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Abstract.  In this work, a novel simple first-order shear deformation plate theory based on neutral surface 

position is developed for bending and free vibration analysis of functionally graded plates and supported by 

either Winkler or Pasternak elastic foundations. By dividing the transverse displacement into bending and 

shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, 

makes it simple to use. The governing equations are derived by employing the Hamilton’s principle and the 

physical neutral surface concept. There is no stretching–bending coupling effect in the neutral surface-based 

formulation, and consequently, the governing equations and boundary conditions of functionally graded 

plates based on neutral surface have the simple forms as those of isotropic plates. Numerical results of 

present theory are compared with results of the traditional first-order and the other higher-order theories 

reported in the literature. It can be concluded that the proposed theory is accurate and simple in solving the 

static bending and free vibration behaviors of functionally graded plates. 
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1. Introduction 
 

Functionally graded materials (FGMs) are a new type of inhomogeneous materials 

(Yamanouchi et al. 1990, Koizumi 1993, 1997) whose macroscopic properties exhibit gradient 

change in space. Therefore, FGMs can be tailored to satisfy different requirements for material 

service performance at different parts or locations in a structure. Now FGMs have been used in 

many structural applications such as mechanical, aerospace, nuclear, and civil engineering.  

Many papers, dealing with static and dynamic behaviour of functionally graded materials 

(FGMs), have been published recently. An interesting literature review of above mentioned work 

may be found in the paper of Birman and Byrd (2007). Reddy (2000) presented Navier’s solutions, 
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and finite element models including geometric non-linearity based on the third-order shear 

deformation theory for the analysis of functionally graded (FG) plates. Cheng and Batra (2000) 

derived the field equations for a functionally graded plate by utilising the first-order shear 

deformation theory or the third-order shear deformation theory and simplified them for a simply 

supported polygonal plate. An exact relationship was established between the deflection of the 

functionally graded plate and that of an equivalent homogeneous Kirchhoff plate. Vel and Batra 

(2002, 2004) developed a three-dimensional analysis of the transient thermal stresses, and the free 

and forced vibration of simple supported FG rectangular plates. Qian et al. (2004) conducted an 

investigation on free and forced vibrations and static deformations of an FG thick simply-

supported square plate by using a higher-order shear and normal deformable plate theory and a 

meshless local Petrov-Galerkin method. Zhong and Yu (2006) used a state-space approach to 

analyze free and forced vibrations of an FG piezoelectric rectangular thick plate simply-supported 

at its edges. Free vibration analysis of FG simply-supported square plates was carried out by 

Pradyumna and Bandyopadhyay (2008) using a higher order finite element formulation, as a small 

part of their study work. Matsunaga (2008) studied natural frequencies and buckling stresses of FG 

simply-supported rectangular plates based on 2D higher-order approximate plate theory (2D 

HAPT). Lü et al. (2009) developed 3D exact solutions for free vibration of FG thick plates on 

Pasternak foundation. Some approximate 3D analyses for free vibration response of multilayered 

composite and FG plates have also been presented using the RMVT- and PVD-based finite layer 

methods  (Wu and Li 2010a) and RMVT-based meshless collocation and element-free Galerkin 

methods (Wu and Chiu 2011). Benachour et al. (2011) investigated the free vibration of FG plate 

by the use of four variable refined plate theory. El Meiche et al. (2011) developed a novel 

hyperbolic shear deformation theory which takes into account transverse shear deformation effects 

for the buckling and free vibration analysis of thick FG sandwich plates. Brischetto (2013) 

developed an exact three-dimensional elastic model for the free vibration analysis of FG one-

layered and sandwich simply-supported plates and shells. Bachir Bouiadjra et al. (2013) 

investigated the nonlinear thermal buckling behavior of FG plates using an efficient sinusoidal 

shear deformation theory. Houari et al. (2013) studied the thermoelastic bending response of FG 

sandwich plates using a new higher order shear and normal deformation theory. Belabed et al. 

(2014) developed an efficient and simple higher order shear and normal deformation theory for FG 

plates. Ait Amar Meziane et al. (2014) presented an efficient and simple refined shear deformation 

theory for the vibration and buckling of exponentially graded material sandwich plate resting on 

elastic foundations under various boundary conditions. Hebali et al. (2014) proposed a new quasi-

three-dimensional (3D) hyperbolic shear deformation theory for the bending and free vibration 

analysis of FGM plate. Hamidi et al. (2015) presented a sinusoidal plate theory with 5-unknowns 

and stretching effect for thermo-mechanical bending of FG sandwich plates. Chakraverty and 

Pradhan (2014) studied the free vibration behavior of exponential functionally graded rectangular 

plates in thermal environment with general boundary conditions. Ait Yahia et al. (2014) 

investigated the wave propagation in FG plates with porosities using various higher-order shear 

deformation plate theories. Studies of a series of buckling, bending and vibration behavior of FG 

plate/beam and laminated plate can be found in recent references such as (Attia et al. 2015, 

Draiche et al. 2014, Khalfi et al. 2014, Nedri et al. 2014, Mahi et al. 2015).  

