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Abstract.  In this study, in order to propose an efficient model to predict the torque capacity of steel fiber 
reinforced concrete (SFRC) beams, the existing experimental data related to torsional response of beams is 
reviewed. It is observed that existing data neglects the effects of some parameters on the variation of torque 
capacity. Thus, an experimental research was also conducted to obtain the effects of neglected parameters. In 
the experimental study, a total of seventeen SFRC beams are tested against torsion. The parameters 
considered in the experiments are concrete compressive strength, steel fiber aspect ratio, volumetric ratio of 
steel fibers and longitudinal reinforcement ratio. The effect of each parameter is discussed in terms of torque 
versus unit angle of twist graphs. The data obtained from this experimental research is also combined with 
the data got from previous studies and employed in artificial neural network (ANN) analysis to estimate the 
ultimate torque capacity of SFRC beams. In addition to parameters considered in the experiments, aspect 
ratio of beam cross-section, yield strengths of both transverse and longitudinal reinforcements, and 
transverse reinforcement ratio are also defined as parameters in ANN analysis due to their significant effects 
observed in previous studies.  Assessment of the accuracy of ANN analysis in estimating the ultimate torque 
capacity of SFRC beams is performed by comparing the analytical and experimental results. Comparisons 
are conducted in terms of root mean square error (RMSE), mean absolute error (MAE) and coefficient of 
efficiency (Ef). The results of this study revealed that addition of steel fibers increases the ultimate torque 
capacity of reinforced concrete beams. It is also found that ANN is a powerful method and a feasible tool to 
estimate ultimate torque capacity of both normal and high strength concrete beams within the range of input 
parameters considered. 
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1. Introduction 
 

In most of the times, the torque is observed in combination with the bending moment where the 

effects of axial and shear forces may be significant. Although there are no cases where pure torsion 

occurs in any frame elements, the behavior of elements under pure torsion needs to be defined 

explicitly in order to understand the overall combined flexural and torsional response (Ersoy 1999, 

Nilson and Winter 1991). 
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Since the torque capacity of reinforced concrete (RC) sections affect the response of any 

structural system subjected to external loadings, it is of crucial to determine the torque capacity 

accurately. Previous studies focused on the torque capacity of RC sections clearly showed that it is 

highly dependent on the parameters such as aspect ratio of beam cross-section, strength of 

concrete, reinforcement ratio, and yield strength of reinforcement. 

Being the first experimental study that considered the torsional response of RC sections, Hsu 

(1968) investigated the effect of transverse reinforcement ratio on the torque capacity of beams. 

The author had determined in this study that torque capacity and rigidity are nearly the same up to 

the first crack irrespective of transverse reinforcement ratio; but the torque capacity and rigidity 

increase with the transverse reinforcement ratio after the occurrence of first crack. In another 

study, conducted by Narayanan and Kareem-Palanjian (1986), it is revealed that the torque 

capacity of beam increases as the aspect ratio of beam cross-section increase. In their research, 

Rasmussen and Baker (1995) performed several experiments with RC beams having various 

compressive strengths of normal and high strength concrete. Authors found out that torque 

capacity of RC beams increases with increasing concrete compressive strength. However, they 

indicated that high strength RC beams present a more brittle behavior compared to normal strength 

RC beams. Similarly, Fang and Shaiu (2004), focused on the torsional response of beams as a 

function of the concrete compressive strength together with transverse and longitudinal 

reinforcement ratios. Fang and Shaiu (2004) concluded that torque capacity of beams increases 

due to increase in both concrete compressive strength and transverse and longitudinal 

reinforcement ratios.  Moreover, they specified that transverse reinforcement ratio is more 

effective compared to longitudinal reinforcement ratio on the increase of torque capacity and this 

behavior is more significant in high strength RC beams. Nevertheless, none of these studies 

considered the effect of addition of steel fibers to the RC mixtures in terms of torsional response of 

beams. On the other hand Mansur et al. (1989) carried out an experimental study to specify the 

effect of adding steel fibers on the torsional behavior of normal strength RC beams. Only one type 

steel fiber aspect ratio is used in the study and it is observed that the cracking torque is nearly the 

same for all fiber volumetric ratios, whereas the torque capacity increases with the increase of steel 

fiber volumetric ratio after the first crack. Narayanan and Kareem-Palanjian (1983) took the steel 

fiber volumetric ratio and beam section’s aspect ratio to be the variables. They state that the torque 

capacity of beam increases with increase of steel fiber volumetric ratio and beam section’s aspect 

ratio. Rao and Seshu (2003, 2005) accomplished torsion tests with concrete beams without 

transverse and longitudinal reinforcement but having different steel fiber volumetric ratio. It is 

founded that addition of steel fiber increase the torque capacity and rigidity; besides it makes high 

strength concrete  which is known to present a brittle behavior, more ductile. Yang et al. (2013) 

took steel fiber volume, transverse and longitudinal reinforcement ratio to be the variables in the 

experiment. Ultra-high performance concrete is used in the study. It is stated that the torque 

capacity of RC beams made of ultra-high performance concrete increases with the increase of steel 

fiber volumetric ratio and reinforcement ratio. When studies available in the literature are taken 

into account, it is seen that most of studies concentrate on the effect of concrete compressive 

strength, transverse reinforcement ratio and steel fiber volumetric ratio on torque capacity; but the 

effect of steel fiber aspect ratio and longitudinal reinforcement ratio are disregarded. 

