steel truss bridges using multi-layer GA which became more efficient 

and feasible even in presence of noise (Wang et al. 2012). However, it is yet to be verified for 

other type of bridges or buildings. Wahalathantri et al. (2012) validated a damage index based 

MSE method for a simply supported and a two-span beam. This method was capable of locating 

and quantifying damage at any one of the measured modes. It was also found that the method was 

inexpensive and less time-consuming. Although this method is efficient enough, it is applicable 

only for simple beams.  

Yan (2012) formulated a damage detection method based on element MSE sensitivity. Yan’s 

method that is adapted a closed form of elemental MSE sensitivity, was numerically applied to 

some two-dimensional structures and high efficiency results were noted. Seyedpoor (2012) 

proposed a two-stage modal strain energy based index (MSEBI) to locate and quantify the 

structural damage. The numerical results of two samples showed the reliability of the method in 

damage identification. However, convergence achieves after some iterations which usually 

demands high computations. Also the effect of noise for the first case study has not been reported.  

Li et al. (2013) calculated the sensitivity of element MSE of three structures: a fixed–fixed 

beam, an automobile frame and a two-bar truss structure using the methods available in the 

literature and the new method they proposed. The results of three numerical examples done from 

different methods were compared together. It was resulted that for large numbers of degrees of 

freedom (DOFs) and when the number of design variables exceeds the number of individual 

element stiffness matrices of interest, the proposed method has a good preferability. However, the 

storage capacity issue needs to be improved more. 

Ding et al. (2013) proposed a damage index based MSE method for girder road and bridge 

structures. Numerically applying the method to a bridge using a continuous beam model was 

resulted in a good agreement with assuming damages at different locations with various quantities. 

Wang (2013) developed an iterative modal strain energy (IMSE) method using frequency 

measurements to estimate the structural damage severity. Unlike the other MSE methods, this 

method requires only few modal frequencies from damaged structure. The result of the 

experimental data from a clamped-free beam indicates the capability of the method in quantifying 

the damage extent accurately. Wang et al. (2013) developed an CMSE method to estimate the 

connection stiffness of the semi-rigid joints. The numerical study was successfully performed for a 

four-story frame structure considering different connection type of beam and column in presence 

of noise. The outcome of this method can be directly used to create an accurate model for 

structural damage detection.  

From the literature reviewed, it is observed that MSE has been usually used for structural 

damage detection. However, the existing MSE methods have often been validated for some 

specific type of structures such as beam like structures, airfoil, offshore platforms, plane truss or 

steel truss bridges. Therefore it is essential to enhance/improve the available MSE methods in 

order to provide a more applicable and reliable approach for damage detection and quantification 

in any structure. This study aims to develop an MSE scheme in order to increase the accuracy of 

locating and quantifying the damage in any structure. The research contribution will result in 
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decreasing the loss of lives and property by preventing the unexpected structural damages and 

finally providing the safety of structures. 

In this paper, an MSE method is mathematically improved for detecting the structural damage 

of elements. The improved method is numerically applied to two 2D structural samples. Single and 

multiple damage scenarios with 3% and 5% noise in each scenario are also considered. The results 

of noise-free and noise-polluted cases are compared with a previous MSE based method (Shi et 

al., 2000), concluded and reported.  

 

 

2. Traditional MSE theory 
 

Occurrence of damage in one or more elements of a structure results in changing in some of the 

structural parameters such as mode shapes, natural frequencies and stiffness (Shi et al. 2000) as 

follows; 

The change in mode shape can be written 

                     {ϕi
d} = *ϕi+ + *Δϕi+ = *ϕi+ + ∑ cir*ϕr+

md
r=1                     (1) 

where cir =
*ϕr+

T,ΔK-*ϕi+

λi−λr
    (i ≠ r),  

md= number of analytical modes and 

{ϕi
d} and *ϕi+ are damaged and undamaged mode shapes at mode i respectively. 

The natural frequencies change as follow equation. 

                               λi
d = λi + Δλi                                 (2) 

where λi
d and λi are the damaged and undamaged eigenvalues at mode i. 

