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Abstract.  In this paper, a receding contact problem for an elastic layer resting on two quarter planes is 

considered. The layer is pressed by a stamp and distributed loads. It is assumed that the contact surfaces are 

frictionless and only compressive traction can be transmitted through the contact surfaces. In addition the 

effect of body forces are neglected. Firstly, the problem is solved analytically based on theory of elasticity. 

In this solution, the problem is reduced into a system of singular integral equations in which contact areas 

and contact stresses are unknowns using boundary conditions and integral transform techniques. This system 

is solved numerically using Gauss-Jacobi integral formulation. Secondly, two dimensional finite element 

analysis of the problem is carried out using ANSYS. The dimensionless quantities for the contact areas and 

the contact pressures are calculated under various distributed load conditions using both solutions. It is 

concluded that the position and the magnitude of the distributed load have an important role on the contact 

area and contact pressure distribution between layer and quarter plane contact surface. The analytic results 

are verified by comparison with finite element results. 
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1. Introduction 
 

Problems involving the contact of two separate bodies pressed against each other have been 

widely studied by many researchers. Although the contact area increases after the application of 

the load in many cases, there are others where the contact area becomes smaller. This kind of 

problem is called receding in literature. In other words, a contact can be named receding if the 

contact area in the loaded configuration is contained within the initial contact area (Johnson 1985). 

The receding contact problem has been studied for more than four decades by many researchers 

both numerically and analytically. The latest numerical studies on this topic were based on either 

finite element method (Chan and Tuba 1971, Francavilla and Zienkiewicz 1975, Jing and Liao 

1990) or boundary element method (Anderson 1982, Garrido et al. 1991, Garrido and Lorenzana 

1998, Paris et al. 1992, 1995). 
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Among the analytical studies on receding contact, the followings are recorded in literature. 

Keer et al. (1972) solved the smooth receding contact problem between an elastic layer and a half 

space when two bodies are pressed against each other by considering both plane and axisymmetric 

cases. The same problem was solved treating the layer as a simple beam by Gladwell (1976). The 

frictionless contact problem for an elastic layer resting on two quarter planes and loaded 

compressively was solved by Erdogan and Ratwani (1974). Civelek and Erdogan (1974) 

investigated the general axisymmetric double frictionless contact problem for an elastic layer 

resting on a half space and pressed by an elastic stamp. The smooth receding contact problem for 

an elastic layer pressed against a half space by a frictionless semi-infinite elastic was examined by 

Gecit (1986).  

Aksogan et al. (1996) studied a contact problem for an elastic layer supported by two elastic 

quarter planes both symmetrical loading and axisymmetric loading (1997). Comez et al. (2004) 

solved double receding contact problem for two elastic layers having different elastic constants 

and heights and pressed by a rigid stamp. A receding contact plane problem for a functionally 

graded layer pressed against a homogeneous half space was analyzed by El-Borgi et al. (2006). 

Kahya et al. (2007) considered a frictionless receding contact problem between an anisotropic 

elastic layer and an anisotropic elastic half plane, when the two bodies are pressed together by 

means of a rigid circular stamp. 

Rhimi et al. (2009) considered the axisymmetric problem of a frictionless receding contact 

between an elastic functionally graded layer and a homogeneous half-space when the two bodies 

are pressed together and double receding contact between a rigid stamp of axisymmetric profile, an 

elastic functionally graded layer and a homogeneous half space (2011). Chen and Chen (2012) 

studied the contact behaviors of a graded layer resting on a homogeneous half space and pressed 

by a rigid stamp. Comez (2013) considered a contact problem for a functionally graded layer 

loaded by means of a rigid stamp and supported by a Winkler foundation. A continuous contact 

problem for two elastic layers resting on an elastic half-infinite plane and loaded by means of a 

rigid stamp was solved by Oner and Birinci (2014). Yaylaci and Birinci (2013) studied a receding 

contact problem of two elastic layers supported by two elastic quarter planes. A comparative study 

of numerical and analytical solution of the same receding contact problem conducted by Yaylaci et 

al. (2014). 

When the literature is researched, it can be seen that there are not enough studies about 

receding contact problems including quarter planes. Additionally, although there exist extensive 

studies on analytical and numerical solution of contact problems in literature, comparison of these 

two methods has not been explored completely. Also, in distinction to previous papers, the layer is 

pressed by both a rigid stamp and distributed loads, simultaneously. As a result, the aim of this 

paper is to present a comparative study of a receding contact problem using analytical method and 

FEM and compare the solutions obtained from these methods with each other.  

