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Abstract. In this work, a novel simple first-order shear deformation plate theory based on neutral surface
position is developed for bending and free vibration analysis of functionally graded plates and supported by
either Winkler or Pasternak elastic foundations. By dividing the transverse displacement into bending and
shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence,
makes it simple to use. The governing equations are derived by employing the Hamilton’s principle and the
physical neutral surface concept. There is no stretching—bending coupling effect in the neutral surface-based
formulation, and consequently, the governing equations and boundary conditions of functionally graded
plates based on neutral surface have the simple forms as those of isotropic plates. Numerical results of
present theory are compared with results of the traditional first-order and the other higher-order theories
reported in the literature. It can be concluded that the proposed theory is accurate and simple in solving the
static bending and free vibration behaviors of functionally graded plates.
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1. Introduction

Functionally graded materials (FGMs) are a new type of inhomogeneous materials
(Yamanouchi et al. 1990, Koizumi 1993, 1997) whose macroscopic properties exhibit gradient
change in space. Therefore, FGMs can be tailored to satisfy different requirements for material
service performance at different parts or locations in a structure. Now FGMs have been used in
many structural applications such as mechanical, aerospace, nuclear, and civil engineering.

Many papers, dealing with static and dynamic behaviour of functionally graded materials
(FGMs), have been published recently. An interesting literature review of above mentioned work
may be found in the paper of Birman and Byrd (2007). Reddy (2000) presented Navier’s solutions,
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and finite element models including geometric non-linearity based on the third-order shear
deformation theory for the analysis of functionally graded (FG) plates. Cheng and Batra (2000)
derived the field equations for a functionally graded plate by utilising the first-order shear
deformation theory or the third-order shear deformation theory and simplified them for a simply
supported polygonal plate. An exact relationship was established between the deflection of the
functionally graded plate and that of an equivalent homogeneous Kirchhoff plate. Vel and Batra
(2002, 2004) developed a three-dimensional analysis of the transient thermal stresses, and the free
and forced vibration of simple supported FG rectangular plates. Qian et al. (2004) conducted an
investigation on free and forced vibrations and static deformations of an FG thick simply-
supported square plate by using a higher-order shear and normal deformable plate theory and a
meshless local Petrov-Galerkin method. Zhong and Yu (2006) used a state-space approach to
analyze free and forced vibrations of an FG piezoelectric rectangular thick plate simply-supported
at its edges. Free vibration analysis of FG simply-supported square plates was carried out by
Pradyumna and Bandyopadhyay (2008) using a higher order finite element formulation, as a small
part of their study work. Matsunaga (2008) studied natural frequencies and buckling stresses of FG
simply-supported rectangular plates based on 2D higher-order approximate plate theory (2D
HAPT). Li et al. (2009) developed 3D exact solutions for free vibration of FG thick plates on
Pasternak foundation. Some approximate 3D analyses for free vibration response of multilayered
composite and FG plates have also been presented using the RMVT- and PVD-based finite layer
methods (Wu and Li 2010a) and RMVT-based meshless collocation and element-free Galerkin
methods (Wu and Chiu 2011). Benachour et al. (2011) investigated the free vibration of FG plate
by the use of four variable refined plate theory. EI Meiche et al. (2011) developed a novel
hyperbolic shear deformation theory which takes into account transverse shear deformation effects
for the buckling and free vibration analysis of thick FG sandwich plates. Brischetto (2013)
developed an exact three-dimensional elastic model for the free vibration analysis of FG one-
layered and sandwich simply-supported plates and shells. Bachir Bouiadjra et al. (2013)
investigated the nonlinear thermal buckling behavior of FG plates using an efficient sinusoidal
shear deformation theory. Houari et al. (2013) studied the thermoelastic bending response of FG
sandwich plates using a new higher order shear and normal deformation theory. Belabed et al.
(2014) developed an efficient and simple higher order shear and normal deformation theory for FG
plates. Ait Amar Meziane et al. (2014) presented an efficient and simple refined shear deformation
theory for the vibration and buckling of exponentially graded material sandwich plate resting on
elastic foundations under various boundary conditions. Hebali et al. (2014) proposed a new quasi-
three-dimensional (3D) hyperbolic shear deformation theory for the bending and free vibration
analysis of FGM plate. Hamidi et al. (2015) presented a sinusoidal plate theory with 5-unknowns
and stretching effect for thermo-mechanical bending of FG sandwich plates. Chakraverty and
Pradhan (2014) studied the free vibration behavior of exponential functionally graded rectangular
plates in thermal environment with general boundary conditions. Ait Yahia et al. (2014)
investigated the wave propagation in FG plates with porosities using various higher-order shear
deformation plate theories. Studies of a series of buckling, bending and vibration behavior of FG
plate/beam and laminated plate can be found in recent references such as (Attia et al. 2015,
Draiche et al. 2014, Khalfi et al. 2014, Nedri et al. 2014, Mahi et al. 2015).