Also it can be derived 

           ,Km
d - = ,Km- + ,ΔKm- = ,Km- + αm,Km-    (−1 < αm  ≤ 0 )            (3) 

where ,Km
d - and ,Km- are damaged and undamaged stiffness matrix of element m and 𝛼𝑚 is 

the fractional reduction coefficient of 𝑚th elemental stiffness matrix. 

Extending the Eq. (3) for all elements and accumulating 

         ∑ ,Km
d -L

m=1 = ∑ ,Km-L
m=1 + ∑ ,ΔKm-L

m=1 = ∑ ,Km-L
m=1 + ∑ αm,Km-L

m=1        (4) 

Simplifying (Shi et al. 2000) 

           ,Kd- = ,K- + ,ΔK- = ,K- + ∑ ,ΔKm-L
m=1 = ,K- + ∑ αm,Km-L

m=1             (5)  

where Kd and K are global damaged and undamaged stiffness of the structure respectively.  

 

 
3. Improved MSE method formulation 
 

In this paper, the previous study performed by Shi et al. (2000) has been improved in order to 

increase the accuracy of damage detection (Moradipour et al. 2013). Initially, unlike the previous 

study, the structural damaged stiffness matrix was used for establishing a more accurate MSE 

equation. It is expected that using the new MSE formulated can get more accurate strain energy 
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which is stored in structural elements and finally provides a proper damage detection model as 

well as having less computation and iteration efforts. 

Strain energy stored in the j
th
 element at mode i before (Shi et al. 2000) and after damage are as 

follow respectively 

                            MSEi,j =
1

2
*ϕi+

T,Kj-*ϕi+                            (6) 

                           MSEi,j
d =

1

2
{ϕi

d}
T
,Kj

d-{ϕi
d}                           (7) 

The change in MSE is 

           ΔMSEi,j = MSEi,j
d − MSEi,j =

1

2
{ϕi

d}
T
[Kj

d]{ϕi
d} −

1

2
*ϕi+

T,Kj-*ϕi+             (8) 

Substituting for {ϕi
d} and [Kj

d] in Eq. (8) from Eqs. (1) and (3) respectively 

         ΔMSEi,j =
1

2
*ϕi + Δϕi+

T(,Kj- + αj,Kj-)*ϕi + Δϕi+ −
1

2
*ϕi+

T,Kj-*ϕi+           (9) 

Simplifying and neglecting the higher order term leads to 

ΔMSEi,j =
1

2
αj*ϕi+

T,Kj-*ϕi+ +
1

2
(1 + αj)[*ϕi+

T,Kj-*Δϕi+ + *Δϕi+
T,Kj-*ϕi+]      (10) 

Substituting for *Δϕi+ from Eq. (1) in Eq. (10) yields 

ΔMSEi,j =
1

2
αj*ϕi+

T,Kj-*ϕi+ +

1

2
(1 + αj) [*ϕi+

T,Kj-∑
*ϕr+

T,ΔK-*ϕi+

λi−λr

md
r=1 *ϕr+ +

                             ∑
*ϕr+

T,ΔK-*ϕi+

λi−λr

md
r=1 *ϕr+

T,Kj-*ϕi+]           (i ≠ r)                  (11) 

where i is normally in the range of 1 to 5 and r is the number of analytical modes under 

consideration (r ≤ no. of DOFs) 

Substituting for ,ΔK- from Eq. (4) into Eq. (11) ( ,ΔK- = ∑ αi,Ki-
L
i=1 ) and simplifying  

ΔMSEi,j =
1

2
αj*ϕi+

T,Kj-*ϕi+ +
1

2
*ϕi+

T,Kj- ∑ αi
L
i=1 ∑

*ϕr+
T,Ki- *ϕi+

λi−λr

md
r=1 *ϕr+ +

1

2
∑ αi

L
i=1 ∑

*ϕr+
T,Ki- *ϕi+

λi−λr

md
r=1 *ϕr+

T,Kj-*ϕi+ +
1

2
αj [*ϕi+

T,Kj-∑
*ϕr+

T,ΔK-*ϕi+

λi−λr

md
r=1 *ϕr+ +

∑
*ϕr+

T,ΔK-*ϕi+

λi−λr

md
r=1 *ϕr+

T,Kj-*ϕi+]    (i ≠ r)                                  (12) 