The objective of this study is to propose a ANN model to estimate the torque capacity of SFRC 

beams. This model intends to consider all of the parameters that affect the torsional response of 

beams. The study consists of two parts as the experimental research and ANN model. In the first 

part is performed an experimental research in which steel fiber aspect ratio and longitudinal 
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reinforcement ratio are taken into account, and it is seen that their effects on torque capacity have 

not been addressed in previous studies explicitly. In the second part, experimental results 

containing parameters like transverse reinforcement ratio, beam section’s aspect ratio, transverse 

and longitudinal reinforcement yield strength, steel fiber volumetric ratio and concrete 

compressive strength which are all effective on torque capacity, obtained from the experiments 

performed by Mansur et al. (1989), Rasmussen and Baker (1995), Fang and Shaiu (2004). An 

ANN model is prepared to estimate the torque capacity of SFRC beams by using clustered data 

from the literature and present study. The accuracy of the proposed model is also tested by 

comparing the torque capacities of SFRC beams obtained from experiments with the ones obtained 

by estimations of proposed ANN model.  

 

 

2. Experimental programme 
 

2.1 Materials and mix proportions 
 

Concrete mixtures are composed of natural sand as fine aggregate, crushed stone as course 

aggregate and 42.5 MPa strength cement. Since, one of the parameters in the study is the concrete 

compressive strength, to obtain the desired concrete compressive strengths plasticizer 

(superplasticizer for normal strength concrete and hyperplasticizer for high strength concrete) is 

also used as an ingredient for concrete mixtures. The amounts of superplasticizer and 

hyperplasticizer used to obtain normal strength concrete and high strength concrete are 1.0% and 

1.6%, respectively. The corresponding amounts of ingredients for both normal and high strength 

concrete mixtures are presented in Table 1. In the mixtures, four different steel fiber aspect ratios 

(lf/df=40, 55, 67, and 80) are used for hook end steel fiber; where lf is the length and df is the 

diameter of the fiber. These aspect ratios correspond to lf/df  ratios of 30/0.75, 30/0.55, 60/0.90, and 

60/0.75 in mm. Yield strength for the steel fibers given by the manufacturer is fyf=1200 MPa. 

Geometry of steel fibers added to the concrete mixtures is given in Fig. 1. 

The reinforcement used in the cross-sections is composed of deformed bars. The transverse 

reinforcement diameter, dt, is selected as 8 mm. To observe the effect of longitudinal 

reinforcement on ultimate torque capacity, two distinct longitudinal reinforcement diameters, dl, 

 

 
Table 1 Mix proportions  

Concrete Content 
Concrete Compressive Strength 

NSC* - 30 MPa (Aim) HSC** - 60 MPa (Aim) 

Water / Cement 0.65 0.37 

Water (kg/m3) 208 203.5 

Cement (kg/m3) 320 550 

Course Aggregate (kg/m3) 1091 982 

Sand (kg/m3) 714 642 

Superplasticizer (kg/m3) 3.2 - 

Hyperplasticizer (kg/m3) - 8.8 

Slump (cm) 24 20 

*NSC: Normal Strength Concrete      **HSC: High Strength Concrete 
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Fig. 1 Geometry of the steel fibers used in the test specimen 
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Fig. 2 The reinforcement layout and dimensions of the test specimen. (All dimensions are in mm) 

 

 

namely, 8 mm and 12 mm, are considered in the cross-sections. The yield strength of the steel used 

for both transverse and longitudinal reinforcement is 460 MPa.  

 

2.2 Specimen characteristics 
 

The cross sectional dimensions of the test specimens are 150×200 mm with a length of 1900 

mm. The first variable is the longitudinal reinforcement ratio ρl, which is chosen as 0.0067 (4 

pieces of dl=8 mm) and 0.015 (4 pieces of dl=12 mm). Transverse reinforcement diameter is 8 mm 

and their center to center spacing is 200 mm which corresponds to transverse reinforcement ratio of 

ρt=0.006 for all specimens. The transverse reinforcement ratio is kept constant while the other 

parameters (longitudinal reinforcement ratio, concrete compressive strength, and volumetric ratio 

of steel fiber) vary accordingly in order to observe their effect on the torque capacity, explicitly. To 

prevent any failure of the beam except at the test region, spacing of transverse reinforcement 

outside the test region is decreased from 200 mm to 50 mm. The reinforcement layout and 

dimension of the test specimen is given in Fig. 2. 