Recently, investigations of FG plates resting on elastic foundations are identified as an
interesting field. Although a few studies on the vibration and buckling analysis of isotropic
homogeneous rectangular plates resting on elastic foundation have been carried out (see for
example, Xiang et al. (1994), Xiang (2003), Lam et al. (2000), Zhou et al. (2004)) and their cited
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references), research studies on the dynamic and buckling behavior of their corresponding FG
plates have received very little attention. Cheng and Kitipornchai (1999) proposed a membrane
analogy to derive an exact explicit eigenvalue for compression buckling, hydrothermal buckling,
and vibration of FG plates on a Winkler-Pasternak foundation based on the FSDT. Yang and Shen
(2001) studied both free vibration and transient response of initially stressed FG rectangular thin
plates subjected to impulsive lateral loads, resting on Pasternak elastic foundation, based on the
CPT. The second-order statistics of the buckling of clamped FG rectangular plates that are resting
on Pasternak elastic foundations and subjected to uniform edge compression was studied by Yang
et al. (2005) in the framework of the FSDT. Ying et al. (2008) treated 2D elasticity solutions for
bending and free vibration of FG beams resting on Winkler-Pasternak elastic foundations. Huang
et al. (2008) used a benchmark 3D elasticity solution to study the bending behavior of FG thick
simply-supported square plates on a Winkler-Pasternak foundation. Yaghoobi and Yaghoobi
(2013) studied the buckling behavior of symmetric sandwich plates with FG face sheets resting on
an elastic foundation using the first-order shear deformation plate theory and subjected to
mechanical, thermal and thermo-mechanical loads. Bouderba et al. (2013) analysed the
thermomechanical bending response of functionally graded plates resting on Winkler-Pasternak
elastic foundations. Based on a refined trigonometric shear deformation theory, Tounsi et al.
(2013a) analyzed the thermoelastic bending behavior of FG sandwich plates. Zidi et al. (2014)
studied the bending response of FG plates under hygro-thermo-mechanical loading using a four
variable refined plate theory.

Due to its high efficiency and simplicity, first-order shear deformation theory (FSDT) was used
for analyzing moderately thick plates. First-order shear deformation theory (FSDT) proposed by
Reissner (1950) and another one proposed by Mindlin (1951) are considered to be pioneering
theories which take into account shear effects. Praveen and Reddy (1998) examined the nonlinear
static and dynamic responses of functionally graded ceramic-metal plates using the first-order
shear deformation theory (FSDT) and the von Karman strain. Croce and Venini (2004) formulated
a hierarchic family of finite elements according to the Reissner-Mindlin theory. Zenkour et al.
(2011) presented a mixed first-order transverse shear deformation plate theory (MFPT) for the
bending response of an orthotropic rectangular plate resting on two-parameter elastic foundations.
Then, Zenkour and Radwan (2013) extended this theory to the bending behaviour of FG plates. It
is noted that the mixed first-order transverse shear deformation plate theory (Zenkour et al. 2011,
Zenkour and Radwan 2013) is a modification of the conventional FSDT. In the MFPT, both the
displacements and stresses must be considered arbitrary. Recently, Thai and Choi (2013a, b)
developed a simple FSDT involving only four unknowns for FG plates and laminated composite
plates. Furthermore, the benefits and disadvantages for the implementation of the simple FSDT-
based numerical models are discussed by Yin et al. (2014). Thus, it can be noted that the models
based on the first-order shear deformation theory (FSDT) are very often used owing to their
simplicity in analysis and programming. Recently, Sadoune et al. (2014) developed a novel first-
order shear deformation theory for laminated composite plates.

In this paper, a new first-order shear deformation theory (NFSDT) for the bending and free
vibration analysis of functionally graded beams is developed including plate-foundation
interaction. Using the same methodology presented by Thai and Choi (2013a, b), this theory is
based on assumption that the in-plane and transverse displacements consist of bending and shear
components, in which the bending components do not contribute toward shear forces and,
likewise, the shear components do not contribute toward bending moments. Unlike the
conventional first-order shear deformation theory (FSDT) (Reissner 1950, Mindlin 1951), the
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Fig. 1 The position of middle surface and neutral surface for a functionally graded plate

proposed first-order shear deformation theory contains two unknowns. Since, the material
properties of FG plate vary through the thickness direction, the neutral plane of such plate may not
coincide with its geometric middle plane (Yahoobi and Feraidoon 2010, Ould Larbi et al. 2013,
Bouremana et al. 2013, Bousahla et al. 2014, Fekrar et al. 2014, Bourada et al. 2015). Indeed,
Bouremana et al. (2013), Ould Larbi et al. (2013) show that the stretching-bending coupling in the
constitutive equations of an FG beam does not exist when the coordinate system is located at the
physical neutral surface of the plate. Therefore, the governing equations for the FG plate can be
simplified. Based on the present theory and the exact position of neutral surface together with
Hamilton’s principle, the motion equations of the functionally graded plates resting on elastic
foundation are obtained. Analytical solutions for bending and free vibration are obtained for a
simply supported FG plate. Numerical examples are presented to show the validity and accuracy
of the present NFSDT.

2. A new first-order shear deformation theory (NFSDT) for FG plates

Due to asymmetry of material properties of FG plates with respect to middle plane, the
stretching and bending equations are coupled. But, if the origin of the coordinate system is suitably
selected in the thickness direction of the FG plate so as to be the neutral surface, the properties of
the FG plate being symmetric with respect to it. To specify the position of neutral surface of FG
plates, two different planes are considered for the measurement of z, namely, z,,s and z,s measured
from the middle surface and the neutral surface of the plate, respectively, as depicted in Fig. 1.

2.1 Basic assumptions

The assumptions of the present theory are as follows:

* The origin of the Cartesian coordinate system is taken at the neutral surface of the FG plate.

* The displacements are small in comparison with the plate thickness and, therefore, strains
involved are infinitesimal.

» The transverse normal stress g, is negligible in comparison with in-plane stresses oy and ay.

« This theory assumes constant transverse shear stress and it needs a shear correction factor in
order to satisfy the plate boundary conditions on the lower and upper surface.