Recently, investigations of FG plates resting on elastic foundations are identified as an 

interesting field. Although a few studies on the vibration and buckling analysis of isotropic 

homogeneous rectangular plates resting on elastic foundation have been carried out (see for 

example, Xiang et al. (1994), Xiang (2003), Lam et al. (2000), Zhou et al. (2004)) and their cited 
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references), research studies on the dynamic and buckling behavior of their corresponding FG 

plates have received very little attention. Cheng and Kitipornchai (1999) proposed a membrane 

analogy to derive an exact explicit eigenvalue for compression buckling, hydrothermal buckling, 

and vibration of FG plates on a Winkler-Pasternak foundation based on the FSDT. Yang and Shen 

(2001) studied both free vibration and transient response of initially stressed FG rectangular thin 

plates subjected to impulsive lateral loads, resting on Pasternak elastic foundation, based on the 

CPT. The second-order statistics of the buckling of clamped FG rectangular plates that are resting 

on Pasternak elastic foundations and subjected to uniform edge compression was studied by Yang 

et al. (2005) in the framework of the FSDT. Ying et al. (2008) treated 2D elasticity solutions for 

bending and free vibration of FG beams resting on Winkler-Pasternak elastic foundations. Huang 

et al. (2008) used a benchmark 3D elasticity solution to study the bending behavior of FG thick 

simply-supported square plates on a Winkler-Pasternak foundation. Yaghoobi and Yaghoobi 

(2013) studied the buckling behavior of symmetric sandwich plates with FG face sheets resting on 

an elastic foundation using the first-order shear deformation plate theory and subjected to 

mechanical, thermal and thermo-mechanical loads. Bouderba et al. (2013) analysed the 

thermomechanical bending response of functionally graded plates resting on Winkler-Pasternak 

elastic foundations. Based on a refined trigonometric shear deformation theory, Tounsi et al. 

(2013a) analyzed the thermoelastic bending behavior of FG sandwich plates. Zidi et al. (2014) 

studied the bending response of FG plates under hygro-thermo-mechanical loading using a four 

variable refined plate theory.  

Due to its high efficiency and simplicity, first-order shear deformation theory (FSDT) was used 

for analyzing moderately thick plates. First-order shear deformation theory (FSDT) proposed by 

Reissner (1950) and another one proposed by Mindlin (1951) are considered to be pioneering 

theories which take into account shear effects. Praveen and Reddy (1998) examined the nonlinear 

static and dynamic responses of functionally graded ceramic-metal plates using the first-order 

shear deformation theory (FSDT) and the von Karman strain. Croce and Venini (2004) formulated 

a hierarchic family of finite elements according to the Reissner-Mindlin theory. Zenkour et al. 

(2011) presented a mixed first-order transverse shear deformation plate theory (MFPT) for the 

bending response of an orthotropic rectangular plate resting on two-parameter elastic foundations. 

Then, Zenkour and Radwan (2013) extended this theory to the bending behaviour of FG plates. It 

is noted that the mixed first-order transverse shear deformation plate theory (Zenkour et al. 2011, 

Zenkour and Radwan 2013) is a modification of the conventional FSDT. In the MFPT, both the 

displacements and stresses must be considered arbitrary. Recently, Thai and Choi (2013a, b) 

developed a simple FSDT involving only four unknowns for FG plates and laminated composite 

plates. Furthermore, the benefits and disadvantages for the implementation of the simple FSDT-

based numerical models are discussed by Yin et al. (2014). Thus, it can be noted that the models 

based on the first-order shear deformation theory (FSDT) are very often used owing to their 

simplicity in analysis and programming. Recently, Sadoune et al. (2014) developed a novel first-

order shear deformation theory for laminated composite plates. 

In this paper, a new first-order shear deformation theory (NFSDT) for the bending and free 

vibration analysis of functionally graded beams is developed including plate-foundation 

interaction. Using the same methodology presented by Thai and Choi (2013a, b), this theory is 

based on assumption that the in-plane and transverse displacements consist of bending and shear 

components, in which the bending components do not contribute toward shear forces and, 

likewise, the shear components do not contribute toward bending moments. Unlike the 

conventional first-order shear deformation theory (FSDT) (Reissner 1950, Mindlin 1951), the  
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Fig. 1 The position of middle surface and neutral surface for a functionally graded plate 
 

 

proposed first-order shear deformation theory contains two unknowns. Since, the material 

properties of FG plate vary through the thickness direction, the neutral plane of such plate may not 

coincide with its geometric middle plane (Yahoobi and Feraidoon 2010, Ould Larbi et al. 2013, 

Bouremana et al. 2013, Bousahla et al. 2014, Fekrar et al. 2014, Bourada et al. 2015). Indeed, 

Bouremana et al. (2013), Ould Larbi et al. (2013) show that the stretching-bending coupling in the 

constitutive equations of an FG beam does not exist when the coordinate system is located at the 

physical neutral surface of the plate. Therefore, the governing equations for the FG plate can be 

simplified. Based on the present theory and the exact position of neutral surface together with 

Hamilton’s principle, the motion equations of the functionally graded plates resting on elastic 

foundation are obtained. Analytical solutions for bending and free vibration are obtained for a 

simply supported FG plate. Numerical examples are presented to show the validity and accuracy 

of the present NFSDT.  

 

 

2. A new first-order shear deformation theory (NFSDT) for FG plates 
 

Due to asymmetry of material properties of FG plates with respect to middle plane, the 

stretching and bending equations are coupled. But, if the origin of the coordinate system is suitably 

selected in the thickness direction of the FG plate so as to be the neutral surface, the properties of 

the FG plate being symmetric with respect to it. To specify the position of neutral surface of FG 

plates, two different planes are considered for the measurement of z, namely, zms and zns measured 

from the middle surface and the neutral surface of the plate, respectively, as depicted in Fig. 1. 

 

2.1 Basic assumptions 
 

The assumptions of the present theory are as follows: 

• The origin of the Cartesian coordinate system is taken at the neutral surface of the FG plate. 