In the conducted experiments, the volumetric ratio of steel fiber Vf is chosen as 0.3% and 0.6%. 

With these two steel fiber ratios (SFRs), it is aimed to observe the behavior of concrete with 

increasing volumetric ratio of fibers. To identify the specimens, the following alphanumeric 

procedure is followed: The first character, C, followed by numbers designates the concrete 

compressive strength in MPa, block L designates the diameter of the longitudinal reinforcement in 

mm, block F stands for the dimensionless fiber aspect ratio, block V represents the volumetric ratio 

of the fibers added in percentage. Specimen’s details are given in Table 2.  

 

lf  

df 
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Table 2 Specimen details 

Beam Designation Concrete Type Longitudinal Reinforcement lf/df Vf  (%) 

C30L08F00V0 NSC 4 No. of 8 mm dia. - - 

C30L08F40V3 NSC 4 No. of 8 mm dia. 40 0.3 

C30L08F40V6 NSC 4 No. of 8 mm dia. 40 0.6 

C30L08F55V3 NSC 4 No. of 8 mm dia. 55 0.3 

C30L08F55V6 NSC 4 No. of 8 mm dia. 55 0.6 

C30L08F67V3 NSC 4 No. of 8 mm dia. 67 0.3 

C30L08F67V6 NSC 4 No. of 8 mm dia. 67 0.6 

C30L08F80V3 NSC 4 No. of 8 mm dia. 80 0.3 

C30L08F80V6 NSC 4 No. of 8 mm dia. 80 0.6 

C30L12F00V0 NSC 4 No. of 12 mm dia. - - 

C30L12F40V3 NSC 4 No. of 12 mm dia. 40 0.3 

C30L12F80V3 NSC 4 No. of 12 mm dia. 80 0.3 

C60L08F00V0 HSC 4 No. of 8 mm dia. - - 

C60L08F40V3 HSC 4 No. of 8 mm dia. 40 0.3 

C60L08F40V6 HSC 4 No. of 8 mm dia. 40 0.6 

C60L08F55V3 HSC 4 No. of 8 mm dia. 55 0.3 

C60L08F55V6 HSC 4 No. of 8 mm dia. 55 0.6 

 

 

Fig. 3 Test setup, loading and measurement systems 

 
 
2.3 Test Setup, loading and measurement systems 

 

The test setup where the test specimens are subjected to uniform torsional loading is given in 

Fig. 3. As shown in the figure, the specimen is placed on roller supports aligned with its axis in 
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order to release both ends of the specimen from free rotation, extension or contraction. The 

specimen is held in place between the upper arms and lower plates which are connected to roller 

supports by means of bolts. The variation of the load which is applied to the specimen is measured 

through the electronic load cell. The torque applied to the beam is obtained by the product of 

measured load by moment arm (upper arms length/2). Beam’s angle of twist is obtained by the 

division of the addition of the displacements of points 1, 2, 3 and 4 measured by the extensometers, 

by the distance (t) between the extensometers settled in front and back sides of the beam as shown 

in Fig. 3. Beam’s unit angle of twist is obtained by the division of angle of twist by the length of 

test region.  

 

 

3. Test results and discussions 
 

3.1 Test results 
 

Torsion tests are performed on the beams which are produced once for each beam 

configuration. For each specimen, ultimate torques, Tu, are determined from test results and listed 

in Table 3. Table 3 also consists of the average values of 28th day compressive strength, fck, split 

cylinder tensile strength, fcts, and flexural tensile strength, fctf, of each test specimen. Torque versus 

unit angle of twist graphs are plotted for each specimen obtained from pure torsion tests. The 

graphs are grouped according to experimental parameters. The effect of considered parameters on 

the torsional capacity of beams is seen clearly by the help of this grouping. 

As depicted in Fig. 4(a), the addition of 0.3% steel fiber to normal strength concrete, where 

longitudinal reinforcement diameter, dl is equal to 8 mm, results in almost no variation in torsional  

 

 
Table 3 Test results 

Beam  Designation fck (MPa) fcts (MPa) fctf (MPa) Tu (kN.m) 

C30L08F00V0 34.8 3.51 4.54 4.93 

C30L08F40V3 33.4 3.55 4.96 4.58 

C30L08F40V6 31.3 3.35 5.02 5.68 

C30L08F55V3 31.0 3.08 4.82 4.94 

C30L08F55V6 30.9 3.41 4.57 5.87 

C30L08F67V3 32.7 3.42 4.39 4.92 

C30L08F67V6 29.5 3.12 4.39 5.88 

C30L08F80V3 31.9 3.46 4.56 4.85 

C30L08F80V6 30.0 3.10 4.82 5.49 

C30L12F00V0 34.8 3.58 4.54 5.07 

C30L12F40V3 31.7 3.51 4.46 6.01 

C30L12F80V3 31.6 3.56 4.87 6.25 

C60L08F00V0 59.0 4.65 6.08 4.63 

C60L08F40V3 58.6 4.84 6.23 5.23 

C60L08F40V6 59.8 4.80 6.75 6.65 

C60L08F55V3 60.8 4.86 5.95 5.83 

C60L08F55V6 62.7 5.46 6.63 7.51 
 

944



 