* The transverse displacement w includes two components of bending w, and shear w;. These
components are functions of coordinates x, y, and time t only.
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2.2 Kinematics

Based on the assumptions made in the preceding section, the displacement field can be
obtained as follows

u(x,y, z,,t) =uy(x, y,t)—zns% (1a)
OX
ow

1 Y nsat =Vy ' 1t - ns_b (lb)
v(X,¥,z2..,1)=v, (X, y,1) -z Y

W(X, Y, Z,, 1) =W, (X, Y, 1) + W, (X, y,1) (1c)

where, u, v, w are displacements in the X, y, z directions, uo, Vo, W, and w; are the neutral surface
displacements.
The strains associated with the displacements in Eq. (1) are
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2.3 Constitutive equations

The FG plate is made from a mixture of ceramic and metal and the properties are assumed to
vary through the thickness of the plate. The volume-fraction of ceramic V¢ is expressed based on

Zms and z,; coordinates as
z 1\ (z.+C 1Y)
V — ms+_ — ns + = 4
¢ ( h 2) ( h 2] @

where p is the power law index which takes the value greater or equal to zero and C is the distance
of neutral surface from the mid-surface. Using Eq. (4), the material nhon-homogeneous properties
(P) of FG plate, as a function of thickness coordinate, become

z,,+C 1)
P(z) = Py + Pou (T"‘E) » Pow =P =Py ®)



1220  Abdeljalil Meksi, Samir Benyoucef, Mohammed Sid Ahmed Houari and Abdelouahed Tounsi

where P represents the effective material property such as Young’s modulus E and mass density p
subscripts m and c represent the metallic and ceramic constituents, respectively. The value of the
power law index p equal to zero represents a fully ceramic plate, whereas infinite p indicates a
fully metallic plate.

The position of the neutral surface of the FG plate is determined to satisfy the first moment
with respect to Young’s modulus being zero as follows (Ould Larbi et al. 2013)

h/2
[E(246)(20 —C)dz,, =0 (6)
-h/2

Consequently, the position of neutral surface can be obtained as

hi2

[ E(20) 2002,
C=-"12 ()

hi2

[E2n)dz,

-h/2

It is clear that the parameter C is zero for homogeneous isotropic plates, as expected.
The linear constitutive relations of a FG plate can be written as

Oy Qll le 0 &y
7y | _|KQ 0 i
Gy = Q12 sz 0 Sy and { y }:{ 44 }{73’ } (8)
0 0 Tax 0 st55 Y
Xy Q66 7xy

where (oy, 6y, Txy, Tyz, Tx) AN (&x, &y, Pxy Vyzr Yxo) Are the stress and strain components, respectively. ks
is a shear correction factor which is analogous to shear correction factor proposed by Mindlin
(1951). Using the material properties defined in Eq. (5), stiffness coefficients, Q;, can be
expressed as

al

Q, =Q,, = ). (9)
1-v
Qn=1§%¥, (9b)
1-v
3 B 3 E(z,,)
Q44 - Q55 - Q66 - 2(1+V)' (90)

2.4 Equations of motion

Hamilton’s principle is used herein to derive the equations of motion. The principle can be
stated in analytical form as (Reddy 2002)

O=}@U+5V—5Kbt (10)

where U is the variation of strain energy; 6V is the variation of potential energy; and JK is the
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variation of kinetic energy.
The variation of strain energy of the plate is calculated by

ouU :J.(axé’ g +0, 08, +T, 0y, +T,0y, +7,07, )dAdZns
\

_ {—Mf 825va _we azazv,, _ome 3’5 w, L0, o5 W, Lo, ﬂ}dA D
A OX oy oxoy oy OX
where M, and Q are the stress resultants defined as
2° 5
M = jzns o,dz, . (i=x,y,xy) and (sz!Qyz)z J.(sz"[yz)dzns- (12)
724: —g—c

The variation of potential energy of the applied loads can be expressed as

5V:—j(q+fe)5wdA (13)

where q is the transverse applied load and f; is the density of reaction force of foundation. For the
Pasternak foundation model

o’w o*w

fezKWW_‘]l_z_ 2 2

OX oy

where Ky is the modulus of subgrade reaction (elastic coefficient of the foundation) and J; and J,

are the shear moduli of the subgrade (shear layer foundation stiffness). If foundation is

homogeneous and isotropic, we will get J;=J,=J,. If the shear layer foundation stiffness is
neglected, Pasternak foundation becomes a Winkler foundation.
The variation of kinetic energy of the plate can be written as

S K = [(Usu+VSV+Ws W) p(z,,)dAdz,,
\

(14)

e 15
0, 05, 0N, 05, ) 1y (15)
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where dot-superscript convention indicates the differentiation with respect to the time variable t;
p(zs) is the mass density; and (lo, 1) are mass inertias defined as

:H|O[(wb +W,)8 (W, +W,)]+ Iz(

h
--C
2
(o 1)= [@z)p(2,)dz,, (16)
L
2
Substituting the expressions for 6U, 6V, and oK from Egs. (11), (13), and (15) into Eq. (10) and

integrating by parts, and collecting the coefficients of ow,, and éws, the following equations of
motion of the plate are obtained
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By substituting Eq. (2) into Eqg. (8) and the subsequent results into Eq. (12), the stress resultants

are obtained as
N A O s
o) Jo ol @-%7
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where Aj;, Dj;, etc., are the plate stiffness, defined by
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By substituting Eq. (18) into Eq. (17), the equations of motion can be expressed in terms of
displacements (Uo, Vo, Wy, Ws) as