• The displacements are small in comparison with the plate thickness and, therefore, strains 

involved are infinitesimal. 

• The transverse normal stress ζz is negligible in comparison with in-plane stresses ζx and ζy. 

• This theory assumes constant transverse shear stress and it needs a shear correction factor in 

order to satisfy the plate boundary conditions on the lower and upper surface.  

• The transverse displacement w includes two components of bending wb and shear ws. These 

components are functions of coordinates x, y, and time t only. 

2h  

2h  

C  

Metal rich surface 

Ceramic rich surface 

Neutral surface 

Middle surface 

nsz  

msz  
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2.2 Kinematics 
 

Based on the assumptions made in the preceding section, the displacement field can be 

obtained as follows 

x

w
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where, u, v, w are displacements in the x, y, z directions, u0, v0, wb and ws are the neutral surface 

displacements.  

The strains associated with the displacements in Eq. (1) are 
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2.3 Constitutive equations 
 

The FG plate is made from a mixture of ceramic and metal and the properties are assumed to 

vary through the thickness of the plate. The volume-fraction of ceramic VC is expressed based on  

zms and zns coordinates as  

p

ns

p

ms

C
h

Cz

h

z
V 






















2

1

2

1
                                            (4) 

where p is the power law index which takes the value greater or equal to zero and C is the distance 

of neutral surface from the mid-surface. Using Eq. (4), the material non-homogeneous properties 

(P) of FG plate, as a function of thickness coordinate, become  
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where P represents the effective material property such as Young’s modulus E and mass density ρ 

subscripts m and c represent the metallic and ceramic constituents, respectively. The value of the 

power law index p equal to zero represents a fully ceramic plate, whereas infinite p indicates a 

fully metallic plate.  

The position of the neutral surface of the FG plate is determined to satisfy the first moment 

with respect to Young’s modulus being zero as follows (Ould Larbi et al. 2013) 
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Consequently, the position of neutral surface can be obtained as 
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It is clear that the parameter C  is zero for homogeneous isotropic plates, as expected. 

The linear constitutive relations of a FG plate can be written as 
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where (ζx, ζy, ηxy, ηyz, ηxz) and (εx, εy, γxy, γyz, γxz) are the stress and strain components, respectively. ks 

is a shear correction factor which is analogous to shear correction factor proposed by Mindlin 

(1951). Using the material properties defined in Eq. (5), stiffness coefficients, Qij, can be 

expressed as 

,
1

)(
22211


 nszE

QQ                                                         (9a) 

,
1

)(
212






 nszE

Q
 

                                                            (9b) 

 
,

12

)(
665544


 nszE

QQQ                                                  (9c) 

 

2.4 Equations of motion 
 

Hamilton’s principle is used herein to derive the equations of motion. The principle can be 

stated in analytical form as (Reddy 2002) 
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where δU is the variation of strain energy; δV is the variation of potential energy; and δK is the 
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variation of kinetic energy.  

The variation of strain energy of the plate is calculated by 
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where M, and Q are the stress resultants defined as 
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The variation of potential energy of the applied loads can be expressed as 
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where q is the transverse applied load and fe is the density of reaction force of foundation. For the 

Pasternak foundation model 
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where KW is the modulus of subgrade reaction (elastic coefficient of the foundation) and J1 and J2 

are the shear moduli of the subgrade (shear layer foundation stiffness). If foundation is 

homogeneous and isotropic, we will get J1=J2=J0. If the shear layer foundation stiffness is 

neglected, Pasternak foundation becomes a Winkler foundation. 

The variation of kinetic energy of the plate can be written as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; 

ρ(zns) is the mass density; and (I0, I2) are mass inertias defined as 
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Substituting the expressions for δU, δV, and δK from Eqs. (11), (13), and (15) into Eq. (10) and 

integrating by parts, and collecting the coefficients of δwb, and δws, the following equations of 

motion of the plate are obtained 
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By substituting Eq. (2) into Eq. (8) and the subsequent results into Eq. (12), the stress resultants 

are obtained as 
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where Aij, Dij, etc., are the plate stiffness, defined by 
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A simple shear deformation theory based on neutral surface position... 

By substituting Eq. (18) into Eq. (17), the equations of motion can be expressed in terms of 

displacements (u0, v0, wb, ws) as 
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where dij, and dijlm are the following differential operators 
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Clearly, when the effect of transverse shear deformation is neglected (ws=0), Eq. (21) yields the 

equations of motion of FG plate based on the classical plate theory and physical neutral surface 

concept. 

 

 

3. Exact solution for FG plates 
 

Rectangular plates are generally classified in accordance with the type of support used. We are 

here concerned with the exact solution of Eqs. (21a-d) for a simply supported FG plate. The 

following boundary conditions are imposed at the side edges for NFSDT 
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Based on the Navier approach, the following expansions of displacements are chosen to 

automatically satisfy the simply supported boundary conditions of plate 
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where Umn, Vmn, Wbmn, and Wsmn are arbitrary parameters to be determined, ω is the eigenfrequency 

associated with (m, n) th eigenmode, and λ=mπ/a, μ=nπ/b and 1i . 

For the case of a sinusoidally distributed load, we have 
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where q0 represents the intensity of the load at the plate center. 

