
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 53, No. 3 (2015) 537-573 

DOI: http://dx.doi.org/10.12989/sem.2015.53.3.537                                                                                       537 

Copyright ©  2015 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8               ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 

 
 
 

Differential transform method and numerical assembly 
technique for free vibration analysis of the axial-loaded 
Timoshenko multiple-step beam carrying a number of 

intermediate lumped masses and rotary inertias 
 

Yusuf Yesilce

 

 
Department of Civil Engineering, Dokuz Eylul University, 35160, Buca, Izmir, Turkey 

 
(Received August 28, 2014, Revised November 11, 2014, Accepted November 25, 2014) 

 
Abstract.  Multiple-step beams carrying intermediate lumped masses with/without rotary inertias are 
widely used in engineering applications, but in the literature for free vibration analysis of such structural 
systems; Bernoulli-Euler Beam Theory (BEBT) without axial force effect is used. The literature regarding 
the free vibration analysis of Bernoulli-Euler single-span beams carrying a number of spring-mass systems, 
Bernoulli-Euler multiple-step and multi-span beams carrying multiple spring-mass systems and multiple 
point masses are plenty, but that of Timoshenko multiple-step beams carrying intermediate lumped masses 
and/or rotary inertias with axial force effect is fewer. The purpose of this paper is to utilize Numerical 
Assembly Technique (NAT) and Differential Transform Method (DTM) to determine the exact natural 
frequencies and mode shapes of the axial-loaded Timoshenko multiple-step beam carrying a number of 
intermediate lumped masses and/or rotary inertias. The model allows analyzing the influence of the shear 
and axial force effects, intermediate lumped masses and rotary inertias on the free vibration analysis of the 
multiple-step beams by using Timoshenko Beam Theory (TBT). At first, the coefficient matrices for the 
intermediate lumped mass with rotary inertia, the step change in cross-section, left-end support and right-end 
support of the multiple-step Timoshenko beam are derived from the analytical solution. After the derivation 
of the coefficient matrices, NAT is used to establish the overall coefficient matrix for the whole vibrating 
system. Finally, equating the overall coefficient matrix to zero one determines the natural frequencies of the 
vibrating system and substituting the corresponding values of integration constants into the related 
eigenfunctions one determines the associated mode shapes. After the analytical solution, an efficient and 
easy mathematical technique called DTM is used to solve the differential equations of the motion. The 
calculated natural frequencies of Timoshenko multiple-step beam carrying intermediate lumped masses 
and/or rotary inertias for the different values of axial force are given in tables. The first five mode shapes are 
presented in graphs. The effects of axial force, intermediate lumped masses and rotary inertias on the free 
vibration analysis of Timoshenko multiple-step beam are investigated. 
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1. Introduction 
 

Beams with step changes in cross-section occur in civil and mechanical engineering structural 

elements. The free vibration characteristics of a uniform or non-uniform beam carrying various 

concentrated elements (such as intermediate point masses, rotary inertias, linear springs, rotational 

springs, etc.) is an important problem in engineering. Thus, a lot of studies have been published in 

this area.  

The normal mode summation technique to determine the fundamental frequency of the 

cantilever beams carrying masses and springs was used by Gürgöze (1984, 1985). Hamdan and 

Jubran (1991) investigated the free and forced vibrations of a restrained uniform beam carrying an 

intermediate lumped mass and a rotary inertia. Ju et al. (1994) investigated the free vibration 

analysis of arbitrarily stepped beams by using the first-order shear deformation theory and finite 

element method. Gürgöze et al. solved the eigenfrequencies of a cantilever beam with attached tip 

mass and a spring-mass system and studied the effect of an attached spring-mass system on the 

frequency spectrum of a cantilever beam (Gürgöze et al. 1996, Gürgöze 1996, 1998). Moreover, 

they studied on two alternative formulations of the frequency equation of a Bernoulli-Euler beam 

to which several spring-mass systems being attached in-span and then solved for the 

eigenfrequencies. Liu et al. (1998) formulated the frequency equation for beams carrying 

intermediate concentrated masses by using the Laplace Transformation Technique. Wu and Chou 

(1999) obtained the exact solution of the natural frequency values and mode shapes for a beam 

carrying any number of spring masses. The free vibration analysis of a uniform Timoshenko beam 

carrying multiple spring-mass systems was studied by Wu and Chen (2001). Gürgöze and Erol 