N oW

A11d11u0 + Aeedzzuo + (A12 + Aee)dlzvo = Iou - |1 8_)(b (Zla)
N OW,

Azzdzzvo + A66dllV0 + (A12 + Aea)dlzuo = I0u - I1 T~ (Zlb)

oy
- D11d1111Wb - 2(D12 + 2D66 )dllZZWb - D22d2222Wb - fe +0= Io(wb + Ws)
.o .o 21C
+Il(%+%J—I2V2Wb (¢1e)
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OX
Asssdllws + A:4d22ws - fe +q = IO(Wb +Ws) (21d)
where djj, and dj;, are the following differential operators
0? o* o . .
i=—, dy=———, d. =—, (i, J,I,m=12). 22
Poaxex; " oxoxox0x, | ox, ] ) %2

Clearly, when the effect of transverse shear deformation is neglected (ws=0), Eq. (21) yields the
equations of motion of FG plate based on the classical plate theory and physical neutral surface
concept.

3. Exact solution for FG plates

Rectangular plates are generally classified in accordance with the type of support used. We are
here concerned with the exact solution of Egs. (21a-d) for a simply supported FG plate. The
following boundary conditions are imposed at the side edges for NFSDT

Vo=W,=w,=N,=M?=0at x=0, a (23a)
Uy =W, =W, =N, =M} =0at y=0,b (23b)

Based on the Navier approach, the following expansions of displacements are chosen to
automatically satisfy the simply supported boundary conditions of plate

U U, cos(A x)sin(uy)e'"

v, zii V.. sin( A x)cos(u y)e'”"
Wb m=1 n=1 Wbmn Sin( ﬂ“ X) Sin( ‘U y) ei o
W, W, sin(Ax)sin( zy)e'”"

(24)

where Unn, Vinn, Wemn, and Wy, are arbitrary parameters to be determined, w is the eigenfrequency

associated with (m, n) th eigenmode, and A=mn/a, u=nz/b and i =+/—1.
For the case of a sinusoidally distributed load, we have
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g=4, sin (% x)sin [% yj (25)

where ( represents the intensity of the load at the plate center.
Substituting Eq. (24) into Eq. (21), the closed-form solutions can be obtained from

(K]-o?[m]a}=1{P} (26)

where {A}={Umn, Vinn, Womn, Wemn}' and [K] and [M] are the symmetric matrixes given by

ay Qp Q5 ay my 0 my; O

[K]= ap, 8y Ay Ay , [M ]: 0 m, my; 0 27)
Qi3 8y A3 Ay Mz My Mgy My,
dyy 8y A3 dy 0 0 my m,

in which

a;, = Auﬂz + Asaluz
a,;, :)hu(Alz + Aee)

a,=0
a, =0
Ay = A662’2 + Azzﬂz
a,; =0
a,, =0

a3, = DAY +2(Dy, + 2Dy ) A2 p® + Doyt + K, + I A%+, 147
a,, = K, +J,4° +J,1°
A, = A+ AL+ Ky, + I A+ 3,08
m, = I,
m,, = I,
m,=-41,
My =—ul,
Mgy = Iy + 1, (2 + 1)
my, =1l
m,, =1, (28)
The components of the generalized force vector {P}={P, P,, Ps, P,}" are given by

P1:0
P2:0
Ps=—0o
Ps=—0o (29)
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Table 1 Material properties used in the FG plate

Properties - Metél - - - Ceramic. -
Aluminum (Al)  Titanium (Ti-6Al-4V)  Alumina (Al,O3) Zirconia (ZrO,)
E (GPa) 70 66.2 380 117.0
p (kg/m) 2702 - 3800 -

4. Results and discussion

In this section, various numerical examples are presented and discussed to verify the accuracy
of present theory in predicting the bending, and vibration responses of simply supported FG plates.
Two types of FG plates of Al/AI,O; and Ti-6Al-4V/ ZrO, are used in this study, in which their
material properties are listed in Table 1. For verification purpose, the obtained results are
compared with those reported in the literature. In all examples, a shear correction factor of 5/6 is
used for the present NFSDT. The Poisson’s ratio of the plate is assumed to be constant through the
thickness and equal to 0.3.

4.1 Bending problem
In this section, various numerical examples are described and discussed for verifying the
accuracy of the present first-order shear deformation theory (NFSDT) in predicting the

nondimensional deflections and stresses of FG plates subjected to sinusoidally distributed load.
The various nondimensional parameters used are

— 1OECh3N(a bj . lOZDN(a bj — h [a b h J
W: _l_ 1 W:— _,_ ) O-X:_GX _,_,__C ]
ga* \2'2 a‘q, (22 gea 223
6= aX(E,E,Ej,¥Xyzirxy(o,o,—ﬂ—c),fxy= ! Txy(o,o,‘—hj,
10°q, 2 22 g,a 3 10q, 3

;xz :LTXZ[E,O,E_ij
goa

a “l276
K :a“KW ] :aZlebZJZ _ h*E, -z
D " D D 121-v?) " h

For the verification purpose, the results obtained by NFSDT are compared with the existing
data in the literature. It should be noted that the results reported by Wu and Li (2010b) employed a
RMVT-based third order shear deformation theory (TSDT). However, the results reported by
Benyoucef et al. (2010) were based on the hyperbolic shear deformation theory. Wu et al. (2011)
employed RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D
analysis of multilayered composite and FGM plates. In the case of FG plates with elastic
foundation, Bouderba et al. (2013) used a refined trigonometric shear deformation theory. Table 2
shows the comparison of nondimensional deflections and stresses of square plate without elastic
foundation subjected to sinusoidally distributed load (a/h=10). The obtained results are compared
with the work of above mentioned authors, and it can be concluded that, in general, the results are
in good agreement with all the theories compared in this section, particularly with the results
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provided by Benyoucef et al. (2010) for all considered values of power law index p. In addition, it
can be seen that the proposed theory (NFSDT) and conventional FSDT give identical results of
deflections as well as stresses for all values of power law index p. It should be noted that the
unknown function in present theory is four, while the unknown function in both FSDT and other
shear deformation theories is five.