Substituting Eq. (24) into Eq. (21), the closed-form solutions can be obtained from 
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where {Δ}={Umn, Vmn, Wbmn, Wsmn}
t
 and [K] and [M] are the symmetric matrixes given by 

 





















44342414

34332313

24232212

14131211

aaaa

aaaa

aaaa

aaaa

K ,  





















4434

34332313

2322

1311

00

00

00

mm

mmmm

mm

mm

M                            (27) 

in which 

2

66

2

1111  AAa   

 661212 AAa      

013 a  

014 a  

2

22

2

6622  AAa   

023 a  

024 a  
2

2

2

1

4

22

22

6612

4

1133 )2(2  JJKDDDDa W   

2

2

2

134  JJKa W   

2

2

2

1

2

44

2

5544  JJKAAa W

ss   

011 Im   

022 Im   

113 Im    

123 Im    

 22

2033   IIm  

034 Im   

           044 Im   (28) 

The components of the generalized force vector {P}={P1, P2, P3, P4}
t
 are given by 

P1=0 

P2=0 

P3=−q0 

P4=−q0                                                                                                     (29) 
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A simple shear deformation theory based on neutral surface position... 

Table 1 Material properties used in the FG plate 

Properties 
Metal Ceramic 

Aluminum (Al) Titanium (Ti-6Al-4V) Alumina (Al2O3) Zirconia (ZrO2) 

E (GPa) 70 66.2 380 117.0 

ρ (kg/m
3
) 2702 – 3800 – 

 
 
4. Results and discussion 
 

In this section, various numerical examples are presented and discussed to verify the accuracy 

of present theory in predicting the bending, and vibration responses of simply supported FG plates. 

Two types of FG plates of Al/Al2O3 and Ti-6Al-4V/ ZrO2 are used in this study, in which their 

material properties are listed in Table 1. For verification purpose, the obtained results are 

compared with those reported in the literature. In all examples, a shear correction factor of 5/6 is 

used for the present NFSDT. The Poisson’s ratio of the plate is assumed to be constant through the 

thickness and equal to 0.3. 

 

4.1 Bending problem 
 

In this section, various numerical examples are described and discussed for verifying the 

accuracy of the present first-order shear deformation theory (NFSDT) in predicting the 

nondimensional deflections and stresses of FG plates subjected to sinusoidally distributed load. 

The various nondimensional parameters used are 
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For the verification purpose, the results obtained by NFSDT are compared with the existing 

data in the literature. It should be noted that the results reported by Wu and Li (2010b) employed a 

RMVT-based third order shear deformation theory (TSDT). However, the results reported by 

Benyoucef et al. (2010) were based on the hyperbolic shear deformation theory. Wu et al. (2011) 

employed RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D 

analysis of multilayered composite and FGM plates. In the case of FG plates with elastic 

foundation, Bouderba et al. (2013) used a refined trigonometric shear deformation theory. Table 2 

shows the comparison of nondimensional deflections and stresses of square plate without elastic 

foundation subjected to sinusoidally distributed load (a/h=10). The obtained results are compared 

with the work of above mentioned authors, and it can be concluded that, in general, the results are 

in good agreement with all the theories compared in this section, particularly with the results 
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provided by Benyoucef et al. (2010) for all considered values of power law index p. In addition, it 

can be seen that the proposed theory (NFSDT) and conventional FSDT give identical results of 

deflections as well as stresses for all values of power law index p. It should be noted that the 

unknown function in present theory is four, while the unknown function in both FSDT and other 

shear deformation theories is five.  

Table 3 presents the comparison of nondimensional displacements and stresses of FG 

rectangular plate supported by either Winkler or Pasternak elastic foundations and subjected to a 

mechanical load. The FG plate is taken to be made of Titanium and Zirconia as is described by 

Bouderba et al. (2013). The obtained results are compared with those of Bouderba et al. (2013) 

and a good agreement is observed for all considered values of power law index p and the elastic 

foundation parameters. It can be shown that the deflection and stresses are decreasing with the 

existence of the elastic foundations. The inclusion of the Winkler foundation parameter gives 

results more than those with the inclusion of Pasternak foundation parameters. As the volume 

fraction exponent increases for FG plates, the deflection will increase. The stresses are also 

sensitive to the variation of p.  

 

 
Table 2 Comparison of nondimensional deflection and stresses of square Aluminum/alumina plate under 

sinusoidally distributed load (a/h=10) 

p Theories w  x  xy  
xz  

1 

Present (four unknowns) 0.5891 1.4968 0.6125 0.2348 

FSDT (five unknowns) 0.5891 1.4968 0.6125 0.2348 

Benyoucef et al. (2010) 0.5889 1.4894 0.6110 0.2622 

RMVT-based TSDT
(a)

 0.5890 1.4898 0.6111 0.2506 

RMVT-based collocation
(b)

 0.5876 1.5062 0.6112 0.2509 

RMVT-based Galerkin
(b)

 0.5876 1.5061 0.6112 0.2511 

2 

Present (four unknowns) 0.7552 1.4057 0.5459 0.2289 

FSDT (five unknowns) 0.7552 1.4057 0.5459 0.2289 

Benyoucef et al. (2010) 0.7572 1.3954 0.5441 0.2763 

RMVT-based TSDT
(a)

 0.7573 1.3960 0.5442 0.2491 

RMVT-based collocation
(b)

 0.7572 1.4129 0.5437 0.2495 

RMVT-based Galerkin
(b)

 0.7571 1.4133 0.5436 0.2495 

4 

Present (four unknowns) 0.8736 1.1922 0.5693 0.1899 

FSDT (five unknowns) 0.8736 1.1922 0.5693 0.1899 

Benyoucef et al. (2010) 0.8810 1.1783 0.5667 0.2580 

RMVT-based TSDT
(a)