 
 

2. Analytical solution 
 

Consider an elastic layer of thickness h resting on two quarter planes, subjected to a 

concentrated load P by means of a rigid circular stamp and uniformly distributed loads as shown 

Fig. 1. It is assumed that the contact surfaces are frictionless and only compressive traction can be 

transmitted through the contact surfaces. In addition the effect of body forces are neglected.  

x=0 plane is assumed to be the plane of symmetry with respect to external loads as well as 

70



 

 

 

 

 

 

Torsional analysis of a single-bent leaf flexure 

geometry. Clearly, it is sufficient to consider one half (i.e., x>0) of the medium only.  

The displacement and stress expressions for the layer are obtained using Fourier integral 

transform technique as fallows (Ç ömez et al. 2004) 
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where u(x,y) and v(x,y) are the displacement components in x and y respectively, σx(x,y), σy(x,y) 

and τxy(x,y) are the stress components of the layer and κ=3−4υ for plain strain. Ai (i=1,2,3,4) are the 

unknown coefficients for the layer which will be determined from boundary conditions of the 

problem. 

The displacement and stress expressions for the quarter plane in polar coordinates (r, θ) are 

obtained using Mellin integral transform technique as fallows (Çakıroğlu 2011) 

 

 

 

Fig. 1 Geometry and loading of the receding contact problem 
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where (f)
M

 
shows Mellin integral transform of function f, uθ(r, θ) is the displacement component in 

θ and σr(r, θ), σθ(r, θ) and τrθ(r, θ) are the stress components of the quarter plane. Bi (i=1,2,3,4) are 

the unknown coefficients for the quarter plane which will be determined from boundary conditions 

of the problem. 

The receding contact problem described above must be solved under the following boundary 

conditions 
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where index 1 and 2 show layer related components and quarter plane related components, 

respectively, p1(x) is the unknown contact pressures along the layer-stamp contact surface, p2(x) 

and p2(r) are the unknown contact pressures along the layer-quarter plane contact surface, q is the 

magnitude of the uniformly distributed load and F(x) is a known function obtained the equation 

giving the profile of the rigid stamp. 

Equilibrium conditions for the problem may be expressed as follows.  
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where Q shows the total distributed load magnitude. 

2 1( )Q q d d  .                                                           (8.3) 

The Fourier cosine transform of the unknown contact pressures p1(x) and p2(x) and the Mellin 

transform of the unknown contact pressures p2(r) can be written as follows. 
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After using integral transform techniques on stress boundary conditions (Eqs. (5)-(6)), 

unknown coefficients Ai and Bi (i=1,2,3,4) are determined in terms of p1(ξ), p2(ξ) and p2(s). By 

using displacement boundary conditions (Eq. (7)) after converting x to x1 in Eq. (7.1) and x to x2 in 

Eq. (7.2) and considering the symmetry condition p1(x)=p1(−x), one can obtain following singular 

integral equations after some routine manipulations 
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where 
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The expression ΔA in Eqs. (11)-(12) is defined as follows. 
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Thus, the solution of the problem is reduced into the solution of a system of singular integral 

equation which may be solved numerically using Gauss-Jacobi integration formulation described 

in Erdoğan et al. (1972). 

Following dimensionless quantities can be introduced in order to simplify the numerical 

solution. 
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Substituting given these dimensionless quantities in Eq. (11) and the equilibrium conditions Eq. 

(8), following expressions are obtained. 
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To insure smooth contact at both end points (a, −a) for layer-stamp contact surface, i.e., 

ϕ1(±1)=0, the index of the first integral equation (Eq. (16.1)) is “1” (Erdogan et al. 1973). One may 

notice that layer-quarter plane contact surface has a smooth contact at the right end (c0+c) and 

stress singularity at the edge of the quarter plane (c0−c), i.e., ϕ2(−1)=∞, ϕ2(1)=0. Hence, the 

solution may be sought as follows. 
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where λ is the minimum positive root of Eq. (20.1). 

