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Abstract.  Natural frequencies of the structural systems should be far away from the excitation frequency in 
order to avoid or reduce the destructive effects of dynamic loads on structures. To accomplish this goal, a 
structural optimization on size and shape has been performed considering frequency constraints. Such an 
optimization problem has highly nonlinear property. Thus, the quality of the solution is not independent of 
the optimization technique to be applied. This study presents the performance evaluation of the recently 
proposed meta-heuristic algorithm called Teaching Learning Based Optimization (TLBO) as an optimization 
engine in the weight optimization of the truss structures under frequency constraints. Some examples 
regarding the optimization of trusses on shape and size with frequency constraints are solved. Also, the 
results obtained are tabulated for comparison. The results demonstrated that the performance of the TLBO is 
satisfactory. Additionally, TLBO is better than other methods in some cases. 
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1. Introduction 
 

Especially after making progress in the computer technology and the numerical approaches to 

be used to solve the problems, the optimal design of structures has advanced rapidly as an active 

research area for many years. Mathematical programming techniques employed to solve the 

structural optimization problems exhibited the limited practicability. Therefore, the usage of 

optimization methods, which are gradient-free and inspire from the natural or the physical 

phenomena, attract increasingly attention. They have been successfully applied in the optimal 

design of different type of optimization problems of truss structures under distinct constraints for 

five or six decades (Rajeev and Krishnamoorthy 1992, Camp et al. 2005, Toğan and Daloğlu 

2006, 2008, Hasançebi 2008, Lamberti 2008, Li et al. 2009, Kaveh and Talatahari 2010, Gandomi 

et al. 2012, Dede 2013). In addition, it is found well application and comparison studies in other 

engineering fields related the optimization techniques evolutionary-based (Yıldız 2012a, 2013a, b) 

A designer can manage the structural design by accomplishing the size and shape optimization 

of a truss under frequency constraints. So, the natural frequencies of the structural system can be 

taken far away from the excitation frequency in order to avoid or reduce from the destructive 

                                                 
Corresponding author, Associate Professor, E-mail: togan@ktu.edu.tr 



 

 

 

 

 

 

Tayfun Dede and Vedat Toğan 

effects of dynamic loads. In addition, a design can be obtained as lightweight as possible (Gandhi 

1993, Gomes 2011, Lingyun et al. 2005, Zuo et al. 2011, Kaveh and Zolghadr 2011). This 

optimization problem requires the collocation of the nodal coordinates; cross-sectional areas as 

design variables and the solution of the eigenvalue problem. However, aforementioned 

requirements cause difficulties when the shape and size optimization of trusses under frequency 

constraints is performed, i.e., the changes in the values of shape and size variables are of widely 

different order of magnitude and their representations have fundamentally different physical 

meaning (Wang et al. 2004). Moreover, the frequency constraint being highly non-linear, non-

convex and implicit with respect to the design variables makes the gradient calculation difficult or 

even impossible (Lingyun et al. 2005). Also, when optimizing for mass, vibration modes can 

switch and this causes convergence difficulties (Gandhi 1993, Gomes 2011). Hence, because of 

the difficulties mentioned above it seems to be crucial to utilize a meta-heuristic optimization 

technique rather than the gradient-based methods for obtaining the solution of such problems.  

Pantelides and Tzan (1997) proposed a modified simulating annealing method. They used the 

proposed method to solve the optimal design problems of structures subjected to dynamic loading 

with displacement and stress constraints. Lingyun et al. (2005) formed a hybrid algorithm by 

simplex search and genetic algorithms following a nature based scheme of Niche. In their work, 

three truss structures were analyzed using the hybrid algorithm called Niche Genetic Hybrid 

Algorithm and the results were compared with literature results. Torkzadeh et al. (2008) and 

Gholizadeh et al. (2008) optimized the weight of structures subjected to multiple natural frequency 

constraints. For this purpose, they used a Genetic Algorithm (GA) and a Neural Network (NN) 

together and replaced the structural analysis requiring much computational time in the 

optimization process by a properly trained neural network with radial basis function (RBF) and a 

wavelet radial basis function (WRBF) neural network. Zuo et al. (2011) presented GA-based 

structural optimization procedure for the optimization of the truss structures with frequency 

constraints. They also proposed an adaptive eigenvalue reanalysis method derived on the Kirsch‟s 

combined approximation method in order to reduce the computational time. A particle swarm 

optimization (PSO) algorithm and enhanced charged system search (CSS) algorithm are also 

employed by Gomes (2011) and by Kaveh and Zolghadr (2011), respectively, as an optimization 

engine in a truss mass optimization problem on size and shape with frequency constraints. 