 0.8815 1.1794 0.5669 0.2360 

RMVT-based collocation
(b)

 0.8826 1.1935 0.5674 0.2360 

RMVT-based Galerkin
(b)

 0.8823 1.1941 0.5671 0.2362 

8 

Present (four unknowns) 0.9623 0.9608 0.5887 0.1501 

FSDT (five unknowns) 0.9623 0.9608 0.5887 0.1501 

Benyoucef et al. (2010) 0.9741 0.9466 0.5856 0.2121 

RMVT-based TSDT
(a)

 0.9747 0.9477 0.5858 0.2263 

RMVT-based collocation
(b)

 0.9727 0.9568 0.5886 0.2251 

RMVT-based Galerkin
(b)

 0.9739 0.9622 0.5883 0.2261 
(a)

Given by Wu and Li (2010b) 
(b)

Given by Wu et al. (2011) 
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A simple shear deformation theory based on neutral surface position... 

Table 3 Effect of the volume fraction exponent and elastic foundation parameters on the dimensionless and 

stresses of an FG rectangular Titanium/Zirconia plate (a=10h, b=2a, q0=100) 

p K0 J0 Theory w  x  xy  
xz  

Ceramic 

0 0 

Present 0.68135 0.42148 0.86459 -0.30558 

Bouderba et al. (2013) 0.68131 0.42424 0.86240 -0.39400 

FSDT
(a)

 0.68135 0.42148 0.86459 -0.30558 

CPT
(a)

 0.65704 0.42148 0.86459 – 

100 0 

Present 0.40525 0.25070 0.51426 -0.18175 

Bouderba et al. (2013) 0.40523 0.25233 0.51296 -0.23435 

FSDT
(a)

 0.40525 0.25070 0.51426 -0.18175 

CPT
(a)

 0.39652 0.25437 0.52183 – 

0 100 

Present 0.083655 0.051750 0.10615 -0.037518 

Bouderba et al. (2013) 0.083654 0.052093 0.10589 -0.048377 

FSDT
(a)

 0.083655 0.051750 0.10615 -0.037518 

CPT
(a)

 0.08328 0.05342 0.10959 – 

100 100 

Present 0.077198 0.047754 0.097959 -0.034622 

Bouderba et al. (2013) 0.077197 0.048071 0.097724 -0.044643 

FSDT
(a)

 0.077198 0.047754 0.097959 -0.034622 

CPT
(a)

 0.07688 0.04932 0.10116 – 

0.5 100 100 

Present 0.078732 0.045460 0.081870 -0.029835 

Bouderba et al. (2013) 0.078729 0.045788 0.081728 -0.038066 

FSDT
(a)

 0.078732 0.045460 0.081870 
- 

0.029835 

CPT
(a)

 0.078463 0.04693 0.08451 – 

1 100 100 

Present 0.079322 0.044575 0.073208 -0.027163 

Bouderba et al. (2013) 0.079321 0.044892 0.073054 -0.035023 

FSDT
(a)

 0.079322 0.044575 0.073208 -0.027163 

CPT
(a)

 0.07907 0.04604 0.07561 – 

2 100 100 

Present 0.079753 0.044297 0.067395 -0.024345 

Bouderba et al. (2013) 0.079758 0.044595 0.067185 -0.032215 

FSDT
(a)

 0.079753 0.044297 0.067395 -0.024345 

CPT
(a)

 0.07950 0.04581 0.06969 – 

5 100 100 

Present 0.080141 0.045462 0.064399 -0.022053 

Bouderba et al. (2013) 0.080150 0.045736 0.064125 -0.029922 

FSDT
(a)

 0.080141 0.045462 0.064399 -0.022053 

CPT
(a)

 0.07989 0.04710 0.06672 – 

Metal 100 100 

Present 0.081191 0.050227 0.058294 -0.020603 

Bouderba et al. (2013) 0.081190 0.050559 0.058148 -0.026565 

FSDT
(a)

 0.081191 0.050227 0.058294 -0.020603 

CPT
(a)

 0.08099 0.05196 0.06030 – 
(a)

Given by Bouderba et al. (2013) 

 

 

It can be concluded from Tables 2 and 3 that in In general, a good agreement between the 

results is obtained, except for the case of the transverse shear stresses 
xz  where a difference 

between the present theory and RMVT-based models is seen. The discrepancy between the present  
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Fig. 2 Comparison of the variation of nondimensional deflection w  of square Aluminum/ alumina 

plate under sinusoidally distributed load versus power law index p (a/h=5) 
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Fig. 3 Comparison of the variation of nondimensional deflection w  of square Aluminum/ alumina 

plate under sinusoidally distributed load versus thickness ratio a/h 

 

 

theory and the accurate solutions increases, when the power law index becomes greater. This is 

due to the fact that the present theory violates the stress-free boundary conditions on the plate 

surface and because of the use of a constant shear correction factor for all values of power law 

index p. To overcome this problem, the transverse shear stresses can be calculated by using the 

equilibrium equations, rather than using the constitutive equation. 

To illustrate the accuracy of present theory for wide range of power law index p, thickness ratio 

a/h, and aspect ratio a/b, the variations of nondimensional deflection w  with respect to power law 

index p, thickness ratio a/h, and aspect ratio a/b are illustrated in Fig. 2, Fig. 3 and Fig. 4, 

respectively, for FG plate subjected to sinusoidally distributed load. The obtained results are  
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Fig. 4 Comparison of the variation of nondimensional deflection w  of Aluminum/ alumina plate 

under sinusoidally distributed load versus aspect ratio a/b (a/h=5) 
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Fig. 5 Effect of Winkler modulus parameter on the dimensionless center deflection ŵ  of square 

Titanium/Zirconia plate (p=2) for different side-to-thickness ratio a/h with J0=10 and q0=100. 