 

 

 

 

 

Estimation of ultimate torque capacity of the SFRC beams using ANN 

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120

T
o

rq
u

e
 (

k
N

.m
)

Unit angle of twist  (rad/m x 10-3)  

C30L08F00V0

C30L08F40V3

C30L08F55V3

C30L08F67V3

C30L08F80V3

 

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120
T

o
rq

u
e
 (

k
N

.m
)

Unit angle of twist  (rad/m x 10-3)  

C30L08F00V0

C30L08F40V6

C30L08F55V6

C30L08F67V6

C30L08F80V6

 
(a) Volumetric ratio of steel fiber is 0.3% (b) Volumetric ratio of steel fiber 0.6% 

Fig. 4 Torque-unit angle of twist graphs in normal strength beams with dl=8 mm 
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(a) Volumetric ratio of steel fiber is 0.3% (b) Volumetric ratio of steel fiber is 0.6% 

Fig. 5 Torque-unit angle of twist graphs in high strength beams with dl=8 mm 

 

 

capacity compared to cases in which there is no steel fiber presents. However, some increment in 

the torsional capacities of beams ranging from 11.4% to 19.3% occurs due to addition of 0.6% of 

steel fiber to normal strength concrete (Fig. 4(b)). Fig. 4(a) also reveals that the change in steel 

fiber aspect ratios has almost no effect on torsional capacity of specimens. Similar comparisons for 

specimens with high strength concrete are presented in Figs. 5(a) and (b). 

Fig. 5(a) shows that torque capacities of the specimens may increase up to 25% due to addition 

of 0.3% steel fiber to high strength concrete. Comparisons for the cases where 0.6% steel fiber is 

added to high strength concrete show that the torque capacities may increase up to 60% (Fig. 5(b)). 

In addition, there is a significant amount of increment in the energy dissipation capacities of 

specimens as a function of steel fiber aspect ratio regardless of the concrete strength. To identify 
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the effect of longitudinal reinforcement on the torque capacity of beams, Fig. 6 is depicted. In this 

figure, variation in the torsional response of SFRC beams with different longitudinal 

reinforcement ratios is shown. It is clear that, the torque capacity of SFRC beams increases with 

increasing longitudinal reinforcement. The amounts of increment in torque capacities are 18.5% 

and 23.3% for dl=8 mm and for dl=12 mm, respectively. 

Table 4 presents all of the test results in terms of ultimate torque capacities of the specimens. In 

Table 4, I stands for the amount of increment in torque capacity of SFRC beams in percentage. 
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Fig. 6 Torque-unit angle of twist graphs in specimens with dl=12 mm, different steel fiber aspect 

ratio of NSC beams 

 
Table 4 Variation in torque capacity of SFRC beams due to addition of steel fibers 

Beam Designation Tu (kN.m) I* (%) 

C30L08F00V0 4.93 - 

C30L08F40V3 4.58 0.0 

C30L08F40V6 5.68 15.2 

C30L08F55V3 4.94 0.0 

C30L08F55V6 5.87 19.1 

C30L08F67V3 4.92 0.0 

C30L08F67V6 5.88 19.3 

C30L08F80V3 4.85 0 

C30L08F80V6 5.49 11.4 

C30L12F00V0 5.07 - 

C30L12F40V3 6.01 18.5 

C30L12F80V3 6.25 23.3 

C60L08F00V0 4.63 - 

C60L08F40V3 5.23 12.9 

C60L08F40V6 6.65 43.6 

C60L08F55V3 5.83 25.9 

C60L08F55V6 7.51 62.2 

* 1001 x
T

TT
I

nu

nunu 
   
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3.2 Discussions on the experimental results 
 

The torque capacity of beams versus unit angle of twist graphs indicates that addition of steel 

fibers to beams affect the torsional response and it is highly dependent of the concrete compressive 

strength. Moreover, the variation in torque capacity is also a function of volumetric ratio of steel 

fiber and steel fiber aspect ratio. In specimens with normal strength concrete, addition of 0.3% 

steel fiber has almost negligible effect on torque capacity while it is significant for 0.6% cases, 

regardless of the steel fiber aspect ratio. However, the amount of variation in torque capacity is 

observed to be affected by steel fiber aspect ratio in specimens with high strength concrete, 

regardless of the volumetric ratio of steel fiber. It is known that sections subjected to torsional 

loading are generally dominated by the tensile strength of the concrete (Ersoy 1999). Such 

conclusion is also in a good agreement with the observations of the present study. Because, the 

addition of steel fibers enhances the tensile strength of concrete (Song and Hwang 2004, Olivito 

and Zuccarello 2010), the corresponding torque capacity of SFRC beams increases, accordingly. 