(2001, 2002) investigated the forced vibration responses of a cantilever beam with single 

intermediate support. Naguleswaran (2002a, b) investigated the natural frequencies and mode 

shapes of a Bernoulli-Euler beam with one-step and three-step changes in cross-sections. Chen and 

Wu (2002) obtained the exact natural frequencies and mode shapes of the non-uniform beams with 

multiple spring-mass systems. Naguleswaran (2002c, 2003a) obtained the natural frequency values 

of the beams on up to five resilient supports including ends and carrying several particles by using 

BEBT and a fourth-order determinant equated to zero. Chen (2003) investigated the natural 

frequencies and mode shapes of the non-uniform beams carrying multiple various concentrated 

elements. The vibration and stability of an axial-loaded Bernoulli-Euler beams with step changes 

in cross-sections and carrying a non-symmetrical rigid body at the step were investigated by 

Naguleswaran (2003b, 2004a, b). Lin and Chang (2005) studied the free vibration analysis of a 

multi-span Timoshenko beam with an arbitrary number of flexible constraints by considering the 

compatibility requirements on each constraint point and using a transfer matrix method. Lin and 

Tsai (2005, 2006, 2007) determined the exact natural frequencies and mode shapes for Bernoulli-

Euler multi-span beam carrying multiple point masses, a number of intermediate lumped masses 

and rotary inertias and multiple spring-mass systems. Koplow et al. (2006) studied the closed form 

solutions for the dynamic analysis of Bernoulli-Euler beams with step changes in cross-sections. 

Wang et al. (2007) studied the natural frequencies and mode shapes of a uniform Timoshenko 

beam carrying multiple intermediate spring-mass systems with the effects of shear deformation 

and rotary inertia. In the other study, the flexural-free vibration of a cantilevered beam with 

multiple cross-section steps is investigated theoretically and experimentally by Jaworski and 

Dowell (2008). Yesilce et al. (2008) investigated the effects of attached spring-mass systems on 

the free vibration characteristics of the 1-4 span Timoshenko beams. In the other studies, Yesilce 

et al. investigated the natural frequencies of vibration of Timoshenko and Reddy-Bickford multi-
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span beams carrying multiple spring-mass systems with axial force effect (Yesilce and Demirdag 

2008, Yesilce 2010). Lin (2008) investigated the free and forced vibration characteristics of 

Bernoulli-Euler multi-span beam carrying a number of various concentrated elements. Lin (2010) 

investigated the free vibration characteristics of non-uniform Bernoulli-Euler beam carrying 

multiple elastic-supported rigid bars. Wu and Chang (2013) investigated the exact solution for free 

vibration of a non-uniform beam carrying any number of concentrated elements including lumped 

mass with rotary inertias and spring mass systems is presented by using the continuous-mass 

transfer matrix method. 

DTM was applied to solve linear and non-linear initial value problems and partial differential 

equations by many researches. The concept of DTM was first introduced by Zhou (1986) and he 

used DTM to solve both linear and non-linear initial value problems in electric circuit analysis. 

Ö zdemir and Kaya (2006) investigated flapwise bending vibration analysis of a rotating tapered 

cantilever Bernoulli-Euler beam by DTM. In the other studies, the out-of-plane free vibration 

analysis of a double tapered Bernoulli-Euler beam and a rotating, double tapered Timoshenko 

beam featuring coupling between flapwise bending and torsional vibrations are performed using 

DTM by Ozgumus and Kaya (2006, 2007). Ç atal (2006, 2008, 2012) suggested DTM for the free 

vibration analysis of Timoshenko beams resting on elastic soil foundation and forced vibration 

analysis of Bernoulli-Euler beams. Ç atal and Ç atal (2006) calculated the critical buckling loads of 

partially embedded Timoshenko pile in elastic soil by DTM. In the other study, Kaya and 

Ozgumus (2007) introduced DTM to analyze the free vibration response of an axially loaded, 

closed-section composite Timoshenko beam which features material coupling between flapwise 

bending and torsional vibrations due to ply orientation. For the first time, Yesilce and Catal (2009) 

investigated the free vibration analysis of one fixed, the other end simply supported Reddy-

Bickford beam by using DTM in the other study. Since previous studies have shown DTM to be an 

efficient tool and it has been applied to solve boundary value problems for many linear, non-linear 

integro-differential and differential-difference equations that are very important in fluid 

mechanics, viscoelasticity, control theory, acoustics, etc.  