 

 

compared with those predicted by CPT and the conventional FSDT. It can be seen that the results 

of present theory and the conventional FSDT are identical, and the CPT underestimates the 

deflection of plate. Since the transverse shear deformation effects are not considered in CPT, the 

values of nondimensional deflection w  predicted by CPT are independent of thickness ratio a/h 

(see Fig. 3). Fig. 4 shows the effects of the aspect ratio a/b on the dimensionless deflection w  of 

FG plate. The deflections caused by applying different theories decreases as a/b increases. It 

should be noted that the proposed theory (NFSDT) involves four unknowns as against five in case 

of conventional FSDT. 
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Fig. 6 Effect of Pasternak shear modulus parameter on the dimensionless center deflection ŵ  of 

square Titanium/Zirconia plate (p=2) for different side-to-thickness ratio a/h with K0=10 and q0=100 
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Fig. 7 Variation of dimensionless axial stress (
x̂ ) through-the-thickness of a square Titanium/Zirconia 

plate (p=2) for different values of Winkler modulus parameter K0 with J0=10, q0=100 and a/h=10 

 

 

The effect of the elastic foundation parameters (K0 and J0) and side-to-thickness ratio a/h on the 

center deflection ŵ  of FG square plate (p=2) is explained in Figs. 5 and 6. As expected, the 

deflections decrease gradually as either the Winkler modulus parameter K0 or the Pasternak shear 

modulus parameter J0 increases. It can be also seen that the increase of side-to-thickness ratio a/h 

leads to a decrease of the center deflection of the FG plate. 

The effect of the elastic foundation parameters (K0 and J0) on the axial stress 
x̂  of FG square 

plate (p=2) is shown in Figs. 7 and 8. It can be seen that the maximum compressive stresses occur 

z  

x̂  
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Fig. 8 Variation of dimensionless axial stress (

x̂ ) through-the-thickness of a square Titanium/Zirconia 

plate (p=2) for different values of Pasternak shear modulus parameter J0 with K0=10, q0=100 and a/h=10 

 

Table 4 Comparison of nondimensional fundamental frequency ( ̂ ) of square Aluminum/alumina plate 

a/h Method 
Power law index (p) 

0 0.5 1 4 10 

5 

FSDT
(a)

 0.2112 0.1805 0.1631 0.1397 0.1324 

TSDT
(b)

 0.2113 0.1807 0.1631 0.1398 0.1301 

Present 0.2112 0.1805 0.1631 0.1397 0.1324 

10 

FSDT
(a)

 0.0577 0.0490 0.0442 0.0382 0.0366 

TSDT
(b)

 0.0577 0.0490 0.0442 0.0381 0.0364 

Present 0.0577 0.0490 0.0442 0.0382 0.0366 

20 

FSDT
(a)

 0.0148 0.0125 0.0113 0.0098 0.0094 

TSDT
(b)

 0.0148 0.0125 0.0113 0.0098 0.0094 

Present 0.0148 0.0125 0.0113 0.0098 0.0094 
(a)

Hosseini-Hashemi et al. (2011a) 
(b)

Hosseini-Hashemi et al. (2011b) 

 

 

at a point near the bottom surface and the maximum tensile stresses occur, of course, at a point 

near the top surface of the FG plate. In addition, it can be observed from these figures that the 

elastic foundation has a significant effect on the maximum values of the axial stress. It is observed 

that normal stress decreases gradually with K0 or J0. However, the effect of Pasternak shears 

modulus parameter is more significant than Winkler modulus parameter.  

 

4.2 Free vibration problem 
 

For convenience, the following nondimensionalizations are used in presenting the numerical 

results in graphical and tabular form: 
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Table 5 Comparison of the first four nondimensional frequency ( ) of rectangular Aluminum/alumina 

plate (b=2a) 

a/h 
Mode 

(m,n) 
Method 

Power law index (p) 

0 0.5 1 2 5 8 10 

5 

1(1,1) 

FSDT
(a)

 3.4409 2.9322 2.6473 2.4017 2.2528 2.1985 2.1677 

TSDT 3.4412 2.9347 2.6475 2.3949 2.2272 2.1697 2.1407 

Present 3.4409 2.9322 2.6473 2.4017 2.2528 2.1985 2.1677 

2(1,2) 

FSDT
(a)

 5.2802 4.5122 4.0773 3.6953 3.4492 3.3587 3.3094 

TSDT 5.2813 4.5180 4.0781 3.6805 3.3938 3.2964 3.2514 

Present 5.2802 4.5122 4.0773 3.6953 3.4492 3.3587 3.3094 

3(1,3) 

FSDT
(a)

 8.0710 6.9231 6.2636 5.6695 5.2579 5.1045 5.0253 

TSDT 8.0749 6.9366 6.2663 5.6390 5.1425 4.9758 4.9055 

Present 8.0710 6.9231 6.2636 5.6695 5.2579 5.1045 5.0253 

4(2,1) 

FSDT
(a)

 9.7416 8.6926 7.8711 7.1189 6.5749 5.9062 5.7518 

TSDT 10.1164 8.7138 7.8762 7.0751 6.4074 6.1846 6.0954 

Present 10.1089 8.6926 7.8711 7.1189 6.5749 6.3707 6.2683 

10 

1(1,1) 