One of the recently developed meta-heuristic algorithms is Teaching Learning Based 

Optimization (TLBO), which mimics teaching-learning process in a class between the teacher and 

the students (learners). To implement the TLBO two key steps known as “Teaching Phase” and 

“Learning Phase” must be performed, respectively.  The “Teaching Phase” produces a random 

ordered state of points called learners within the search space. Then a point is considered as the 

teacher, who is highly learned person and shares his or her knowledge with the learners. However, 

the learning process is represented by interaction between each learner in the “Learning Phase”. 

After a number of sequential Teaching-Learning cycles, the distribution of the randomness within 

the search space becomes smaller and smaller about to point considering as teacher, which means 

that knowledge level of the whole class is close to teacher‟s level and the algorithm converges to a 

solution. Rao et al. (2011) presented and applied first the TLBO for solving the mechanical design 

optimization problems taken from the literature. Then TLBO algorithm is employed different kind 

of optimization problems (Hosseinpour et al. 2011, Satapathy and Naik 2011, Toğan 2012, 2013, 

Dede and Ayvaz 2013, Niknam et al. 2012, Nayak et al. 2012, Yıldız 2012b) to demonstrate the 

applicability and efficiency of the method.  

This study presents the performance evaluation of the Teaching Learning Based Optimization 
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(TLBO) as an optimization engine in the weight optimization of the truss structures under 

frequency constraints. Some examples taken from the literature regarding the optimization of 

trusses on shape and size with frequency constraints are solved and the results are tabulated for 

comparison.  

 

 

2. Formulation of the optimization problem  
 

As mentioned before, it is possible to perform the shape and size optimization of a structure 

with the natural frequency constraints so as to be far away from the excitation frequency. The 

structural topology is kept the same as prescribing in advance and it is preserved throughout the 

solution process. The nodal coordinates and element cross-sectional areas of structures, however, 

are changed within a restricted region continuously. Hence, the optimization problem can be 

described mathematically as follows 
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where X is a vector for design variables consisting of nodal coordinates and sectional areas; ndv 

represents total number of design variables;  f(X) is the objective function, which is taken as the 

weight of the structure;  Le, ρe ,and Ae are the length, material density and cross-sectional area of 

the eth element while ne demonstrates the total number of elements in the structure; ωj is the jth 

natural frequency and ωj
* is its lower bound; ωk is the kth natural frequency and ωk

* is the 

corresponding specified upper limit; xi is the ith design variable that is either nodal coordinate or 

sectional area, while xmin,i and xmax,i are its lower bound and upper bound, respectively. In 

engineering applications, to keep the structure symmetric and/or limit the numbers of variables a 

number of shape or sizing variables are linked. So, ndv demonstrates the number of the 

independent design variables in Eq. (1).  

The constraints treated as gj(X)=1−ωj/ωj
*≤0 and gk(X)=ωk/ωk

*−1≤0 in this paper are handled by 

using the concept of  penalty functions so the objective function is modified as 
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where PF is the penalty function, FS denotes the feasible search space. The form of the penalty 

function employed in this paper is indicated as 
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in which K is adjusting coefficient taken as 10 for truss structures (Rajeev and Krishnamoorthy 

1992) and nc is the number of frequency constraints. Eq. (4) causes to obtain greater objective 

function value for the solution that violates the constraints. 

In this paper an evolutionary algorithm developed in recent years is employed as an 

optimization method. The main concepts of the algorithm are briefly explained in next section. 

 

 

3. Teaching Learning Based Optimization (TLBO) 
 

TLBO mimics teaching-learning ability of teacher and learners in a class, which is known as 

the teaching learning process. The method assumes the teacher and the learners as being the two 

vital components of the algorithm and divides the teaching learning process into two basic modes 

of the learning: a) Teacher Phase and b) Learner Phase. During the first phase, teacher tries to 

impart her/his knowledge directly to the learners. However, during the second phase, it is aimed 

that a learner may increase interacting with other learners. With analogously other population 

based methods, in the TLBO process, a group of learners is assumed as population. Different 

subjects, which the learners are taught by teacher, are taken as different design variables. The 

„fitness‟ value of the optimization problem is represented throughout the learners‟ result and the 

best solution within the entire population is adopted as the teacher. “Teacher phase” and “Learning 

phase” being the two main parts of TLBO as mentioned before are explained below in detail. 