Using appropriate Gauss–Jacobi integration formulas, Eqs. (16)-(17) are replaced as 
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where r1i, s1k, r2i and s2k are the roots of the related Jacobi polynomials, 
1

N

iW  and 
2

N

iW  are 

weighting constants 
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Note that the system of algebraic equations (Eq. (21)) are consist of (2N+1) equations in total 

for (2N) unknowns namely g1i and g2i (i=1,...,N). Since (N/2+1)
th
 equation of Eq. (21.1) 

corresponds to consistency condition and automatically satisfied, it can be removed. Thus, the 

solution of the problem is reduced into the solution of the system consists of 2N equations for 2N 

unknowns. Note that the system is highly nonlinear in a and c, and an iterative procedure have to 

be used in order to determine these unknowns. In this procedure, firstly a prediction for unknown a 

and c is made and then new values are chosen repeatedly until the value of a and c satisfy 

equilibrium conditions (Eq. (22)).  

 
 
3. The finite element solution 

 
The finite element method (FEM) is a numerical technique used for finding approximate 

solutions of partial differential and integral equations. The method works by assuming a 

continuous function for the solution and obtaining the parameters that govern this function which 

minimizes the error in the solution. For many engineering problems analytical solutions are not  
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Torsional analysis of a single-bent leaf flexure 

 

Fig. 2 The geometry for the analysis 

 

 

Fig. 3 Deformed geometry for the preliminary analysis 

 

 

suitable because of the complexity of the material properties, the boundary conditions o the 

structure itself. The basis of the finite element method is the representation of a body or a structure 

by an assemblage of subdivisions called finite elements. The Finite Element Method translates 

partial differential equation problems into a set of linear algebraic equations. 

            
    K q F  (27) 

where [K] is the global stiffness matrix, {q} the structural nodal displacement vector and {F} is 

the vector of structural nodal loads (Delpero et al. 2010). 
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Table 1 Variation of the contact areas (a/h) and (c/h) with (Q/P), (G1/G2=0.5, K1=K2=2, R/h=250, 

G1/(P/h)=1000, d1/h=0.5, d2/h=1, f/h=0.5) 

PARAMETER 
Q/P=0 Q/P=0.5 Q/P=1.0 Q/P=2.0 

a/h c/h a/h c/h a/h c/h a/h c/h 

Analytical 0.398 0.3187 0.3814 0.4375 0.3703 0.4756 0.3554 0.5059 

FEM 0.4 0.3175 0.38 0.4375 0.37 0.475 0.355 0.505 

Difference (%) 0.5 0.38 0.37 0 0.08 0.13 0.11 0.718 

 
Table 2 Variation of the contact areas (a/h) and (c/h) with (d1/h), (G1/G2=0.5, K1=K2=2, R/h=250, Q/P=0.5, 

G1/(P/h)=1000, d2/h=d1/h+0.5, f/h=0.5) 

PARAMETER 
d1/h=0.5 d1/h=1.0 d1/h=1.5 d1/h=.0 

a/h c/h a/h c/h a/h c/h a/h c/h 

Analytical 0.3814 0.4375 0.3884 0.6425 0.3866 0.85 0.3864 1.2 

FEM 0.38 0.4375 0.385 0.65 0.3825 0.8625 0.3815 1.22 

Difference (%) 0.37 0 0.88 1.17 1.06 1.47 1.26 1.67 

 

 

The receding contact problem has been studied by the finite element method (FEM), using a 

commercial package program ANSYS. The contact is considered as a two-dimensional problem 

and the material of the layer and quarter plane is assumed elastic and isotropic. In the analyses, 

geometric properties are taken as L=1 m (length of the layer in x direction), h=10 cm (thickness of 

the layer in y direction) and R=0.5 m (radius of the stamp) and material properties are taken as 

E1=25000 MPa, v1=0.25, E2=50000 MPa and v2=0.25. Other parameters are chosen such that 

1 / ( / )

/

G P h

R h
, Q/P, d1/h, d2/h and f/h ratios are compatible with analytical values. 

Concentrated load and distributed load acting on the layer in the negative y direction. Plane 

strain finite elements are used for the meshing of the entire geometry. Frictionless surface-to-

surface contact elements are used to model the interaction between the contact surfaces and 

Augmented Lagrangian method is used as the contact algorithm. In the preliminary analysis is 

meshed with 256977 elements, 510414 nodes and the contacting line is meshed with 246 elements. 