FSDT
(a)

 3.6518 3.0983 2.7937 2.5386 2.3998 2.3504 2.3197 

TSDT 3.6518 3.0990 2.7937 2.5364 2.3916 2.3411 2.3110 

Present 3.6518 3.0983 2.7937 2.5386 2.3998 2.3504 2.3197 

2(1,2) 

FSDT
(a)

 5.7693 4.8997 4.4192 4.0142 3.7881 3.7072 3.6580 

TSDT 5.7694 4.9014 4.4192 4.0090 3.7682 3.6846 3.6368 

Present 5.7693 4.8997 4.4192 4.0142 3.7881 3.7072 3.6580 

3(1,3) 

FSDT
(a)

 9.1876 7.8145 7.0512 6.4015 6.0247 5.8887 5.8086 

TSDT 9.1880 7.8189 7.0515 6.3886 5.9765 5.8341 5.7576 

Present 9.1876 7.8145 7.0512 6.4015 6.0247 5.8887 5.8086 

4(2,1) 

FSDT
(a)

 11.8310 10.0740 9.0928 8.2515 7.7505 7.5688 7.4639 

TSDT 11.8315 10.0810 9.0933 8.2309 7.6731 7.4813 7.3821 

Present 11.8307 10.0737 9.0928 8.2515 7.7505 7.5688 7.4639 

20 

1(1,1) 

FSDT
(a)

 3.7123 3.1456 2.8352 2.5777 2.4425 2.3948 2.3642 

TSDT 3.7123 3.1458 2.8352 2.5771 2.4403 2.3923 2.3619 

Present 3.7123 3.1456 2.8352 2.5777 2.4425 2.3948 2.3642 

2(1,2) 

FSDT
(a)

 5.9198 5.0175 4.5228 4.1115 3.8939 3.8170 3.7681 

TSDT 5.9199 5.0180 4.5228 4.1100 3.8884 3.8107 3.7622 

Present 5.9198 5.0175 4.5228 4.1115 3.8939 3.8170 3.7681 

3(1,3) 

FSDT
(a)

 9.5668 8.1121 7.3132 6.6471 6.2903 6.1639 6.0843 

TSDT 9.5669 8.1133 7.3132 6.6433 6.2760 6.1476 6.0690 

Present 9.5668 8.1121 7.3132 6.6471 6.2903 6.1639 6.0843 

4(2,1) 

FSDT
(a)

 12.4560 10.5660 9.5261 8.6572 8.1875 8.0207 7.9166 

TSDT 12.4562 10.5677 9.5261 8.6509 8.1636 7.9934 7.8909 

Present 12.4562 10.5657 9.5261 8.6572 8.1875 8.0207 7.9165 
(a)

Hosseini-Hashemi et al. (2011a) 
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Table 6 Comparison of nondimensional fundamental frequency (Ω) of FG square Aluminum/alumina plate 

resting on elastic foundation 

K0 J0 h/a Method 
Power law index (p) 

0 0.5 1 2 5 

0 0 

0.05 

Present 0.0291 0.0246 0.0222 0.0202 0.0191 

FSDT 0.0291 0.0246 0.0222 0.0202 0.0191 

TSDT
(a) 

0.0291 0.0249 0.0227 0.0209 0.0197 

0.1 

Present 0.1133 0.0963 0.0868 0.0789 0.0744 

FSDT 0.1133 0.0963 0.0868 0.0789 0.0744 

TSDT
(a) 

0.1134 0.0975 0.0891 0.0819 0.0767 

0.2 

Present 0.4150 0.3546 0.3204 0.2904 0.2711 

FSDT 0.4150 0.3546 0.3204 0.2904 0.2711 

TSDT
(a) 

0.4154 0.3606 0.3299 0.3016 0.2765 

0 100 

0.05 

Present 0.0406 0.0386 0.0378 0.0374 0.0377 

FSDT 0.0406 0.0386 0.0378 0.0374 0.0377 

TSDT
(a) 

0.0406 0.0389 0.0382 0.0380 0.0381 

0.1 

Present 0.1597 0.1526 0.1494 0.1478 0.1489 

FSDT 0.1597 0.1526 0.1494 0.1478 0.1489 

TSDT
(a) 

0.1599 0.1540 0.1517 0.1508 0.1515 

0.2 

Present 0.6074 0.5855 0.5752 0.5698 0.5734 

FSDT 0.6074 0.5855 0.5752 0.5698 0.5734 

TSDT
(a) 

0.6080 0.5932 0.5876 0.5861 0.5879 

100 0 

0.05 

Present 0.0298 0.0255 0.0233 0.0214 0.0205 

FSDT 0.0298 0.0255 0.0233 0.0214 0.0205 

TSDT
(a) 

0.0298 0.0258 0.0238 0.0221 0.0210 

0.1 

Present 0.1161 0.0999 0.0910 0.0837 0.0799 

FSDT 0.1161 0.0999 0.0910 0.0837 0.0799 

TSDT
(a) 

0.1162 0.1012 0.0933 0.0867 0.0821 

0.2 

Present 0.4268 0.3698 0.3380 0.3107 0.2941 

FSDT 0.4268 0.3698 0.3380 0.3107 0.2941 

TSDT
(a) 

0.4273 0.3758 0.3476 0.3219 0.2999 

100 100 

0.05 

Present 0.0411 0.0392 0.0384 0.0381 0.0384 

FSDT 0.0411 0.0392 0.0384 0.0381 0.0384 

TSDT
(a) 