The reason why addition of steel fibers is more effective in increasing the torque capacity, 

especially in high strength concrete specimens, can be identified by bonding between steel fibers 

and concrete. The bond strength between the reinforcement and the concrete is higher in high 

strength concrete compared to ones in normal strength concrete (Lutz and Gergely 1967, Orangun 

et al. 1977). 

 

 

4. Application of ANN in engineering problems   
 

Studies on artificial neural networks commonly referred to as “neural networks” and have been 

motivated right from its inception by the recognition that the human brain computes in an entirely 

different way from the conventional digital computer (Haykin 1999). ANN learns by sampling just 

like in human brain. ANN can be constituted for special purpose applications like classification of 

data and pattern recognition. For these applications the network is subjected to learning process. 

Learning operation occurs with the help of synaptic connections which are located between 

neurons. The same learning process is valid in artificial neural networks. ANN produced a general 

and practical method for real valued, discrete valued and vector valued functions by using the 

sampling defined to network. Thus, it can easily be used in many applications of engineering 

branches. ANN is widely used to predict the properties of concrete such as the compressive 

strength (Altun et al. 2008), modulus of elasticity (Demir 2008) and slump of concrete at early age 

(Öztaş et al. 2006). ANN is also used for prediction of the concrete compressive strength with 

mineral additives such as fly ash (Topçu and Sarıdemir 2008a), ground granulated blast furnace 

slag (Bilim et al. 2009), silica fume (Topçu and Sarıdemir 2008b) and various waste materials 

(Dantas 2013). After all these studies it is seen that the predictions obtained by using ANN are 

very close to results of experimental data. Although there exists a lot of ANN-based studies that 

deal with mechanical properties of concrete, prediction of the ultimate torque capacity of SFRC 

beams by using the artificial neural networks has not been modeled in literature yet. 

 

 

5. Artificial neural networks (ANNs) 
 

A neural network can be defined as a matcher to match an input value with an output value in  
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Fig. 7 Schematic diagram for the artificial neural model 

 

 

engineering applications (Naderpour et al. 2010). A network occurs by accumulation of many 

basic parts that are named as neurons in layer. A neuron has only one output while it has many 

inputs. The information come to neuron are multiplied by weights of the connections links that 

they came from, before they are transferred to a neuron. By this means the effect of each input on 

outputs can be scaled (Alshihri et al. 2009). A schematic diagram for an artificial neural model is 

given in Fig. 7 where X=(X1, X2, . . Xn), Wj and b represent the n number of input applied to the 

neuron, the weight for input Xj and bias, respectively. All of the neurons are connected to each 

other by the help of connection links and the signals defined to network are transferred from one 

neuron to another neuron via these links. Every neuron has an activation function in order to 

determine the output. There exists a numerous number of activation functions in the literature and 

generally nonlinear activation functions like sigmoid and step are used. ANNs are trained 

according to the sampling history defined to the network and when an unknown input is entered to 

the network it produces an output according to the past learning (Bilim et al. 2009).   

As a beginning, the network structure should be defined in an artificial neural network model. 

Learning process is performed by the inputs defined to network. The network sets the connection 

between each input and each output during this process. When the learning process is 

accomplished, the second process which is called the testing process is performed by entering the 

inputs that are not defined before. Accuracy of the learning process is tested in testing process. The 

back-propagation (BP) network is used to perform human tasks such as diagnosis, classification, 

decision-making, planning and scheduling (Topçu et al. 2009). BP is the most applicable gradient 

descent algorithm which consists of changing weights and bias according to the negative of the 

error function. This operation must be repeated until the error of the network is minimized.  

 

 

6. Neural network model and parameters 
 

6.1 Pre-processing of data 
 

An artificial neural network performance depends on selected data. Neural networks learn the 

physics underlying interest of the system from the training data, which are the cause-effects 

samples (Alshihri et al. 2009). For this reason, the variables used in the artificial neural network 

should completely define the problem that is to be solved. Torque capacity of a SFRC beam 

depends on concrete compressive strength, steel fiber aspect ratio, volumetric ratio of steel fibers, 
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longitudinal reinforcement ratio, yield strength of longitudinal reinforcement, transverse 

reinforcement ratio, yield strength of transverse reinforcement and aspect ratio of beams cross 

section. The parameters taken as variables of the present experimental study are as follows: 

• Concrete compressive strength (fck) in MPa 

• Steel fiber aspect ratio (lf/df) in mm/mm 

• Volumetric ratio of steel fiber (Vf) in % 

• Longitudinal reinforcement ratio (ρl) in % 

Learning pats between the input and output values of the neural network should completely 

define the problem which should be taught. In the light of previous experiments studied by Mansur 

et al. (1989), Rasmussen and Baker (1995) and Fang and Shaiu (2004), further parameters that 

should be covered to determine the torque capacity of sections are listed below. 