In the presented paper, we describe the determination of the natural frequencies and mode 

shapes of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate 

lumped masses and rotary inertias by using NAT and DTM. The natural frequencies of the beams 

are calculated, the first five mode shapes are plotted and the effects of the axial force and the 

influence of the shear are investigated by using the computer package, Matlab. Unfortunately, a 

suitable example that studies the free vibration analysis of Timoshenko multiple-step beam 

carrying intermediate lumped masses and/or rotary inertias with axial force effect using NAT and 

DTM has not been investigated by any of the studies in open literature so far.  
 

 

2. The mathematical model and formulation  
     

An axial-loaded Timoshenko beam with h-step changes in cross-sections and carrying n 

intermediate lumped masses and s rotary inertias is presented in Fig. 1. From Fig. 1, the total 

number of intermediate stations is M′=h+n+s−f with f denoting the total number of overlapped 

stations for step changes in cross-sections, lumped masses and/or rotary inertias. The kinds of 

coordinates which are used in this study are given below: 

vx   are the position vectors for the stations, )1≤v′≤M′+2, 
*
px  are the position vectors of the intermediate lumped masses, (1≤p≤n), 
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rx are the position vectors of the step changes in cross-sections, (1≤r≤h), 

jx̂ are the position vectors of the rotary inertias, (1≤j≤s). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The axial-loaded Timoshenko multiple-step beam carrying intermediate lumped masses and rotary inertias 
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From Fig. 1, the symbols of 1′, 2′,..., v′,..., M′+1, M′+2 above the x-axis refer to the numbering 

of stations. The symbols of 1, 2, ..., p, ...,n below the x-axis refer to the numbering of the 

intermediate lumped masses. The symbols of (1), (2), ..., (r), ..., (h) below the x-axis refer to the 

numbering of the step changes in cross-sections. The symbols of [1], [2], ..., [j], ..., [s] below the x-

axis refer to the numbering of the rotary inertias. 

Using Hamilton’s principle, the equations of motion for the axial-loaded Timoshenko multiple-

step beam can be written as 

 
 

 
0

t

t,x

A

Im
t,x

x

t,xy

k

GA

x

)t,x(
EI

2

ii
2

i

ii
ii

i

iii

2
i

ii
2

i 



























       (1.a) 

       
0

t

t,xy
m

x

t,xy
N

x

t,x

x

t,xy

k

GA
2

ii
2

i2
i

ii
2

i

ii

2
i

ii
2

i 



































 

   ii Lx0       1h ..., 2, ,1i                                              (1.b) 

where yi(xi,t) represents transverse deflection of the i
th
 beam segment; ϕi(xi,t) is the rotation angle 

due to bending moment of the i
th
 beam segment; im is mass per unit length of the i

th
 beam 

segment; N is the axial compressive force; Ai is the cross-section area of the i
th
 beam segment; Ii is 

moment of inertia of the i
th
 beam segment; Li is the length of the i

th
 beam segment; k  is the shape 

factor due to cross-section geometry of the beam; E, G are Young’s modulus and shear modulus of 

the beam, respectively; xi is the position of the i
th
 beam segment; t is time variable. The details for 

the application of Hamilton’s principle and the derivation of the equations of motion are presented 

in Appendix at the end of the paper. 

The parameters appearing in the foregoing expressions have the following relationships: 
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where Mi(xi,t) and Ti(xi,t) are the bending moment function and shear force function of the i
th
 beam 

segment, respectively, and γi(xi,t) is the associated shearing deformation of the i
th
 beam segment.  

After some manipulations by using Eqs. (1) and (2), one obtains the following uncoupled 

equations of motion for the axial-loaded Timoshenko multiple-step beam as 
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The general solution of Eq. (3) can be obtained by using the method of separation of variables 

as 
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i  ; Ci,1, ..., Ci,4 are the constants of integration; L is total length of the beam; ω is the natural 

circular frequency of the vibrating system. 