Table 3 presents the comparison of nondimensional displacements and stresses of FG
rectangular plate supported by either Winkler or Pasternak elastic foundations and subjected to a
mechanical load. The FG plate is taken to be made of Titanium and Zirconia as is described by
Bouderba et al. (2013). The obtained results are compared with those of Bouderba et al. (2013)
and a good agreement is observed for all considered values of power law index p and the elastic
foundation parameters. It can be shown that the deflection and stresses are decreasing with the
existence of the elastic foundations. The inclusion of the Winkler foundation parameter gives
results more than those with the inclusion of Pasternak foundation parameters. As the volume
fraction exponent increases for FG plates, the deflection will increase. The stresses are also
sensitive to the variation of p.

Table 2 Comparison of nondimensional deflection and stresses of square Aluminum/alumina plate under
sinusoidally distributed load (a/h=10)

p Theories W o, Ty Ty
Present (four unknowns) 0.5891 1.4968 0.6125 0.2348
FSDT (five unknowns) 0.5891 1.4968 0.6125 0.2348
1 Benyoucef et al. (2010) 0.5889 1.4894 0.6110 0.2622
RMVT-based TSDT® 0.5890 1.4898 0.6111 0.2506
RMVT-based collocation® 0.5876 1.5062 0.6112 0.2509
RMVT-based Galerkin® 0.5876 1.5061 0.6112 0.2511
Present (four unknowns) 0.7552 1.4057 0.5459 0.2289
FSDT (five unknowns) 0.7552 1.4057 0.5459 0.2289
5 Benyoucef et al. (2010) 0.7572 1.3954 0.5441 0.2763
RMVT-based TSDT® 0.7573 1.3960 0.5442 0.2491
RMVT-based collocation® 0.7572 1.4129 0.5437 0.2495
RMVT-based Galerkin® 0.7571 1.4133 0.5436 0.2495
Present (four unknowns) 0.8736 1.1922 0.5693 0.1899
FSDT (five unknowns) 0.8736 1.1922 0.5693 0.1899
4 Benyoucef et al. (2010) 0.8810 1.1783 0.5667 0.2580
RMVT-based TSDT® 0.8815 1.1794 0.5669 0.2360
RMVT-based collocation® 0.8826 1.1935 0.5674 0.2360
RMVT-based Galerkin® 0.8823 1.1941 0.5671 0.2362
Present (four unknowns) 0.9623 0.9608 0.5887 0.1501
FSDT (five unknowns) 0.9623 0.9608 0.5887 0.1501
g Benyoucef et al. (2010) 0.9741 0.9466 0.5856 0.2121
RMVT-based TSDT® 0.9747 0.9477 0.5858 0.2263
RMVT-based collocation® 0.9727 0.9568 0.5886 0.2251
RMVT-based Galerkin® 0.9739 0.9622 0.5883 0.2261

@Given by Wu and Li (2010b)
®Given by Wu et al. (2011)
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Table 3 Effect of the volume fraction exponent and elastic foundation parameters on the dimensionless and
stresses of an FG rectangular Titanium/Zirconia plate (a=10h, b=2a, q,=100)

p Ko Jo Theory w Oy Tyy Tx
Present 0.68135 0.42148 0.86459 -0.30558

0 0 Bouderba et al. (2013)  0.68131 0.42424 0.86240 -0.39400
FSDT® 0.68135 0.42148 0.86459 -0.30558

CcPT® 0.65704 0.42148 0.86459 -

Present 0.40525 0.25070 0.51426 -0.18175

100 0 Bouderba et al. (2013)  0.40523 0.25233 0.51296 -0.23435
FSDT® 0.40525 0.25070 0.51426 -0.18175

Ceramic CcPT® 0.39652 0.25437 0.52183 -
Present 0.083655  0.051750  0.10615  -0.037518
o 100 Bouderbaetal (2013) 0083654 0052093 010589  -0.048377
FSDT® 0.083655  0.051750  0.10615  -0.037518

CcPT® 0.08328 0.05342 0.10959 -
Present 0.077198  0.047754  0.097959  -0.034622
100 100 Bouderba et al. (2013)  0.077197 0.048071  0.097724  -0.044643
FSDT® 0.077198  0.047754  0.097959  -0.034622

CcPT® 0.07688 0.04932 0.10116 -
Present 0.078732  0.045460  0.081870  -0.029835
Bouderba etal. (2013)  0.078729  0.045788  0.081728  -0.038066

0.5 100 100 @ .
FSDT 0.078732  0.045460  0.081870 ,ocae

CcPT® 0.078463  0.04693 0.08451 -
Present 0.079322  0.044575  0.073208  -0.027163
L 100 100 Bouderba etal. (2013)  0.079321  0.044892  0.073054  -0.035023
FSDT® 0.079322  0.044575  0.073208  -0.027163

CcPT® 0.07907 0.04604 0.07561 -
Present 0.079753  0.044297  0.067395  -0.024345
) 100 100 Bouderbaetal (2013) 0.079758  0.044595  0.067185  -0.032215
FSDT® 0.079753  0.044297  0.067395  -0.024345