• Transverse reinforcement ratio (ρt) in % 

• Yield strength of the longitudinal reinforcement (fyl) in MPa 

• Yield strength of the transverse reinforcement (fyt) in MPa 

• Beam section’s aspect ratio (bw/d) in mm/mm 

The ultimate torque capacities of specimens taken from the literature are given in Table 5. The 

parameters that will be defined as an input to ANN model are also given for each considered case 

in Table 5. 

In this section, it is aimed to determine the torsional capacities of SFRC beams subjected to 

torsion by the help of network model. The parameters that directly affect the pure torsion are 

considered when the artificial neural network is being constructed. A total of 51 data used in the 

network, randomly selected 25 are used for training, the remaining 26 are used for testing. The 

numerical values used in the training set are obtained from 8 specimens belong to present study, 3 

specimens belong to Mansur et al. (1989), 6 specimens belong to Rasmussen and Baker (1995) 

and 8 specimens belong to Fang and Shaiu (2004). For this reason, the specimens chosen for 

training set include all the parameters homogeneously that effect torsion are investigated in study. 

A sigmoidal transfer function is usually used for the artificial neural networks. A sigmoid transfer 

function produces output with maximum and minimum limits of signal from generally 1 and 0, 

respectively. When function limits are considered, it is understood that input and output data 

should be scaled after preprocessing operation. Scaling increases the learning speed of the network 

as these values fall in the region of sigmoid transfer function where the output is most sensitive 

with respect to variations of the input values (Alshihri 2009) and maintains more accurate 

perception of data at once. For this reason, it is proposed to normalize the input and output data by 

an appropriate method before they are defined to network. In the network model, all the 

parameters given in Table 6 were normalized by dividing these terms by the maximum values of 

each parameter. Statistical data belong to the parameters used for training and testing is given in 

Table 6. 

 

6.2 Neural network structure 
 

In this study, a computer program was developed by using a computer software program 

MATLAB, for analyzing the network. Eight input nodes that affect the torsional strength are used 

to predict the maximum torsional capacity of the sections by using network. Proposed neural 

network model is shown in Fig. 8. 

The multi-layer feed forward back-propagation technique was used for training and testing the 

neural network. ANN model consist of input, hidden and output layers respectively. Levenberg- 
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Table 5 Characteristics of the data taken from literature 

Aut. Speci. 
fck 

(MPa) 

lf /df 

(mm/mm) 

Vf 

(%) 

ρl 

(%) 

ρt 

(%) 

fyl 

(MPa) 

fyt 

(MPa) 

bw/d 

(mm/mm) 

Tu 

(kN.m) 

M
an

su
r 

et
 a

l.
 

(1
9
8

9
) 

A-0.0 32.8 60 0 0.0070 0.0087 380.1 380.1 1.00 28.06 

A-0.5 25.8 60 0.005 0.0070 0.0087 380.1 380.1 1.00 27.34 

A-1.0 21.4 60 0.010 0.0070 0.0087 380.1 380.1 1.00 29.01 

A-1.5 28.0 60 0.015 0.0070 0.0087 380.1 380.1 1.00 34.67 

B-1.0 21.4 60 0.010 0.0105 0.0131 380.1 380.1 1.00 36.46 

C-1.0 21.4 60 0.010 0.0140 0.0175 380.1 380.1 1.00 40.86 

R
as

m
u

ss
en

 a
n

d
 B

ak
er

 

(1
9
9

5
) 

B30.1 41.7 0 0 0.0351 0.0176 620.0 665.0 0.58 16.62 

B30.2 38.2 0 0 0.0351 0.0173 638.0 669.0 0.58 15.29 

B30.3 36.3 0 0 0.0351 0.0173 605.0 672.0 0.58 15.25 

B50.1 61.8 0 0 0.0351 0.0173 612.0 665.0 0.58 19.95 

B50.2 57.1 0 0 0.0351 0.0173 614.0 665.0 0.58 18.46 

B50.3 61.7 0 0 0.0351 0.0173 612.0 665.0 0.58 19.13 

B70.1 77.3 0 0 0.0351 0.0173 617.0 658.0 0.58 20.06 

B70.2 76.9 0 0 0.0351 0.0173 614.0 656.0 0.58 20.74 

B70.3 76.2 0 0 0.0351 0.0173 617.0 663.0 0.58 20.96 

B110.1 109.8 0 0 0.0347 0.0173 618.0 655.0 0.58 24.72 

B110.2 105.0 0 0 0.0347 0.0173 634.0 660.0 0.58 23.62 

B110.3 105.1 0 0 0.0351 0.0173 629.0 655.0 0.58 24.77 

F
an

g
 a

n
d

 S
h

ai
u
 

(2
0
0

4
) 