The bending moment and shear force functions of the i
th
 beam segment with respect to zi are 

given below 
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 
 

   tsinz
dz

zdy

L

1

k

GA
t,zT ii

i

iii
ii 








   1h ..., 2, ,1i                      (5.b) 

 

 

3. Determination of the natural frequencies and mode shapes  
      

The state is written due to the values of the displacement, slope, bending moment and shear 

force functions at the locations of zi and t for the i
th
 segment of Timoshenko beam, as 

             t.sinzTzMzzyt,zS iiiiiiii
T

ii                              (6) 

where {Si(zi,t)} shows the state vector of the i
th
 beam segment. 

If the left-end support of the beam is pinned (as shown in Fig. 1), the boundary conditions for 

the left-end support are written as 
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From Eqs. (2) and (3), the boundary conditions for the left-end pinned support can be written in 

matrix equation form as 
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In the formula of K1,1 and K1,2, 1 denotes the 1
st
 beam segment. 

If the left-end support of the beam is clamped, the boundary conditions are written as 
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From Eqs. (2) and (5), the boundary conditions for the left-end clamped support can be written 

in matrix equation form as 
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If the left-end support of the beam is free, the boundary conditions are written as 
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                                                          (11.a) 
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                                                          (11.b) 

From Eqs. (3) and (4), the boundary conditions for the free left-end can be written in matrix 

equation form as 
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                              (12) 

where 










 3,1

1,11
5,1 K

L

D

k

GA
K  ;  











 4,1

2,11
6,1 K

L

D

k

GA
K  

In the formula of K1,5 and K1,6, 1 denotes the 1
st
 beam segment. 

The boundary conditions for the p
th
 intermediate lumped mass with rotary inertia in the i

th
 beam 

segment are written by using continuity of deformations, slopes and equilibrium of bending 

moments and shear forces, as (the station numbering corresponding to the p
th
 intermediate lumped 

mass is represented by p′) 

   '''' p

R

pp

L

p
zyzy                                                         (13.a) 

   '''' p

R

pp

L

p
zz                                                        (13.b) 

     '''''' p

R

pp

L

p

2
p,0p

L

p
zMzIzM                                      (13.c) 

     '''''' p

R

pp

L

p

2
pp

L

p
zTzymzT                                       (13.d) 

where mp is the magnitude of the lumped mass; I0,p is the rotary inertia; L and R refer to the left 

side and right side of the p
th
 intermediate lumped mass, respectively.  

     The boundary conditions for the p
th
 intermediate lumped mass with rotary inertia in the i

th
 beam 

segment are presented in matrix equation form as 

     0CB '' pp
                                                           (14) 

where 

   
4,p3,p2,p1,p4,1p3,1p2,1p1,1p

T
p '''''''' CCCCCCCCC

     (15.a) 
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      

2p4  

1p4

 p4 

1p4

csKsnKchKshKKKKK

snKcsKshKchKKKKK

csKsnKchKshKcsKsnKchKshK

sncsshchsncsshch

B

        4p4           3p4             2p4             1p4                p4              1p4         2p4         3p4                

'

'

'

'

2,i6,i2,i6,i1,i5,i1,i5,i14,i13,i12,i11,i

2,i2,i2,i2,i1,i1,i1,i1,i10,i9,i8,i7,i

2,i4,i2,i4,i1,i3,i1,i3,i2,i4,i2,i4,i1,i3,i1,i3,i

2,i2,i1,i1,i2,i2,i1,i1,i

p

''''''''









































 

(15.b) 

where 

 'p1,i1,i zDcoshch   ;  'p1,i1,i zDsinhsh    ;  'p2,i2,i zDcoscs   ;  'p2,i2,i zDsinsn   

1,i
2

p,03,i1,i1,i7,i shIKchKK   ;   1,i
2

p,03,i1,i1,i8,i chIKshKK   

2,i
2

p,04,i2,i2,i9,i snIKcsKK   ;  2,i
2

p,04,i2,i2,i10,i csIKsnKK   

1,i
2

p1,i5,i11,i chmshKK   ;  1,i
2

p1,i5,i12,i shmchKK   

2,i
2

p2,i6,i13,i csmsnKK    ;  2,i
2

p2,i6,i14,i snmcsKK   

In Eq. (13), I0,p is taken as 0.00 for the situation of the intermediate lumped mass without rotary 

inertia. In the same equation, m,p is taken as zero for the situation of rotary inertia without 

intermediate lumped mass. For this case, p is changed by j in Eqs. (13), (14) and (15).  