CcPT® 0.07950 0.04581 0.06969 -
Present 0.080141  0.045462  0.064399  -0.022053
c 100 100 Bouderbaetal (2013) 0.080150  0.045736  0.064125  -0.029922
FSDT® 0.080141  0.045462  0.064399  -0.022053

CcPT® 0.07989 0.04710 0.06672 -
Present 0.081191  0.050227  0.058294  -0.020603
Metal 100 100 Bouderba etal. (2013)  0.081190  0.050559  0.058148  -0.026565
FSDT® 0.081191  0.050227  0.058294  -0.020603

CcPT® 0.08099 0.05196 0.06030 -

®Given by Bouderba et al. (2013)

It can be concluded from Tables 2 and 3 that in In general, a good agreement between the
results is obtained, except for the case of the transverse shear stresses 7, where a difference

between the present theory and RMVT-based models is seen. The discrepancy between the present
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Fig. 2 Comparison of the variation of nondimensional deflection W of square Aluminum/ alumina
plate under sinusoidally distributed load versus power law index p (a/h=5)
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Fig. 3 Comparison of the variation of nondimensional deflection W of square Aluminum/ alumina
plate under sinusoidally distributed load versus thickness ratio a/h

theory and the accurate solutions increases, when the power law index becomes greater. This is
due to the fact that the present theory violates the stress-free boundary conditions on the plate
surface and because of the use of a constant shear correction factor for all values of power law
index p. To overcome this problem, the transverse shear stresses can be calculated by using the
equilibrium equations, rather than using the constitutive equation.

To illustrate the accuracy of present theory for wide range of power law index p, thickness ratio
a/h, and aspect ratio a/b, the variations of nondimensional deflection W with respect to power law
index p, thickness ratio a/h, and aspect ratio a/b are illustrated in Fig. 2, Fig. 3 and Fig. 4,
respectively, for FG plate subjected to sinusoidally distributed load. The obtained results are
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Fig. 4 Comparison of the variation of nondimensional deflection W of Aluminum/ alumina plate

under sinusoidally distributed load versus aspect ratio a/b (a/h=5)
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Fig. 5 Effect of Winkler modulus parameter on the dimensionless center deflection W of square
Titanium/Zirconia plate (p=2) for different side-to-thickness ratio a/h with J,=10 and g,=100.

compared with those predicted by CPT and the conventional FSDT. It can be seen that the results
of present theory and the conventional FSDT are identical, and the CPT underestimates the
deflection of plate. Since the transverse shear deformation effects are not considered in CPT, the
values of nondimensional deflection W predicted by CPT are independent of thickness ratio a/h
(see Fig. 3). Fig. 4 shows the effects of the aspect ratio a/b on the dimensionless deflection w of
FG plate. The deflections caused by applying different theories decreases as a/b increases. It
should be noted that the proposed theory (NFSDT) involves four unknowns as against five in case
of conventional FSDT.
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Fig. 6 Effect of Pasternak shear modulus parameter on the dimensionless center deflection W of
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Fig. 7 Variation of dimensionless axial stress (&, ) through-the-thickness of a square Titanium/Zirconia
plate (p=2) for different values of Winkler modulus parameter K, with J,;=10, g,=100 and a/h=10

The effect of the elastic foundation parameters (K, and Jo) and side-to-thickness ratio a/h on the
center deflection W of FG square plate (p=2) is explained in Figs. 5 and 6. As expected, the
deflections decrease gradually as either the Winkler modulus parameter K, or the Pasternak shear
modulus parameter J, increases. It can be also seen that the increase of side-to-thickness ratio a/h
leads to a decrease of the center deflection of the FG plate.

The effect of the elastic foundation parameters (K, and Jo) on the axial stress &, of FG square
plate (p=2) is shown in Figs. 7 and 8. It can be seen that the maximum compressive stresses occur
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Fig. 8 Variation of dimensionless axial stress (&, ) through-the-thickness of a square Titanium/Zirconia
plate (p=2) for different values of Pasternak shear modulus parameter J, with K4=10, qo=100 and a/h=10

Table 4 Comparison of nondimensional fundamental frequency ( @) of square Aluminum/alumina plate

Power law index (p)

a’h Method 0 G 1 2 10
FSDT® 0.2112 0.1805 0.1631 0.1397 0.1324
5 TSDT® 0.2113 0.1807 0.1631 0.1398 0.1301
Present 0.2112 0.1805 0.1631 0.1397 0.1324
FSDT® 0.0577 0.0490 0.0442 0.0382 0.0366
10 TSDT® 0.0577 0.0490 0.0442 0.0381 0.0364
Present 0.0577 0.0490 0.0442 0.0382 0.0366
FSDT® 0.0148 0.0125 0.0113 0.0098 0.0094
20 TSDT® 0.0148 0.0125 0.0113 0.0098 0.0094
Present 0.0148 0.0125 0.0113 0.0098 0.0094

®Hosseini-Hashemi et al. (2011a)
®Hosseini-Hashemi et al. (2011b)

at a point near the bottom surface and the maximum tensile stresses occur, of course, at a point
near the top surface of the FG plate. In addition, it can be observed from these figures that the
elastic foundation has a significant effect on the maximum values of the axial stress. It is observed
that normal stress decreases gradually with K, or Jo. However, the effect of Pasternak shears
modulus parameter is more significant than Winkler modulus parameter.