The geometry and the applied load are shown schematically in Fig. 2 and the deformed geometry 

of the model assumes the form shown in Fig. 3 

 
 

4. Numerical solutions 
 

Some calculated results for contact areas and contact pressures obtained using analytical and 

finite element solution are shown in Tables 1-4 and Figs. 2-11. Note that all quantities are 

dimensionless. 

Table 1 shows the variations of contact areas between layer and stamp contact surface (a/h) and 

between layer and quarter plane contact surface (c/h) with the ratio of the total distributed load 

magnitude to concentrated load (Q/P), i.e., load ratio, for fixed application surface. It appears that, 

with increasing the load ratio, the contact area between layer and stamp (a/h) decreases but the 

contact area between layer and quarter plane (c/h) increases. 

The variations of the contact areas (a/h, c/h) with the start point of the distributed load (d1/h)  
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Table 3 Variation of the contact areas (a/h) and (c/h) with (d2/h), (G1/G2=0.5, K1=K2=2, R/h=250, Q/P=0.5, 

G1/(P/h)=1000, d1/h=0.5, f/h=0.5) 

PARAMETER 
d2/h=1.0 d2/h=1.5 d2/h=2.0 d2/h=2.5 

a/h c/h a/h c/h a/h c/h a/h c/h 

Analytical 0.3814 0.4375 0.3836 0.5525 0.3838 0.675 0.3833 0.93 

FEM 0.38 0.4375 0.385 0.55 0.3875 0.6875 0.3815 0.95 

Difference (%) 0.37 0 0.37 0.45 0.96 1.85 0.47 2.15 

 
Table 4 Variation of the contact areas (a/h) and (c/h) with (d2/h) and (Q/P), (G1/G2=0.5, K1=K2=2, R/h=250, 

G1/(P/h)=1000, d1/h=0.5, Q/P=(d2/h−d1/h), f/h=0.5) 

PARAMETER 
d2/h=0.75 d2/h=1.0 d2/h=1.5 d2/h=2.0 

a/h c/h a/h c/h a/h c/h a/h c/h 

Analytical 0.3863 0.3581 0.3814 0.4375 0.3755 0.6313 0.3717 0.85 

FEM 0.385 0.3575 0.38 0.4375 0.375 0.6375 0.37 0.8625 

Difference (%) 0.34 0.17 0.37 0 0.13 0.98 0.46 1.47 

 

 

Fig. 4 Contact pressure distribution between layer and stamp (p1/(P/h)) for (Q/P=0.5) 

(G1/G2=0.5, K1=K2=2, R/h=250, G1/(P/h)=1000, d1/h=0.5, d2/h=1, f/h=0.5) 

 

 

are given in Table 2. It can be seen that (a/h) reaches the largest value as the start point of the 

distributed load approaches to one (d1/h→1). On the other hand, (c/h) increases steadily with 

increasing (d1/h). 

Table 3 shows the variations of contact areas (a/h, c/h) with the end point of the distributed 

load (d2/h) for a constant total distributed load magnitude.  

It may be observed that (a/h) reaches the largest value as the end point of the distributed load 

approaches to two (d2/h→2).However, (c/h) increases continuously with increasing (d2/h).  

The variation of the contact areas (a/h, c/h) with the end point of the distributed load (d2/h) for 

a constant distributed load magnitude are given in Table 4. In the event of increasing in (d2/h), it is 

indicated that (a/h) decreases but (c/h c/h) increases. 

79



 

 

 

 

 

 

Nghia Huu Nguyen, Byoung-Duk Lim and Dong-Yeon Lee 

 

Fig. 5 Contact pressure distribution between layer and quarter plane (p2/(P/h)) with (Q/P) 

(G1/G2=0.5, K1=K2=2, R/h=250, G1/(P/h)=1000, d1/h=0.5, d2/h=1, f/h=0.5) 

 

 

Fig. 6 Contact pressure distribution between layer and stamp (p1/(P/h)) for (d1/h=1.0) 

(G1/G2=0.5, K1=K2=2, R/h=250, Q/P=0.5, G1/(P/h)=1000, d2/h=1.5, f/h=0.5) 

 

 

It is seen from all tables that contact areas (a/h, c/h) obtained from analytical and finite element 

results are close and the differences between them are less than % 2.15. In addition, (a/h) shows 

less than 15% change at most between maximum and minimum values among the loading cases 

whereas the maximum change in (c/h) is more than 250%.  