The boundary conditions for the r
th
 step change in cross-section are written by using continuity 

of deformations, slopes and equilibrium of bending moments, as (the station numbering 

corresponding to the r
th
 step change in cross-section is represented by r′) 

   '''' r

R

rr

L

r
zyzy                                                           (16.a) 

   '''' r

R

rr

L

r
zz                                                          (16.b) 

   '''' r

R

rr

L

r
zMzM                                                         (16.c) 

   '''' r

R

rr

L

r
zTzT                                                          (16.d) 

The boundary conditions for the r
th
 step change in cross-section are presented in matrix 

equation form as 

     0CB '' rr
                                                            (17) 

where 

   
4,r3,r2,r1,r4,1r3,1r2,1r1,1r

T
r '''''''' CCCCCCCCC

         (18.a) 
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      

2r4  

1r4

 r4 

1r4

csrKsnrKchrKshrKcsrKsnrKchrKshrK

snrKcsrKshrKchrKsnrKcsrKshrKchrK

csrKsnrKchrKshrKcsrKsnrKchrKshrK

snrcsrshrchrsnrcsrshrchr

B

        4r4                  3r4                    2r4                  1r4                   r4                1r4             2r4           3r4              

'

'

'

'

2,1i6,1i2,1i6,1i1,1i5,1i1,1i5,1i2,i6,i2,i6,i1,i5,i1,i5,i

2,1i2,1i2,1i2,1i1,1i1,1i1,1i1,1i2,i2,i2,i2,i1,i1,i1,i1,i

2,1i4,1i2,1i4,1i1,1i3,1i1,1i3,1i2,i4,i2,i4,i1,i3,i1,i3,i

2,1i2,1i1,1i1,1i2,i2,i1,i1,i

r

''''''''














































 

      

2r4  

1r4

 r4 

1r4

csrKsnrKchrKshrKcsrKsnrKchrKshrK

snrKcsrKshrKchrKsnrKcsrKshrKchrK

csrKsnrKchrKshrKcsrKsnrKchrKshrK

snrcsrshrchrsnrcsrshrchr

B

        4r4                  3r4                    2r4                  1r4                   r4                1r4             2r4           3r4              

'

'

'

'

2,1i6,1i2,1i6,1i1,1i5,1i1,1i5,1i2,i6,i2,i6,i1,i5,i1,i5,i

2,1i2,1i2,1i2,1i1,1i1,1i1,1i1,1i2,i2,i2,i2,i1,i1,i1,i1,i

2,1i4,1i2,1i4,1i1,1i3,1i1,1i3,1i2,i4,i2,i4,i1,i3,i1,i3,i

2,1i2,1i1,1i1,1i2,i2,i1,i1,i

r

''''''''














































                       (18.b) 

where 

 'r1,i1,i zDcoshchr    ;  'r1,i1,i zDsinhshr    ;   'r2,i2,i zDcoscsr   ; 

 'r2,i2,i zDsinsnr   

 'r1,1i1,1i zDcoshchr     ;  'r1,1i1,1i zDsinhshr     ;   'r2,1i2,1i zDcoscsr    ; 

 'r2,1i2,1i zDsinsnr    

If the right-end support of the beam is pinned, the boundary conditions for the right-end support 

are written as 

  01zy 'M
                                                          (19.a) 

  01zM 'M
                                                         (19.b) 

From Eqs. (2) and (3), the boundary conditions for the right-end pinned support can be written 

in matrix equation form as 

     0CB '' MM
                                                         (20) 

where 

   
4,M3,M2,M1,M

T

M ''''' CCCCC                                     (21.a) 

 
       

         
q

1q

DsinKDcosKDsinhKDcoshK

DsinDcosDsinhDcosh
B

44M                    34M                       24M                        14M                     

2,1k2,1k2,1k2,1k1,1k1,1k1,1k1,1k

2,1k2,1k1,1k1,1k

M

''''

'



















 

(21.b) 

     If the right-end support of the beam is clamped, the boundary conditions for the right-end 
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support are written as 

  01zy 'M
                                                           (22.a) 

  01z'M
                                                          (22.b) 

From Eqs. (2) and (5), the boundary coefficient matrix for the right-end support can be written 

as 

 
       

          
q

1q

DcosKDsinKDcoshKDsinhK

DsinDcosDsinhDcosh
B

44M                      34M                    24M                        14M                     

2,1k4,1k2,1k4,1k1,1k3,1k1,1k3,1k

2,1k2,1k1,1k1,1k

M

''''