 

3.1 Teaching phase 
 

The first part of the TLBO is to teach learners through the teacher. For this purpose, an initial 

population is randomly generated with pre-defined size (np=pop_size) for that population. An 

individual (Xi) within the population represents a single possible solution to a particular 

optimization problem. Xi is a real-valued vector with ndv elements, where ndv is the dimension of 

the problem, which represents the number of the subjects to be taught within the TLBO context. 

The best individual (Xbest) is assigned as a teacher (Xteacher) who is responsible for teaching role. 

Then, it is tried by means of Eq.(5) to enhance other individuals (Xi ,i=1,…,np) in the population 

by moving their positions towards the position of the Xteacher by taking into account the current 

mean value, which represents the qualities of all students from the current generation, of the 

individuals (Xmean). 

           
( )  X X X Xnew i teacher F meanr T

 
(5) 

Eq. (5) demonstrates the amount of the influences of the learner depending on the difference 

between the teacher‟s knowledge and the qualities of all students. In here, Xnew and Xi are the 

modified and existing solution of i, r is a random number varying between 0 and 1, TF is a 

teaching factor, which is decided randomly with equal probability as TF = round[1 + rand (0,1) (2-

1)]. Xi is only replaced if his/her new solution Xnew is better than Xi.  

 

3.2 Learning phase 
 

Unlike teacher phase which aims to convey the knowledge from the teacher to the learner, the 

main idea behind of Learning phase is to give opportunity to the learners to increase their 

knowledge through interaction between themselves. A learner might be in interaction randomly  
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Set the algorithm parameters: number of design variables ndv, population size np,  maximum number 

of cycles (Cmax), lower and upper bound for design variables xmin and xmax   

 

Create initial random population (class) and evaluate the solution (student or learner)  

For each learner i in the class 

Calculate the fi (X) 

End 

 

Iterates with the TLBO to find a student with design variables that leads to a minimum objective 

function 

Loop until criteria of maximum iteration (C < Cmax)  is met 

Set the best objective function of the current class as the teacher Xteacher = min ( f (X) ) 

Calculate the mean of each group of learners Xmean 

For each design variable i in the learners 

xT = 0 

For each learner j in the class  

xT = xT + xj,i 

End 

  i = xT / np 

End 

Xmean       1     2         ndv ]   

Update the learner and her/him objective function 

For each learner i in the class 

r = rand [0,1] 

TF = round (1 + rand [0,1] (2-1)) 

Xnew = Xi + r ( Xteacher – TF Xmean )  

If  f (Xnew) < f (Xi) then Xi = Xnew  

End 

Interact the learners with each other and update their objective function 

For each learner i in the class 

      r = rand [0,1] 

Select Xj randomly for Xi  , i ≠ j  

If  f (Xj) < f (Xi)  then Xnew = Xi + r ( Xj – Xi ) else Xnew = Xi + r ( Xi – Xj ) 

If  f (Xnew) < f (Xi) then Xi = Xnew 

End 

End 

Fig. 1 Pseudo-code for the simple teaching-learning based optimization 

 

 

with other learners present in the class. This interaction can be through formal communication, 

group discussion, presentation, etc. TLBO process allows a learner Xi to interact randomly with 

another learner Xj, where i is unequal to j, in order to learn new things from her or him. However, 

as is well known, Xi can improve knowledge and move own level to the Xj (Eq. (6)) if Xj has more 

knowledge than Xi. Otherwise, Xi modifies itself by means of Eq. (7).  

     
( )  X X X Xnew i j ir

 
(6) 

     
( )  X X X Xnew i i jr

 
(7) 
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In the case that the newly produced learner Xnew generates better results by following Eq. (6) or 

Eq. (7), he/she is maintained. Otherwise, preserve Xi. Both phases are repeated until reaching the 

maximum number of generations. A pseudo-code for the implemented teaching learning based 

optimization algorithm is illustrated in the Fig. 1.  

 

 

4. Numerical examples 
 

Three typical truss optimization examples are considered to demonstrate the feasibility and 

validity of TLBO for solving shape and size optimization of trusses with multiple frequency 

constraints. The TLBO is implemented by MATLAB while the finite element analysis software 

based on the matrix-displacement concept and also coded in MATLAB is integrated to perform 

modal analysis to obtain the corresponding natural frequencies of structure. For every example, the 

optimization computation process is repeated 10 times. At every turn, the population used in the 

solution process is generated independently and randomly. Moreover, in the figures depicted for 

the examples, the number on the lines show the group number of elements and the others illustrate 

the nodal points. 