Figs. 4, 6, 8 and 10 show the variation of the contact pressure distribution between layer and 

stamp contact surface (p1/(P/h)) for various distributed load conditions. Since the obtained graphs 

are almost overlapped for each loading condition, only one graph is shown in the corresponding  
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Fig. 7 Contact pressure distribution between layer and quarter plane (p2/(P/h)) with (d1/h) 

(G1/G2=0.5, K1=K2=2, R/h=250, Q/P=0.5, G1/(P/h)=1000, d2/h=d1/h+0.5, f/h=0.5) 

 

 

Fig. 8 Contact pressure distribution between layer and stamp (p1/(P/h)) for (d2/h=1.5) 

(G1/G2=0.5, K1=K2=2, R/h=250, Q/P=0.5, G1/(P/h)=1000, d1/h=0.5, d2/h=1.5, f/h=0.5) 

 

 
figure. It may be observed from these figures that the contact pressures become zero at the end of 

the contact and reaches its maximum value at center of the stamp. 

The variation of the contact pressure distribution between layer and the quarter plane contact 

surface (p2/(P/h)) is given in Figs. 5, 7, 9 and 11 for various distributed load conditions. It can be 

seen from these figures that the contact pressures become zero at the right end and go to infinity at 

the edge of the quarter plane. In addition, the area under graphs increases when (Q/P) increases. 
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Fig. 10 Contact pressure distribution between layer and stamp (p1/(P/h)) for (d2/h=1.5) 

(G1/G2=0.5, K1=K2=2, R/h=250, Q/P=1.0, G1/(P/h)=1000, d1/h=0.5, d2/h=1.5, f/h=0.5) 

 

 
Fig. 9 Contact pressure distribution between layer and quarter plane (p2/(P/h)) with (d2/h) 

(G1/G2=0.5, K1=K2=2, R/h=250, Q/P=0.5, G1/(P/h)=1000, d1/h=0.5, f/h=0.5) 

 
 

The compare of dimensionless contact pressures for analytical and numerical results by means 

of root mean square error (RMSE) between layer and stamp contact surface and between layer and 

quarter plane contact surface are given in Tables 5-6 respectively. 

It is seen from Tables 5-6 and all figures that dimensionless contact pressures distributions 

obtained from analytical solution and finite element solution agree well. The contact pressures 

distribution between layer and stamp show similar distributions whereas contact pressures between 

layer and quarter plane show varieties depend on the magnitude and position of the distributed load.  
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Fig. 11 Contact pressure distribution between layer and quarter plane (p2/(P/h)) with 

(d2/h) (G1/G2=0.5, K1=K2=2, R/h=250, d1/h=0.5, Q/P=(d2/h−d1/h), G1/(P/h)=1000, f/h=0.5) 

 
Table 5 RMSE for dimensionless contact pressures between layer and stamp contact surface  

Figure Fig. 4 Fig. 6 Fig. 8 Fig. 10 

RMSE 0.0027 0.0022 0.0018 0.0033 

 
Table 6 RMSE for dimensionless contact pressures between layer and quarter plane contact surface 

Figure Fig. 5 Fig. 7 Fig. 9 Fig. 11 

Graph (1) 0.02727 0.0192 0.0234 0.0709 

Graph (2) 0.0558 0.0824 0.0135 0.0124 

Graph (3) 0.2642 0.0468 0.0562 0.0182 

Graph (4) 0.5126 0.2642 0.0603 0.0313 

 
 
5. Conclusions 

  
The receding contact problem for an elastic layer resting on two quarter planes is investigated 

using both analytical method based on theory of elasticity and finite element method. 

Dimensionless contact areas (a/h, c/h) and contact pressure distributions (p1/(P/h), p2/(P/h)) are 

obtained using both method between layer and stamp and between layer and quarter plane contact 

surfaces for various distributed load conditions. Obtained results show that 

the contact area (a/h) and contact pressure (p1/(P/h)) between layer and stamp contact surface do 

not show any significant change in case of different distributed load combinations. However, the 

magnitude and position of the distributed load have considerable effect on the contact area        

(c/h) and contact pressure (p2/(P/h)) between layer and quarter plane contact surface. It is also 

verified that the difference between analytical solution and finite element solution carried out by 

ANSYS is in an acceptable range.  
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