'




















 (23) 

If the right-end support of the beam is free, the boundary conditions are written as 

   01zM 'M
                                                          (24.a) 

  01zT 'M
                                                          (24.b) 

From Eqs. (3) and (4), the boundary coefficient matrix for the free right-end can be written as 

 
       
          

q

1q

DcosKDsinKDcoshKDsinhK

DsinKDcosKDsinhKDcoshK
B

44M                        34M                      24M                        14M                     

2,1k6,1k2,1k6,1k1,1k5,1k1,1k5,1k

2,1k2,1k2,1k2,1k1,1k1,1k1,1k1,1k

M

''''

'






















(25) 

where 

fsnhM'                                                           (26) 

In Eq. (26), M′is the total number of intermediate stations.  

In Eqs. (21.b), (23) and (25), q denotes the total number of equations for integration constants 

given by 

2M42q '                                                           (27) 

From Eq. (27), it can be seen that; the left-end support of the beam has two equations, each 

intermediate station of the beam has four equations and the right-end support of the beam has two 

equations.  

In this study, the coefficient matrices for left-end support, each intermediate lumped mass 

with/without rotary inertia and right-end support of the axial-loaded Timoshenko multiple-step 

beam are derived, respectively. In the next step, the numerical assembly technique is used to 

establish the overall coefficient matrix for the whole vibrating system as is given in Eq.(28). In the 

last step, for non-trivial solution, equating the last overall coefficient matrix to zero one determines 

the natural frequencies of the vibrating system as is given in Eq.(29) and substituting of the last 

integration constants into the related eigenfunctions  one determines the associated mode shapes.  
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     0CB                                                                 (28) 

0B                                                                      (29) 

 

 
4. The differential transform method (DTM) 
      

Partial differential equations are often used to describe engineering problems whose closed 

form solutions are very difficult to establish in many cases. Therefore, approximate numerical 

methods are often preferred. However, in spite of the advantages of these on hand methods and the 

computer codes that are based on them, closed form solutions are more attractive due to their 

implementation of the physics of the problem and their convenience for parametric studies. 

Moreover, closed form solutions have the capability and facility to solve inverse problem of 

determining and designing the geometry and characteristics of an engineering system and to 

achieve a prescribed behavior of the system. Considering the advantages of the closed form 

solutions mentioned above, DTM is introduced in this study as the solution method (Yesilce and 

Catal 2009).  

DTM is a semi-analytic transformation technique based on Taylor series expansion and is a 

useful tool to obtain analytical solutions of the differential equations. Certain transformation rules 

are applied and the governing differential equations and the boundary conditions of the system are 

transformed into a set of algebraic equations in terms of the differential transforms of the original 

functions in DTM. The solution of these algebraic equations gives the desired solution of the 

problem. The different from high-order Taylor series method is; Taylor series method requires 

symbolic computation of the necessary derivatives of the data functions and is expensive for large 

orders. DTM is an iterative procedure to obtain analytic Taylor series solutions of differential 

equations (Yesilce and Catal 2009). 

A function y(z), which is analytic in a domain D, can be represented by a power series with a 

center at z=z0, any point in D. The differential transform of the function y(z) is given by 

 
 

0zz

k

k

dz

zyd

!k

1
kY
















                                                      (30) 

where y(z) is the original function and Y(k) is the transformed function. The inverse transformation 

is defined as 

     





0k

k
0 kYzzzy                                                     (31) 

From Eqs. (30) and (31) we get 

0zz0k
k

kk
0

dz

)z(yd

!k

)zz(
)z(y







 















                                            (32) 

     Eq. (32) implies that the concept of the differential transformation is derived from Taylor’s 

series expansion, but the method does not evaluate the derivatives symbolically. However, relative 

derivative are calculated by iterative procedure that are described by the transformed equations of  
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Table 1 DTM theorems used for equations of motion 

Original Function Transformed Function 

y(z)=u(z)±v(z) Y(k)=U(k) ±V(k)  

y(z)=a·u(z) Y(k)=a·U(k)  

y(z)=
m

m

dz

zud )(
 Y(k)=

!