 

4.1 25 bar space truss 
 

Configuration of 25 bar space truss structure is given in Fig. 2. This structure is optimized by 

Tong and Liu (2001) by taking into account the stress, displacement and dynamic constraint for 

size optimization. The displacements at nodes 1 and 2 in the directions of x and y are limited to 

0.35 in., stress is constrained to 40 ksi and the allowable minimum fundamental frequency of 

the structure is limited to 55.0 Hz.  

Available discrete design variables are changes from 0.1 in2 to 3.5 in2 with the 0.1 in2 

increments. The modulus of elasticity and density of the material are assumed to be 6.89×1010  

 

 

 

 

(a) Geometrical scheme (b) member grouping scheme 

Fig. 2 25 bar space truss structure 
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Table 1 Loading case for 25-bar truss 

Nodes Fx (lbf) Fy (lbf) Fz (lbf) 

1 1000 −10000 −10000 

2 0 −10000 −10000 

3 500 0 0 

6 600 0 0 

 
Table 2 Optimal design comparison for the 25-bar space truss 

Design  Variables  (area in2) 
Optimal cross-sectional area (in2) 

Tong and Liu (2001) Present Study (TLBO) 

A1 0.1 0.1 

A2 0.5 0.2 

A3 3.4 2.3 

A4 0.1 0.1 

A5 0.1 1.0 

A6 0.8 0.6 

A7 1.5 0.3 

A8 3.4 2.3 

Weight (kg) 237.52 217.7549 

Frequency > 55Hz 57.02 Hz 59.6406 Hz 

 

 

Fig. 3 Best solution, mean solution and standard deviaiton of 25 bar space truss structure 

 

 

N/m2 and 2770 kg/m3, respectively. The loading of this structure is given in the Table 1. The 

geometry properties of this structure are the same as given in Tong and Liu (2001). 

At the end of the optimization process, the weight of this structure is obtained as 217.7579 kg 

without any violations and the fundamental frequency is 59.6406 Hz. The comparison of the 

results with the other results presented in the technical literature is given in Table 2.  

Fig. 3 shows the function evaluations of this structure as best solution (weight of structure), 

mean solution and the standard deviation. As seen from this figure, after almost five iterations, the 

mean solution is parallel to the best solution and the standard deviation is close the zero. 
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Fig. 4 52 bar dome structure 

 

 

Fig. 5 Optimized shape (thick lines) with intial shape (thin lines) of 52 dome structure 

 

 

4.2 52 bar dome structure 
 

52 bar dome structure was previously optimized by Kaveh and Zolghadr (2012), Kaveh and 

Mahdavi (2013), Lingyun et al. (2005). Configuration of 52 bar dome structure is given in Fig. 4. 

In Fig. 4, coordinates of the nodes 1, 2, 6, and 14 are [0 0 6 m], [2 m 0 5.7 m], [4 m 0 4.5 m] and 

[6 m 0 0] in x, y, and z directions, respectively. 

Non-structural masses of m=50 kg are added to the free nodes. Continues design variables are 

changes from 0.0001 m2 to 0.001 m2. The modulus of elasticity is 2.1×1011 N/m2 and the material 

density is 7800 kg/m3. The symmetry of the structure is protected in the shape optimization 

process. In shape optimization, ±2 m is allowed for each movable node. For frequency constraints, 

first frequency is assumed little or equal to 15.916 Hz and second frequency is assumed greater or 

equal to 28.649 Hz. Thus, the total constraints consist of two natural frequency, five shape 

variables, and the eight size variables. Element of the structure is arranged in eight groups. 
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At the end of the optimization process, the weight of this structure is obtained as 193.2721 kg 

without any violations and the first and second fundamental frequency are 11.5337 and 28.6482 

Hz, respectively. Fig. 5 demonstrates the optimized shape of structure (thick lines) with the initial 

shape of structure (thin lines). 

The comparison of the results with the other results obtained in the distinct studies is given in 

Table 3. Fig. 6 shows the histories of the function evaluation of the best solution (weight of 

structure), the mean solution and the standard deviation. As seen from the figure, the mean 

solution is parallel to the best solution and the standard deviation is close the zero after almost 30 

iterations. 

 

4.3 120 bar dome structure 
 

Configuration of 120 bar dome structure is given in Fig. 7. This structure is studied by Kaveh 

and Zolghadr (2012) and Kaveh and Mahdavi (2013) for size optimization only under dynamic 

constraints. Coordinates of the nodes 1, 2, 14, and 38 are [0 0 7 m], [6.94 m 0 5.85 m], [12.04 m 0 

3 m] and [15.89 m 0 0] in x, y, and z directions, respectivley. 

Non-structural masses of m=3000 kg,  500 kg and 100kg are added to the free nodes, 1, 2-13, 

and 14-37, respectively. Continues design variables are changes from 0.0001 m2 to 0.01293 m2. 