H-06-06 78.5 0 0 0.0068 0.0069 440 440 1.00 92.00 

H-06-12 78.5 0 0 0.0116 0.0069 410 440 1.00 115.10 

H-12-12 78.5 0 0 0.0116 0.0139 410 440 1.00 155.30 

H-12-16 78.5 0 0 0.0164 0.0139 520 440 1.00 196.00 

H-20-20 78.5 0 0 0.0196 0.0224 560 440 1.00 239.00 

H-07-10 68.4 0 0 0.0098 0.0077 500 420 1.00 126.70 

H-14-10 68.4 0 0 0.0098 0.0154 500 360 1.00 135.20 

H-07-16 68.4 0 0 0.0164 0.0077 500 420 1.00 144.50 

N-06-06 35.5 0 0 0.0068 0.0069 440 440 1.00 79.70 

N-06-12 35.5 0 0 0.0116 0.0069 410 440 1.00 95.20 

N-12-12 35.5 0 0 0.0116 0.0139 410 440 1.00 116.80 

N-12-16 35.5 0 0 0.0164 0.0139 520 440 1.00 138.00 

N-20-20 35.5 0 0 0.0196 0.0224 560 440 1.00 158.00 

N-07-10 35.5 0 0 0.0098 0.0077 500 420 1.00 111.70 

N-14-10 35.5 0 0 0.0098 0.0154 500 360 1.00 125.00 

N-07-16 35.5 0 0 0.0164 0.0077 500 420 1.00 117.30 

 

 

Marquardt algorithm is used in this model which is the most common back-propagation training 

algorithm (Naderpour et al. 2010). The sigmoid activation function was used for the training and 

testing of data. The duty of the neurons in hidden layer is to maintain the relation between inputs 

and outputs. There is no restriction for determining the number of the neurons that take place in 

the hidden layer. The dimension of the hidden layer can show a great variation due to the number 

of inputs and input nodes, characteristics of inputs and type of function used. Optimum number of 
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Table 6 Statistical properties of training and testing data 

Parameters 
Training Set Testing Set 

Min Max Mean Min Max Mean 

Concrete compressive strength 21.4 105 48.9 21.4 109.8 51.6 

Steel fiber aspect ratio 0 80 21.68 0 80 23.54 

Volumetric ratio of steel fiber 0 0.0100 0.0016 0 0.0150 0.0027 

Longitudinal reinforcement ratio 0.0067 0.0351 0.0167 0.0067 0.0351 0.0154 

Transverse reinforcement ratio 0.0069 0.0224 0.0127 0.0069 0.0224 0.0133 

Yield strength of the longitudinal 

reinforcement 
380.1 634 500.3 380.1 638 493.2 

Yield strength of the transverse 

reinforcement 
380 672 490 360 669 485 

Beam section aspect ratio 0.58 1.00 0.82 0.58 1.0 0.82 

Ultimate torque 4.85 196 53.49 4.58 239 51.48 
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Fig. 8 Proposed ANN model 

 

 

hidden layers should be correctly determined in order to construct an effective model and to 

predict the aimed result precisely. The number of neurons in the hidden layer is quite important 

since it affects the results, although it does not give them directly. For the case that the number of 

neurons in the hidden layer is less than the required value, the data that should be transferred from 

different neurons is transferred by a single neuron and this caused an underfitting case. For the 

contrary case that the number of neurons in the hidden layer is greater than the required value; an 

overfitting case occurs which causes late learning or lack of learning. Although the number of 

neurons in the hidden layer is so important, there does not existing a general method for 

determining the number of neurons. The most appropriate method to model the back-propagation 

(BP) network which has a stable structure is to try to have a stable network which is obtained by 

parametrically changing the number of neurons by trial-error method (Alshihri et al. 2009). In this 

study, the numbers of hidden layer neurons were determined by analyzing the network with 

various numbers of neurons. Fig. 9 illustrates the performance of the networks with various 

numbers of neurons in hidden layer. 

951



 

 

 

 

 

 

Serkan Engin, Onur Ö ztürk and Fuad Okay 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n
 s

q
u

a
re

d
 e

rr
o

r 
 (

M
S

E
x
1

0
-3

)

Numbers of hidden layer neurons  

Fig. 9 Performance of the networks with various numbers of neurons in hidden layer 

 

 

In the Fig. 9 the performance of each network having different number of neurons, is 

determined by using mean squared error (MSE). Only the performance of the networks having a 

neuron number between 5-20 is given in the figure, because performance of networks having a 

number of neurons less than 5 or greater than 20, does not provide satisfactory results. It is known 

that the error between the estimated and experimental data becomes minimum and consequently 

more accurate estimates can be done when the ANN model whose MSE is minimum, is chosen 

(Haykin 1999). Therefore, the case with 9 neurons in one hidden layer selected to create a stable 

and optimum network.  