)!(

k

mk 
 ·U(k+m) 

y(z)=u(z)·v(z) Y(k)= )()(
0

rkVrU
k

r




 

y(z)=z
m

 Y(k)=δ(k−m)=








mk  if  1

mk  if  0
 

 
Table 2 DTM theorems used for boundary conditions 

z=0 z=1 

Original Boundary 

Conditions 

Transformed Boundary 

Conditions 

Original Boundary 

Conditions 

Transformed Boundary 

Conditions 

y(0)=0 Y(0)=0 y(1)=0 





0

0Y(k)
k

 

0)0(
dz

dy
  Y(1)=0 0)1(

dz

dy
  






0

0Y(k)k
k

 

0)0(
dz

yd
2

2

  Y(2)=0 0)1(
dz

yd
2

2

  





0

0Y(k))1k(k
k

 

0)0(
dz

yd
3

3

  Y(3)=0 0)1(
dz

yd
3

3

  





0

0Y(k))2k()1k(k
k

 

 

 

the original functions. In real applications, the function y(z) in Eq. (31) is expressed by a finite 

series and can be written as 








N

0k

k
0 )k(Y)zz()z(y                                                  (33) 

Eq. (10) implies that 







1Nk

k
0 )k(Y)zz( is negligibly small. Where N  is series size and the value 

of N  depends on the convergence of the eigenvalues. 

Theorems that are frequently used in differential transformation of the differential equations 

and the boundary conditions are introduced in Table 1 and Table 2, respectively.  

 

4.1 Using differential transformation to solve motion equations  
 

Eqs. (1.a) and (1.b) can be rewritten by using the method of separation of variables  as follows 
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 
 ii2

i

i
4
i

i

2
i

i

ii

i

i

2
i

ii
2

z
LA

I

kEI

LGA

dz

zdy

kEI

LGA

dz

)z(d










































                  (34.a) 

 
 ii

1r
2

i

i
4
i

i

ii

1r
2

i

3
i

2
i

ii
2

zy
kEINLGA

kEI

dz

zd

kEINLGA

LGA

dz

)z(yd







































  

 LLz0 ii    1h ..., 2, ,1i                                 (34.b) 

The differential transform method is applied to Eqs. (34.a) and (34.b) by using the theorems 

introduced in Table 1 and the following expression are obtained 

 
 

 
   

 k
LA

I

kEI

LGA

2k1k

1
1kY

kEI

LGA

2k

1
2k i2

i

i
4
i

i

2
i

i

i

i
i 


















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where Yi(k) and Φi(k) are the transformed functions of yi(zi) and ϕi(zi), respectively. 

The differential transform method is applied to Eqs. (5.a) and (5.b) by using the theorems 

introduced in Table 1 and the following expression are obtained 
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where )(kMi  and )(kTi  are the transformed functions of Mi(zi) and Ti(zi), respectively. 

If the left-end support of the beam is pinned; applying DTM to Eqs. (7.a) and (7.b), the 

transformed boundary conditions for the left-end support are written as 

                            010Y '' 11
                                                          (37) 

     If the left-end support of the beam is clamped; applying DTM to Eqs. (9.a) and (9.b), the 

transformed boundary conditions for the left-end support are written as 

    000Y '' 11
                                                         (38) 

     If the left-end support of the beam is free; applying DTM to Eqs. (11.a) and (11.b), the 

transformed boundary conditions for the left-end support are written as 

 
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L

1Y
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                                                          (39.a) 
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  01'1
                                                                 (39.b) 

The boundary conditions and the transformed boundary conditions of the p
th
 intermediate 

lumped mass with rotary inertia and the r
th
 step change in cross-section by applying the differential 

transform method, using the theorems introduced in Table 2 are presented in Table 3.  

If the right-end support of the beam is pinned; applying DTM to Eqs. (19.a) and (19.b), the 

transformed boundary conditions for the right-end support are written as 
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N
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0kY '
                                                          (40.a) 

 






N

0k
M

0kM '
                                                         (40.b)      

If the right-end support of the beam is clamped; applying DTM to Eqs. (22.a) and (22.b), the 

transformed boundary conditions for the right-end support are written as 

 

 
Table 3 The boundary conditions and the transformed boundary conditions of the p

th
 intermediate lumped 

mass with rotary inertia and the r
th

 step change in cross-section 
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 
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
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M

0k'                                                          (41.b) 