0.0411 0.0395 0.0388 0.0386 0.0388 

0.1 

Present 0.1617 0.1549 0.1519 0.1505 0.1517 

FSDT 0.1617 0.1549 0.1519 0.1505 0.1517 

TSDT
(a) 

0.1619 0.1563 0.1542 0.1535 0.1543 

0.2 

Present 0.6156 0.5948 0.5852 0.5804 0.5845 

FSDT 0.6156 0.5948 0.5852 0.5804 0.5845 

TSDT
(a) 

0.6162 0.6026 0.5978 0.5978 0.5993 
(a)

Given by Baferani et al. (2011) 

 

 

The nondimensional natural frequency ̂  of square plate obtained from the proposed theory 

(NFSDT) is compared with those reported by Hosseini-Hashemi et al. (2011a) based on FSDT and 
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Hosseini-Hashemi et al. (2011b) based on third shear deformation theory (TSDT). The results are 

given in Table 4 for different values of thickness ratio a/h and power law index p. From Table 4, it 

can be observed that the present results are in excellent agreement with those acquired by the 

FSDT (Hosseini-Hashemi et al. 2011a), and TSDT (Hosseini-Hashemi et al. 2011b).  

The four natural frequency parameters ( ) of the rectangular FG plate (b=2a) for different 

values of the power law index p and thickness ratio a/h are compared with those given by 

Hosseini-Hashemi et al. (2011a) based on FSDT and with those obtained using TSDT (Reddy 

2000) in Table 5. It can be seen that the results predicted by the new first-order shear deformation 

theory (NFSDT) and TSDT are almost identical for all modes of vibration of thin to thick plates. 

Also, the proposed theory with only four unknown functions gives more accurate prediction of 

natural frequency compared to the conventional FSDT which needs five unknown functions. 

Fundamental frequency parameters Ω of the Al/Al2O3 square plate are listed in Table 6 for various 

values of thickness to length ratio (h/a=0.05, 0.1, and 0.2), power law index (p=0, 0.5, 1, 2, and 5), 

and foundation stiffness parameters (K0, J0). The present results are compared with those obtained 

by the conventional FSDT and by Baferani et al. (2011) using TSDT. Table 6 proves the fact that 

all results are in excellent agreement with each other. 

The variations of nondimensional fundamental frequency   of square plate with respect to 

power law index p and thickness ratio a/h are compared in Fig. 9 and Fig. 10, respectively. It is 

observed that the nondimensional frequencies   predicted by the new first-order shear 

deformation theory (NFSDT) and the conventional FSDT are identical, and the CPT overestimates 

the frequency of thick plate. Fig. 11 shows the effects of the aspect ratio a/b on nondimensional 

fundamental frequency   of FG plate. It is observed that the frequency parameter increases for 

plates with higher aspect ratio a/b. It is observed that the proposed theory and the conventional 

FSDT give identical results. 

The effect of foundation stiffness on the non-dimensional fundamental frequencies (Ω) of FG 

square plates is shown in Fig. 13 (a/h=10). The figure shows that frequencies of FG plates increase 
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Fig. 9 Comparison of nondimensional fundamental frequency   of square Aluminum/ alumina plate 

versus power law index p (a/h=5) 
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Fig. 10 Comparison of nondimensional fundamental frequency   of square Aluminum/ alumina 

plate versus thickness ratio a/h 
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Fig. 11 Comparison of the variation of nondimensional fundamental frequency   of Aluminum/ 

alumina plate versus aspect ratio a/b (a/h=5). 

 

 

when foundation parameters increase. It is also noted in this case that the effect of Pasternak shears 

modulus parameter is more significant than Winkler modulus parameter. 

 

 

5. Conclusions 
 

A new first-order shear deformation theory (NFSDT) was proposed to analyse static and 

dynamic behaviour of functionally graded plates resting on Winkler-Pasternak elastic foundations. 

The neutral surface position for such plates has been determined. The effectiveness of the theory is  

  
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Fig. 12 Effect of Winkler modulus parameter on the dimensionless fundamental frequency Ω of square 

Aluminum/ alumina plate for different power law index p (a/h=10, J0=100) 
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Fig. 13 Effect of Pasternak shear modulus parameter on the dimensionless fundamental frequency Ω 

of square Aluminum/alumina plate for different power law index p (a/h=10, K0=100). 

 

 

brought out by applying them for static as well as dynamic analysis. The results obtained using 

this new theory, are found to be in excellent agreement with previous studies. Unlike the 

conventional first shear deformation theory, the proposed first shear deformation theory contains 

only four unknowns rather than the usual five and eliminates the stretching – bending coupling 

effect, resulting in reduced computational expense and significantly facilitating engineering 

analysis. However, the disadvantages for the implementation of the present NFSDT-based 

numerical models is discussed and resolved recently by Yin et al. (2014). In conclusion, it can be 

said that the proposed theory NFSDT is not only accurate but also provides an elegant and easily 
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implementable approach for simulating the static and dynamic behavior of functionally graded 

plates resting on elastic foundations. The formulation lends itself particularly well to finite element 

simulations (Curiel Sosa et al. 2012, Curiel Sosa et al. 2013), other numerical methods employing 

symbolic computation for plate bending problems (Rashidi et al. 2012) and also in analysing 

nanostructures (Heireche et al. 2008, Benzair et al. 2008, Tounsi et al. 2013b, c, Berrabah et al. 

2013, Benguediab et al. 2014, Semmah et al. 2014), which will be considered in the near future.  
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