The modulus of elasticity is 2.1×1011 N/m2 and the material density is 7971.810 kg/m3. For 

frequency constraints, first frequency is assumed greater or equal to 9 Hz and second frequency is 

assumed little or equal to 11 Hz.  

 

 
Table 3 Optimal design comparison for the 52-bar dome structure 

Optimal 

Results 
Initial 

Kaveh and 

Zolghadr (2011) 

Kaveh and  

Mahdavi (2013) 

Lingyun et al. 

(2005) 

Present Study 

(TLBO) 

C
o

o
rd

in
at

es
 

(m
) 

Z1 6.000 5.331 5.4785 5.8851 5.8939 

X2 2.000 2.134 2.4517 1.7623 2.2647 

Z2 5.700 3.719 3.7027 4.4091 3.7086 

X6 4.000 3.935 4.1190 3.4406 3.9608 

Z6 4.500 2.500 2.5000 3.1874 2.5000 

cr
o

ss
-s

ec
ti

o
n

al
 a

re
a 

(c
m

2
) 

A1 2.0 1.0000 1.0000 1.0000 1.0000 

A2 2.0 1.3056 1.3620 2.1417 1.1164 

A3 2.0 1.4230 1.2585 1.4858 1.1932 

A4 2.0 1.3851 1.3809 1.4018 1.5255 

A5 2.0 1.4226 1.3551 1.9110 1.3985 

A6 2.0 1.0000 1.0000 1.0109 1.0000 

A7 2.0 1.5562 1.3485 1.4693 1.5662 

A8 2.0 1.4485 1.5730 2.1411 1.4002 

F
re

q
u

en
cy

 

(H
z)

 

1 22.69 12.987 15.9154 12.81 11.5337 

2 25.17 28.648 28.8070 28.65 28.6482 

3 25.17 28.679 28.8070 28.65 28.6494 

4 31.52 28.713 28.8070 29.54 28.6494 

5 33.80 30.262 30.0307 30.24 28.7237 

Weight (kg) 338.69 197.309 193.3183 236.046 193.2721 
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Fig. 6 Best solution, mean solution and standard deviaiton of 52 bar dome structure 

  

 

Fig. 7 120 bar dome structure 

 

 

At the end of the optimization process, the weight of this structure is obtained as 6602.3421 kg 

without any violations and the first and second fundamental frequency are 9.000 and 9.001 Hz, 

respectively. The comparison of the results with the other results produced by different researchers 

is given in Table 4. Fig. 8 presents the function evaluations of this structure as best solution 

(weight of structure), mean solution and the standard deviation. As seen from the figure, after 

almost 40 iterations, the mean solution becomes parallel to the best solution and the standard 

deviation gets close the zero. 
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Table 4 Optimal design comparison for the 120-bar dome structure 

Optimal Results Kaveh and Zolghadr (2011) Kaveh and  Mahdavi (2013) Present Study (TLBO) 

cr
o

ss
-s

ec
ti

o
n

al
 

ar
ea

 (
cm

2
) 

A1 17.478 20.0325 22.4967 

A2 49.076 38.2935 37.3414 

A3 12.365 11.7403 8.9873 

A4 21.979 21.9118 12.7422 

A5 11.190 10.200 8.7352 

A6 12.590 10.9328 7.8429 

A7 13.585 14.6337 7.5146 

F
re

q
u

en
cy

 

(H
z)

 

1 9.000 9.000 9.000 

2 11.007 11.000 9.001 

3 11.018 11.002 9.001 

4 11.026 11.0210 9.4961 

5 11.048 11.0863 9.5517 

Weight (kg) 9046.34 8769.50 6602.3421 

 

 

Fig. 8 Best solution, mean solution and standard deviaiton of 120 bar dome structure 

 

 

5. Conclusions 
 

Considering the natural frequencies as additional constraints in a structural optimization 

process makes the problem even more complex than classical optimization problems under 

displacement and stress constraints only. For this reason, to solve an optimization problem with 

the natural frequency constraints the optimization algorithm used in the solution process should be 

robust. The TLBO has shown better performance when it is compared with the other optimization 

algorithms studied in the previous researches. Therefore, a teaching-learning-based optimization 

algorithm is presented in this study for size and shape optimization of space truss and dome 

structure including the natural frequency constraints. The results obtained in the study are 

compared with the ones obtained in other studies by other meta-heuristic methods. And finally, it 
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can be concluded that TLBO can be preferred as an effective optimization tool for optimum design 

of structures with frequency constraints. 
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