Ignoring the higher order terms leads to final equation of changing in MSE of the element j of the 

structure at mode i as follow 

ΔMSEi,j =
1

2
αj*ϕi+

T,Kj-*ϕi+ +

1

2
[*ϕi+

T,Kj-∑ αi
L
i=1 ∑

*ϕr+
T,Ki- *ϕi+

λi−λr

md
r=1 *ϕr+ +

                                ∑ αi
L
i=1 ∑

*ϕr+
T,Ki- *ϕi+

λi−λr

md
r=1 *ϕr+

T,Kj-*ϕi+]     (i ≠ r)              (13) 
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3.1 Locating the damage 
 

The proposed technique by Shi et al. (2000) is used for locating the damage. The change in 

MSE is upgraded with the improved ΔMSE from Eq. (13) to locate the damage more accurately. 

In this technique, a damage location indicator called MSECR obtained from Eq. (14) is used. 

MSECR can be either derived for a single mode such as mode i and element j as given in Eq. 14(a) 

or normalized for the first five mode shapes of element j as given in Eq. 14(b). Since the improved 

ΔMSE is used for calculating the MSECR, it is expected the recent damage indicator to be more 

accurate in locating the damage. When MSECR is plotted versus element numbers, the elements 

with higher amounts of MSECR are the probably damaged elements.  

                        MSECRij =
|MSEi,j

d −MSEi,j|

MSEi,j
                           (14.a) 

                        MSECRj =
1

m
∑

MSECRij

MSECRi,max

5
i=1                          (14.b) 

where MSECRj  is the average of MSECRj
i  summation for the first five mode shapes 

normalized with respect to the largest value MSECRmax
i  of each mode. 

Therefore, to locate the damage, any of Eq. (14.a) or (14.b) can be separately used to calculate the 

MSECR indicator. In case of using Eq. (14.a) any of the first five modes can be used i.e., i= any of 

1 to 5. Though, the number of modes of damaged structure selected should be necessarily 

associated with that of undamaged one. However, using the Eq. (14.b) which mostly gives better 

results, requires the first five modes of both damaged and undamaged structures i.e., i=5. 
 

3.2 Quantifying the damage 
 

The second attempt in the present study is derivation of a sensitivity matrix using the improved 

MSE equation. When the damaged element/s is/are located among the most probably suspected 

elements from the previous section, damage quantifying process is conducted within those 

elements seeking for their 𝛼 values. It is trying to find the amount of 𝛼’s as the fractional 

reduction coefficient of elemental stiffness. The amount of 𝛼 for true damaged elements will 

converge to their real damage percentage while for other suspected elements converge to zero. 

However, the exact value of each set of 𝛼’s may be obtained through a number of iterations. The 

improved procedure is as follows;  

From Eq. (13) ignoring the coefficient 
1

2
, it can be derived 

                           ,β-*α+ = *MSEC′+                              (15) 

Where MSEC′ is obtained from difference of damage and undamaged cases as Eq. (18) 

and β is 

βs,t =
∂MSE

∂α
= *ϕi+

T,Kj-*ϕi+ + ∑ *ϕi+
T,Ks-

*ϕr+
T,Kt- *ϕi+

λi−λr

n
r=1 *ϕr+ +

                                               ∑
*ϕr+

T,Kt- *ϕi+

λi−λr

n
r=1 *ϕr+

T,Ks-*ϕi+                      (16) 

where s is a selected element for computation of the MSEC and  

t is a suspected damaged element.  
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In previous studies MSEC has been considered as following terms (Shi et al. 2000, Wang et al. 