 

 

7. Results of artificial neural network model 
 

Ultimate torque capacity of the steel fiber reinforced concrete beams are predicted by the neural 

network model. For this purpose, concrete compressive strength, aspect ratio of beam cross-

section, fiber aspect ratio, volumetric ratio of steel fiber, yield strength of the longitudinal and 

transverse reinforcement, longitudinal and transverse reinforcement ratio are used as the input 

nodes. Hidden layer consists of 9 nodes parallel to the results presented in Fig. 9.  Totally 51 data 

were used for the training and testing the network. The network was started to train with randomly 

selected 25 data. After the training procedure, the rest of the data were used for the testing the 

ANN model. The graphs related with the ANN model proposed by Narayanan and Kareem-

Palanjian (1986) is given in Fig. 10. These graphs represent the relation between predicted, 

calculated and experimental results using the linear approaches and best linear equation. Best 

linear equation obtained from the scatter of the values is given in Fig. 10. The equation can be 

generalized as y=a0x+a1. Coefficients of the equation (a0 and a1) are closer to the 1 and 0, 

respectively. The coefficients show that ANN was successful in learning the relationship between 

input and output parameters. The coefficient of determination (R2) for the predicted from the ANN 

model and experimental values was found to be 0.991 after the testing the network. Similarly, 

R2=0.964 is obtained for the torsion values calculated from the model proposed by Narayanan and 

Kareem-Palanjian (1986). It is seen that the results obtained from ANN model and model 

proposed by Narayanan and Kareem-Palanjian (1986) are consistent with each other.  
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y = 1.0257x - 1.4553
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Fig. 10 Relationship between actual torque, calculated and predicted results 

 

 

Fig. 11 Error distribution for each specimen 

 

 

Predicted and experimental ultimate torque values are given for each specimen with error 

distributions in Fig. 11. In the figure, the torque values obtained from the experiment and 

estimated values by using ANN model are shown for each specimen one by one and error values 

represented as differences between the predicted and experimental results in the “kN.m” unit. 

Estimated and experimental values approach to each other as the error values decrease. It is seen 

that experimental and predicted results are consistent with each other; since the errors belonging to 

26 specimens chosen for the test of network are minimum. 

To specify how close the predicted data to the experimental data, various statistical values were 

examined. To examine the reliability of the ANN model, experimental results and the predicted 

values obtained from the testing procedure of the network are compared using root mean square  
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Table 7 The statistical values of the ANN model 

 RMSE (kN.m) MAE (%) Ef (%) 

ANN Model 5.94 4.38 99.50 

 

 

error (RMSE), mean absolute error (MAE) and coefficient of efficiency (Ef). RMSE, MAE and Ef 

are calculated by using Eq. (1), Eq. (2) and Eq. (3), respectively. 





n

i

ii tp
n

RMSE
1

21            (1) 





n

i

ii tp
n

MAE
1

1         (2) 

     
























 



2

1

2

1

2

1

n

i

i

n

i

ii

n

i

if tttpttE        (3) 

In these equations t is the target value, p is the predicted value, n is the total number of data and 

t  is the mean value of the target data. The statistical values obtained from the results of testing of 

the network are shown in Table 7. RMSE, MSE and Ef are found to be 5.94 kN.m, 4.38% and 

99.5%, respectively that is determined by using estimated and experimental torque values 

belonging to 26 specimens that are used for testing the network.  

 

 

8. Conclusions 
 

In this study, series of parametric analyses were conducted to predict torque capacity of steel 

fiber reinforced concrete beams. For this purpose, the study is divided into two parts as obtaining 

the experimental results and preparing an ANN model. In the first part, on the contrary of most 

previous studies that did not address the effect of steel fiber aspect ratio and longitudinal 

reinforcement ratio on the torque capacity of normal and high strength reinforcement concrete 

beams; an experimental research was also performed. According to the experimental research, it is 

determined that the increase in steel fiber volumetric ratio and longitudinal reinforcement ratio 

increase the torque capacity in normal and high strength concrete specimens whereas an increase 

in steel fibers aspect ratio increases the torque capacity of only high strength concrete specimens 

and does not have a significant effect on normal strength concrete specimens. In the second part, 

test results obtained from the literature that contain parameters like transverse reinforcement ratio, 

beam section’s aspect ratio, transverse and longitudinal reinforcement yield strength, steel fiber 

volumetric ratio and concrete compressive strength which all have effect on torque capacity; are 

added to the results obtained in the first part. All data are grouped in two randomly chosen sets. 

First set is used to train the ANN model while the second set is used to verify the accuracy of the 

proposed ANN model to estimate the torque capacity of SFRC beams. The torque capacity of steel 

fiber reinforced concrete beams can be predicted by using the proposed neural network model. 

This model is a sufficient tool for estimating the torque capacity, since it takes all the parameters 

that have effect on torque capacity into consideration. The model can lead the early prediction of 

the ultimate torque values without additional production cost of experiments. 
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