4.2 Free vibration problem

For convenience, the following nondimensionalizations are used in presenting the numerical
results in graphical and tabular form:
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Table 5 Comparison of the first four nondimensional frequency (@ ) of rectangular Aluminum/alumina
plate (b=2a)

Mode Power law index (p)
ah mpy  Method 0 05 1 2 5 8 10
FSDT® 34409 29322 26473 24017 2.2528 2.1985 2.1677
1(1,1) TSDT 34412 29347 26475 23949 22272 21697  2.1407
Present 34409 29322 26473 24017 2.2528 2.1985 2.1677
FSDT® 52802 45122 4.0773 3.6953 3.4492 3.3587 3.3094
2(1,2) TSDT 52813 45180 4.0781 3.6805 3.3938 3.2964 3.2514
. Present 52802 45122 40773 3.6953 3.4492 3.3587  3.3094
FSDT® 8.0710 6.9231 6.2636 5.6695 5.2579 5.1045 5.0253
3(1,3) TSDT 8.0749 6.9366 6.2663 5.6390 5.1425 4.9758  4.9055
Present 8.0710 69231 6.2636 5.6695 52579 5.1045 5.0253
FSDT® 9.7416 86926 7.8711 7.1189 6.5749 59062 5.7518
4(2,1) TSDT 10.1164 8.7138 7.8762 7.0751 6.4074 6.1846  6.0954
Present 10.1089 8.6926 7.8711 7.1189 6.5749 6.3707  6.2683
FSDT® 3.6518 3.0983 2.7937 25386 2.3998 2.3504 2.3197
1(1,1) TSDT 3.6518 3.0990 2.7937 25364 2.3916 2.3411 2.3110
Present 3.6518 3.0983 2.7937 25386 2.3998 2.3504 2.3197
FSDT® 57693  4.8997 4.4192 4.0142 3.7881 3.7072  3.6580
2(1,2) TSDT 57694 49014 4.4192 4.0090 3.7682 3.6846  3.6368
10 Present 57693  4.8997 4.4192 4.0142 3.7881 3.7072  3.6580
FSDT® 9.1876  7.8145 7.0512 6.4015 6.0247 5.8887 5.8086
3(1,3) TSDT 0.1880 7.8189 7.0515 6.3886 5.9765 5.8341 57576
Present 9.1876  7.8145 7.0512 6.4015 6.0247 5.8887  5.8086
FSDT® 11.8310 10.0740 9.0928 8.2515 7.7505 7.5688  7.4639
4(2,1) TSDT 11.8315 10.0810 9.0933 8.2309 7.6731 7.4813 7.3821
Present 11.8307 10.0737 9.0928 8.2515 7.7505 7.5688  7.4639
FSDT® 37123 3.1456 2.8352 25777 2.4425 2.3948  2.3642
1(1,1) TSDT 3.7123  3.1458 2.8352 25771 2.4403 2.3923  2.3619
Present 37123 3.1456 2.8352 25777 2.4425 2.3948  2.3642
FSDT® 59198 5.0175 4.5228 4.1115 3.8939 3.8170 3.7681
2(1,2) TSDT 59199 50180 45228 4.1100 3.8884 3.8107 3.7622
2 Present 59198 50175 45228 4.1115 3.8939 3.8170 3.7681
FSDT® 9.5668 8.1121 7.3132 6.6471 6.2903 6.1639  6.0843
3(1,3) TSDT 05669 8.1133 7.3132 6.6433 6.2760 6.1476  6.0690

Present 9.5668 8.1121 7.3132 6.6471 6.2903 6.1639  6.0843
FSDT® 12.4560 10.5660 9.5261 8.6572 8.1875 8.0207 7.9166
4(2,1) TSDT 12.4562 10.5677 9.5261 8.6509 8.1636  7.9934  7.8909
Present 12.4562 10.5657 9.5261 8.6572 8.1875 8.0207  7.9165

®Hosseini-Hashemi et al. (2011a)
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Table 6 Comparison of nondimensional fundamental frequency (€2) of FG square Aluminum/alumina plate
resting on elastic foundation

Power law index (p)

0 0.5 1 2 5
Present ~ 0.0291  0.0246  0.0222  0.0202  0.0191
0.05 FSDT 0.0291  0.0246  0.0222  0.0202  0.0191
TSDT®  0.0291  0.0249  0.0227  0.0209  0.0197
Present  0.1133  0.0963  0.0868  0.0789  0.0744
0 0 0.1 FSDT 0.1133  0.0963  0.0868  0.0789  0.0744
TSDT®  0.1134 0.0975 0.0891 0.0819 0.0767
Present 04150  0.3546  0.3204  0.2904  0.2711
0.2 FSDT 0.4150  0.3546  0.3204  0.2904  0.2711
TSDT®  0.4154 0.3606 0.3299 0.3016 0.2765
Present  0.0406  0.0386  0.0378  0.0374  0.0377
0.05 FSDT 0.0406  0.0386  0.0378  0.0374  0.0377
TSDT®  0.0406  0.0389  0.0382  0.0380  0.0381
Present  0.1597 0.1526  0.1494  0.1478  0.1489
0 100 0.1 FSDT 0.1597 0.1526  0.1494  0.1478  0.1489
TSDT®  0.1599 0.1540 0.1517 0.1508 0.1515
Present ~ 0.6074  0.5855  0.5752  0.5698  0.5734
0.2 FSDT 0.6074 05855 05752 05698 05734
TSDT®  0.6080  0.5932 05876 05861  0.5879
Present  0.0298  0.0255  0.0233  0.0214  0.0205
0.05 FSDT 0.0298  0.0255  0.0233  0.0214  0.0205
TSDT®  0.0298 0.0258 0.0238 0.0221  0.0210
Present ~ 0.1161  0.0999  0.0910  0.0837  0.0799
100 0 0.1 FSDT 0.1161  0.0999  0.0910  0.0837  0.0799
TSDT®  0.1162 0.1012 0.0933 0.0867 0.0821
Present 04268  0.3698  0.3380  0.3107  0.2941
0.2 FSDT 0.4268  0.3698  0.3380  0.3107  0.2941
TSDT® 04273  0.3758  0.3476  0.3219  0.2999
Present  0.0411  0.0392  0.0384  0.0381  0.0384
0.05 FSDT 0.0411  0.0392  0.0384  0.0381  0.0384
TSDT®  0.0411 0.0395 0.0388 0.0386 0.0388
Present  0.1617 0.1549 01519 01505  0.1517
100 100 0.1 FSDT 0.1617 0.1549 01519 01505  0.1517
TSDT®  0.1619  0.1563  0.1542  0.1535  0.1543
Present  0.6156  0.5948  0.5852  0.5804  0.5845
0.2 FSDT 0.6156  0.5948 05852 05804  0.5845
TSDT®  0.6162 0.6026 05978 05978  0.5993