2012) to be used in the right side of Eq. (15) 

                     MSECij = {ϕi
d}

T
[Kj]{ϕi

d} − *ϕi+
T,Kj-*ϕi+                    (17) 

As the value of MSEi,j
d  theoretically is a function of [Kj

d], definitely it is expected by using Kj
d 

instead of Kj get more exact value for MSECij, therefore 

                     MSECij
′ = {ϕi

d}
T
[Kj

d]{ϕi
d} − *ϕi+

T,Kj-*ϕi+                    (18) 

Substituting for Kj
d from Eq. (3) into Eq. (18), simplifying and then arranging 

MSECij
′ = αj{ϕi

d}
T
[Kj]{ϕi

d} + {ϕi
d}

T

[Kj]{ϕi
d} − *ϕi+

T,Kj-*ϕi+          (19) 

Substituting Eq. (17) into Eq. (19) gives 

                        MSECij
′ = αj{ϕi

d}
T
[Kj]{ϕi

d} + MSECij                     (20) 

Substituting Eqs. (16) and (20) into Eq. (15)  

[ *ϕi+
T,Kj-*ϕi+ + ∑ *ϕi+

T,Ks-
*ϕr+

T,Kt- *ϕi+

λi−λr

n
r=1 *ϕr+ +

∑
*ϕr+

T,Kt- *ϕi+

λi−λr

n
r=1 *ϕr+

T,Ks-*ϕi+] *α+ = αj{ϕi
d}

T
[Kj]{ϕi

d} + *MSEC+             (21) 

Simplifying 

[−,{ϕi
d}

T
[Kj]{ϕi

d} − *ϕi+
T,Kj-*ϕi+- + ∑ *ϕi+

T,Ks-
*ϕr+

T,Kt- *ϕi+

λi−λr

n
r=1 *ϕr+ +

            ∑
*ϕr+

T,Kt- *ϕi+

λi−λr

n
r=1 *ϕr+

T,Ks-*ϕi+] *α+ = *MSEC+                        (22) 

Substituting Eq. (17) into Eq. (22)  

 [−,MSEC- + ∑ *ϕi+
T,Ks-

*ϕr+
T,Kt- *ϕi+

λi−λr

n
r=1 *ϕr+ + ∑

*ϕr+
T,Kt- *ϕi+

λi−λr

n
r=1 *ϕr+

T,Ks-*ϕi+] *α+ = *MSEC+  

                                                                            (23) 

Denoting βs,t
∗ = −MSECij  and 

βs,t
′ = ∑ *ϕi+

T,Ks-
*ϕr+

T,Kt- *ϕi+

λi−λr

n
r=1 *ϕr+ + ∑

*ϕr+
T,Kt- *ϕi+

λi−λr

n
r=1 *ϕr+

T,Ks-*ϕi+, 

Then, βs,t can be written in the following form 

                              βs,t = βs,t
∗ + βs,t

′                               (24) 

Reconstructing the Eq. (15) in matrix notation 

                          (,β∗- + ,β′-)*α+ = *MSEC+                           (25) 

Or  
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(

 
 

[
 
 
 
 
β∗

11 0 … 0

0 β∗
22 … 0

⋮
0

⋮
0

⋱
…

⋮
β∗

qq]
 
 
 
 

+

[
 
 
 
 
β11

′ β12
′ … β1q

′

β21
′ β22

′ … β2q
′

⋮
βq1

′
⋮

βq2
′

⋱
…

⋮
βqq

′
]
 
 
 
 

)

 
 

 [

α1

α2

⋮
αq

] =  [

MSECi1

MSECi2

⋮
MSECiJ

]         (26) 

where ,𝛽∗- is a diagonal matrix that is proposed in this study in order to increase the accuracy 

of *𝛼+’s. Each array of ,𝛽∗- is a function of MSEC of the associated element in a specific mode. 

Finally from Eq. (26), *𝛼+’s are obtained in the following expanded form 

          [

α1

α2

⋮
αq

] =

(

 
 

[
 
 
 
 
β∗

11 0 … 0

0 β∗
22 … 0

⋮
0

⋮
0

⋱
…

⋮
β∗

qq]
 
 
 
 

+

[
 
 
 
 
β11

′ β12
′ … β1q

′

β21
′ β22

′ … β2q
′

⋮
βq1

′
⋮

βq2
′

⋱
…

⋮
βqq

′
]
 
 
 
 

)

 
 

−1

 [

MSECi1

MSECi2

⋮
MSECiJ

]      (27) 

Accordingly, to calculate the alpha coefficients, αi, in order to quantify the damage using Eq. 