Ko Jo h/a Method

®Given by Baferani et al. (2011)

The nondimensional natural frequency @ of square plate obtained from the proposed theory
(NFSDT) is compared with those reported by Hosseini-Hashemi et al. (2011a) based on FSDT and
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Hosseini-Hashemi et al. (2011b) based on third shear deformation theory (TSDT). The results are
given in Table 4 for different values of thickness ratio a’h and power law index p. From Table 4, it
can be observed that the present results are in excellent agreement with those acquired by the
FSDT (Hosseini-Hashemi et al. 2011a), and TSDT (Hosseini-Hashemi et al. 2011b).

The four natural frequency parameters (@ ) of the rectangular FG plate (b=2a) for different
values of the power law index p and thickness ratio a/h are compared with those given by
Hosseini-Hashemi et al. (2011a) based on FSDT and with those obtained using TSDT (Reddy
2000) in Table 5. It can be seen that the results predicted by the new first-order shear deformation
theory (NFSDT) and TSDT are almost identical for all modes of vibration of thin to thick plates.
Also, the proposed theory with only four unknown functions gives more accurate prediction of
natural frequency compared to the conventional FSDT which needs five unknown functions.
Fundamental frequency parameters Q of the Al/Al,O; square plate are listed in Table 6 for various
values of thickness to length ratio (h/a=0.05, 0.1, and 0.2), power law index (p=0, 0.5, 1, 2, and 5),
and foundation stiffness parameters (Ko, Jo). The present results are compared with those obtained
by the conventional FSDT and by Baferani et al. (2011) using TSDT. Table 6 proves the fact that
all results are in excellent agreement with each other.

The variations of nondimensional fundamental frequency @ of square plate with respect to
power law index p and thickness ratio a/h are compared in Fig. 9 and Fig. 10, respectively. It is
observed that the nondimensional frequencies @ predicted by the new first-order shear
deformation theory (NFSDT) and the conventional FSDT are identical, and the CPT overestimates
the frequency of thick plate. Fig. 11 shows the effects of the aspect ratio a/b on nondimensional
fundamental frequency @ of FG plate. It is observed that the frequency parameter increases for
plates with higher aspect ratio a/b. It is observed that the proposed theory and the conventional
FSDT give identical results.

The effect of foundation stiffness on the non-dimensional fundamental frequencies (2) of FG
square plates is shown in Fig. 13 (a/h=10). The figure shows that frequencies of FG plates increase
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Fig. 9 Comparison of nondimensional fundamental frequency @ of square Aluminum/ alumina plate
versus power law index p (a/h=5)
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Fig. 11 Comparison of the variation of nondimensional fundamental frequency @ of Aluminum/
alumina plate versus aspect ratio a/b (a/h=5).

when foundation parameters increase. It is also noted in this case that the effect of Pasternak shears
modulus parameter is more significant than Winkler modulus parameter.

5. Conclusions

A new first-order shear deformation theory (NFSDT) was proposed to analyse static and
dynamic behaviour of functionally graded plates resting on Winkler-Pasternak elastic foundations.
The neutral surface position for such plates has been determined. The effectiveness of the theory is
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Fig. 13 Effect of Pasternak shear modulus parameter on the dimensionless fundamental frequency Q
of square Aluminum/alumina plate for different power law index p (a/h=10, K,=100).

brought out by applying them for static as well as dynamic analysis. The results obtained using
this new theory, are found to be in excellent agreement with previous studies. Unlike the
conventional first shear deformation theory, the proposed first shear deformation theory contains
only four unknowns rather than the usual five and eliminates the stretching — bending coupling
effect, resulting in reduced computational expense and significantly facilitating engineering
analysis. However, the disadvantages for the implementation of the present NFSDT-based
numerical models is discussed and resolved recently by Yin et al. (2014). In conclusion, it can be
said that the proposed theory NFSDT is not only accurate but also provides an elegant and easily
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implementable approach for simulating the static and dynamic behavior of functionally graded
plates resting on elastic foundations. The formulation lends itself particularly well to finite element
simulations (Curiel Sosa et al. 2012, Curiel Sosa et al. 2013), other numerical methods employing
symbolic computation for plate bending problems (Rashidi et al. 2012) and also in analysing
nanostructures (Heireche et al. 2008, Benzair et al. 2008, Tounsi et al. 2013b, c, Berrabah et al.
2013, Benguediab et al. 2014, Semmabh et al. 2014), which will be considered in the near future.
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