(27), two sets of mode shapes are required. According to Eq. (24), the number of analytical mode 

shapes required from undamaged case is r which equals to or is less than the number of DOFs of 

the structure under consideration (𝑟 ≤ no. of DOFs). However, the alpha calculation process can be 

stopped at a very lower mode number than the nominated number of DOFs when it converges. 

Whereas, from damaged case the number of required mode/s is i that equals to any of modes from 

1 to 5. Since mode one and three normally give better solution, then i=1 or 3.  

 

3.3 Noise effect 
 

The effect of noise is applied using Eq. (28) (Shi et al. 2000) 

                        φ̅
ij

= φ
ij
(1 + γ

i

φ
ρ

φ
|φmax,j|)                         (28) 

where φ̅
ij

 and φ
ij

 are the mode shape components of the j
th
 mode at i

th 
DOF 

γ
i

φ
 are the random numbers with the mean of zero and a variance of one 

ρφ is the noise level (per cent) 

φ
max,j

 is the largest component of the j
th
 mode shape 

 

 

4. Verification  
 

To verify the improved method in this study, an attempt is made to validate it for 2D structures. 

For this purpose, two structures including an 2D steel beam and an three-story steel frame with 

frame elements of three DOFs at each end have been selected to apply the improved method and 

compare the results with those from previous method (Shi et al. 2000). 

 

4.1 Illustrative example 1 
 

The first numerical example is a fixed-end steel beam consisting of 12 elements and 13 nodes 

with 33 DOFs as shown in Fig. 1. The material properties and geometric data are as follow;  
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Fig. 1 FEM model of the fixed-supported beam 

 

  

(a) Single damage, element 6 (b) Multiple damage elements 6 and 11 

Fig. 2 Elemental damage located with first five modes 

 

 

Length of each element =L=0.60 m 

Modulus of elasticity =E=207 × 109  N/m2 

Cross-sectional area =A=0.0016 m2 

Second moment of area =I=3.4133 × 10−9  m4 

Mass density =7870 kg/m3 

Two damage cases are assumed to occur in the beam. Case 1 is a single-damage that occurs in 

element 6 with a stiffness loss of 15% and case 2 is a multiple-damage with damage in elements 6 

and 11 with stiffness loss of 10% in each element. Three and five per cent of noises are also 

considered in each damage scenario respectively. The results of noise contamination will be 

compared with the case with no noise (zero per cent noise).  

To detect the single and multiple damage locations, the MSCER are calculated and shown in 

Fig. 2 using Eq. 14(b). For this purpose, the first five mode shapes of both damaged and 

undamaged cases are used i.e., i=5. 

The second calculation is to find the alpha coefficients to quantify the damage. According to 

Eq. (11) or (13), the number of analytical modes required from undamaged case is r which equals 

to or is less than the number of DOFs of the structure (𝑟 ≤ no. of DOFs). While, from damaged 

case the number of required mode/s is i that equals to any of modes from 1 to 5. Since mode one 

gives more exact solution, then i=1. So in this example, r=33 and i=1. Finally, the 𝛼’s of the 

improved method are calculated from Eq. (27) while in previous study (Shi et al. 2000) its own 

equation is used. The single and multiple damage coefficients (𝛼’s) using the improved method 

and previous study quantified with the first mode are shown in Figs. 3 and 4 respectively. It is seen 

that the horizontal axis of Figs. 3 and 4 is r that should be started from 1 and continued to the 

maximum possibly analytical mode which is the number of DOFs of the structure. However, the 

procedure of alpha calculation can be stopped at a much lower mode than the number of  
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(a) Previous study (Shi et al. 2000) (b) Proposed method in current study 

Fig. 3 Coefficients of single-damages quantified with first mode 

 

  

(a) Previous study (Shi et al. 2000) (b) Proposed method in current study 

Fig. 4 Coefficients of multiple-damages quantified with first mode 

 

 

nominated DOFs once it converges. In this example, although the convergence has been achieved 

after mode 21, still the calculation has been continued. For the first few modes also, alpha 

coefficients may get large values that cannot be shown in the figures with same scale. That is why 

some of the (first) modes are missing in the figures while they have been considered in calculation.  

 
4.2 Illustrative example 2 

 

The second example is a three-story steel frame with frame elements of three DOFs at each end 

consisting of nine elements and eight nodes with 18 DOFs as shown in Fig. 5. The material 

properties and geometric data are as follow;  

Length =L=3.0 m 

Modulus of elasticity =E=207 × 109  N/m2 

Cross-sectional area =A=0.0015 m2 

Second moment of area =I=1.125 × 10−7  m4 

Mass density = 7870 kg/m3 

Similarly, two damage scenarios are assumed to occur in the frame. Case 1 is a single-damage that 
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occurs in element 8 with a stiffness loss of 15% and case 2 is a multiple-damage with damages in 

elements 4 and 8 with stiffness loss of 10% in each element. Three and five per cent noises are also 

considered in each damage scenario respectively.  

The MSCER indicators are calculated and shown in Fig. 6 using Eq. 14(b) and the first five 

mode shapes of both damaged and undamaged cases indicating i=5. Similar to example 1, to find 

the alpha coefficients, the same equations are used instead here r=18 and i=1. The single and 

multiple damage coefficients (α’s) using the improved method and previous study quantified with 

the first mode are shown in Figs. 7 and 8 respectively. The same procedure applies to the number 

of analytical mode shapes to be shown on horizontal axis or to the last mode shape that is 

associated with convergence. Although in this example, the convergence has been achieved after 

mode 10, the calculation has been continued also. 

 

 

 

Fig. 5 FEM of the three-story steel frame 

 

  

(a) Single damage, element 8 (b) Multiple damage elements 4 and 8 

Fig. 6 Elemental damage located with first five modes 
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(a) Previous study (Shi et al. 2000) (b) Proposed method in current study 

Fig. 7 Coefficients of single-damages quantified with first mode 

 

  

(a) Previous study (Shi et al. 2000) (b) Proposed method in current study 

Fig. 8 Coefficients of multiple-damages quantified with first mode 

 

 

5. Results and discussion 
 

For the beam structure, in single-damage scenario, shown in Fig. 2(a), it is seen that the 

MSECR crests at element 6 which represents it is the highly suspected element to damage. Even 

though, elements 4, 5, 7, 8, 9 and 11 are also likely exposure to damage because of high value of 

MSECR. However, to decrease the computation volume, few suspected elements such as 5, 6, 7, 

and 8 are selected for next stage to quantify their α coefficients. The calculation of 𝛼 coefficient 

for selected elements versus analytical mode is depicted in Figs. 3(a) and 3(b) for previous study 

(Shi et al. 2000) and current study respectively. From this figure, it is seen that the amount of all 

α’s converge to zero except  𝛼6 which converges to around 0.16 in current study and 0.13 in 

previous study. Compared to the assumed damage of 15 per cent in element 6, current study gives 

a more exact value for 𝛼6. It also indicates that the improved method is more convergence at any 

mode shape than previous study as shown in Figs. 3-4 and 7-8. In other words, the rate of 

convergence in the improved method is faster.  

Similarly, in multiple-damage scenario, shown in Fig. 2(b), the MSECR peaks at elements 6 

and 11 which shows their highly possibility to damage. Elements 4, 5, 7, 8 and 10 are also 

probably damaged elements but among these suspected elements, only elements 5, 6, 10 and 11 are 
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selected to their 𝛼 coefficients be quantified. Fig. 4 shows that the amount of 𝛼5 and 𝛼10 

converge to zero but  𝛼6 and 𝛼11 converge to around 0.102 & .088 in current study and 0.106 & 

0.079 in previous study respectively. Compared to the assumed damage of 10 per cent in both 

elements 6 and 11, in this case it is also seen that the improved method performs better.  

The effect of 3 and 5 per cent noises are also included in calculation as shown in Fig. 2. It is 

seen that the MSECR indicator of damaged elements is reduced in presence of noise (Shi et al. 

2000) and also it decreases with increasing the noise percentage. However, the MSECR indicator 

of undamaged elements such as elements 3, 4, 7 and 10 has mostly increased a few percent. The 

procedure of quantifying damage for contaminated cases with noise is same and almost the same 

results are obtained with more computational cycles. 

In a similar way, for the second structure, in single-damage scenario, according to Fig. 6(a), 

element numbers 2, 5, 6 and 8 are selected as the suspected damaged elements. The obtained 

coefficient of 𝛼8 are 0.1366 and 0.099 for current and previous study respectively as shown in 

Fig. 7 in which the performance of current study is more exact compared to the assumed damage 

of 15 per cent. In multiple-damage scenario also based on Fig. 6(b) among the selected suspected 

elements 2, 4, 7 and 8, the amount of 𝛼4 and 𝛼8 are calculated 0.086 & 0.1018 and 0.067 & 

0.085 in current and previous studies respectively as shown in Fig. 8. The more vicinity of alpha 

coefficient in current study to assumed damage of 10 percent for elements 4 and 8 indicates the 

more accuracy of the current study. The effect of 3 and 5 per cent noises are also included in 

calculation for this example as shown in Fig. 6. The trend is similar to previous example explained 

for Fig. 2. 

It should mention that for selecting the suspected damaged elements, there is no limitation 

neither in the number nor order of elements. It is because of that only the true damaged elements 

will finally get a non-zero coefficient of damage. However, selecting the large numbers of 

suspected elements could increase the computational cycles particularly for complex structures but 

it does not affect identifying the true damaged elements. 

Additionally, it is seen that in this method, the required numbers of mode shapes are as follow; 

i. For locating the damage 

a. The first five modes of damaged structure 

b. The first five modes of undamaged structure 

ii. For quantifying the damage 

a. Only one mode from damaged structure is required, usually mode one or three. 

b. From undamaged structure, as much mode as possible, the more the better (at least the first five 

modes that were used in damage localization). 

In practice, incomplete mode measuring may occur because of some parameters such as less 

number of sensors, improper placement of sensors, difficulty in measuring the rotational DOFs, 

effect of noise and error in processing the data. Though, normally at least the first five modes can 

be obtained. So, in this method, there is no difficulty for locating the damage. However, having 

less number of modes from undamaged structure may decrease the damage quantification 

accuracy.  

To overcome this issue, the mode expansion method proposed by Shi et al. (1995) can be used 

to expand the inadequate number of DOFs measured to the full dimension of FEM. Also according 

to Hu (1987), when the stiffness of the structure changes, each perturbed mode shape can be 

linearly expressed as a combination of the original mode shapes. 
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6. Conclusions 
 

In this article an MSE method was mathematically improved and formulated to precisely detect 

and quantify the structural damage in complex structures. The improvement was conducted in two 

stages; firstly, the equation of MSE was more exactly formulated considering damaged elemental 

stiffness. The improved MSE was then used to get an accurate sensitivity matrix to perfectly detect 

and quantify the damage. Verification of the improved method was performed by applying the 

method to two plane structures with frame elements of three DOFs at each end as the 

comprehensive 2D samples. Single and multiple damage scenarios were considered for each 

structure. The mode shapes associated with assumed damages also were contaminated by 3 and 5 

per cent noises. After getting the results and analyzing them, it was observed that; 

• The current method is more accurately capable of detecting and quantifying the structural 

damage than previous study (Shi et al. 2000). 

• The improved method converges faster with higher rate i.e., converges with less number of 

modes. This feature considerably decreases the number of iterations especially for complex 

structures that makes it more inexpensive.  

• Although the method is slightly noise sensitive, in presence of some usual percentage of noise 

performs well and is capable of both detecting and quantifying the damage accurately. 

In a similar way, this study can be numerically extended for 3D structures. Also it can be 

practically tested for any laboratory model or real structure by measuring the first five mode 

shapes of the model or prototype instead of mode shapes calculated from assumed damage/s. 

These studies currently are under investigation and will be subsequently reported. 
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