If the right-end support of the beam is free; applying DTM to Eqs. (24.a) and (24.b), the 

transformed boundary conditions for the right-end support are written as 
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  
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M

0kT '                                                       (42.b) 

For pinned-pinned beam, substituting the boundary conditions expressed in Eqs. (37) and (40) 

into Eq. (35) and taking 2111 )0( ,)1( ccY   ; for cantilever beam, substituting the boundary 

conditions expressed in Eqs. (38) and (42) into Eq. (35) and taking 2111 )1( ,)1( ccY   ; for free-

fixed beam, substituting the boundary conditions expressed in Eqs. (39) and (41) into Eq. (35) and 

taking 2111 )1( ,)1( cYcY   ; the following matrix expression is obtained 

   

   





























































0

0

c

c

AA

AA

2

1

)N(
22

)N(
21

)N(
12

)N(
11

                                            (43) 

where c1 and c2 are constants and  )(
1



N
aA ,  )(

2



N
aA  (a=1, 2) are polynomials of ω corresponding 

N . 

In the last step, for non-trivial solution, equating the coefficient matrix that is given in Eq. (43) 

to zero one determines the natural frequencies of the vibrating system as is given in Eq. (44). 
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                                                     (44) 

The j
th
 estimated eigenvalue, 

)(


N
j corresponds to N and the value of N is determined as 

 


)1N(

j

)N(

j
                                                          (45) 

where 
)1( 



N
j  is the j

th
 estimated eigenvalue corresponding to ( N −1) and   is the small tolerance 
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parameter. If Eq. (45) is satisfied, the j
th
 estimated eigenvalue, )(



N
j is obtained.  

The procedure that is explained below can be used to plot the mode shapes of Timoshenko 

multiple-step beam. The following equalities can be written by using Eq. (43) 

    0cAcA 212111                                                    (46) 

Using Eq. (46), the constant c2 can be obtained in terms of c1 as follows 

 
  1

12

11
2 c

A

A
c 




                                                           (47) 

 

All transformed functions can be expressed in terms of ω, c1 and c2. Since c2 has been written in 

terms of c1 above, Y(k), Φ(k), )(kM  and )(kT  can be expressed in terms c1 as follows 

   1c,YkY                                                             (48) 

   1c,k                                                            (49) 

   1c,MkM                                                           (50) 

   1c,TkT                                                            (51) 

The mode shapes can be plotted for several values of ω by using Eq. (48). 

 

 

5. Numerical analysis and discussions  
      

In this study, three numerical examples are considered. For three numerical examples, the first 

five natural frequencies, ωα(α=1(1)5) are calculated by using a computer program prepared by the 

author. In this program, the secant method is used in which determinant values are evaluated for a 

range (ωα) values. The (ωα) value causing a sign change between the successive determinant 

values is a root of frequency equation and means a frequency for the system.  

Natural frequencies are found by determining values for which the determinant of the 

coefficient matrixes is equal to zero. There are various methods for calculating the roots of the 

frequency equation. One common used and simple technique is the secant method in which a 

linear interpolation is employed. The eigenvalues, the natural frequencies, are determined by a trial 

and error method based on interpolation and the bisection approach. One such procedure consists 

of evaluating the determinant for a range of frequency values, ωα. When there is a change of sign 

between successive evaluations, there must be a root lying in this interval. The iterative 

computations are determined when the value of the determinant changed sign due to a change of 

10
-4

 in the value of ωα.  

All numerical results of this paper are obtained based on a three-step Timoshenko beam with 

circular cross-sections. The dimensions of the three-step Timoshenko beam are presented in Fig. 2.  

From Fig. 2 one sees that, the diameters of the segments are: d1=0.10 m, d2=0.15 m, d3=0.20 m 

and d4=0.25 m; the lengths of the segments are: L1=L2=L3=L4=0.50 m; the locations for the step 

changes in cross-sections are: 1z =0.25, 2z =0.50 and 3z =0.75. 

In all numerical examples, the mass density of the beam is taken as ρ=7.8368×10
3
 kg/m

3
; 
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Young’s modulus of the beam is taken as E=2.069×10
11

 N/m
2
; the shear modulus of the beam is 

taken as G=7.95769×10
10

 N/m
2
; the shape factor of the beam is taken as k =4/3 and the 

nondimensionalized multiplication factors for the axial compressive force are taken as Nr=0.0, 

0.10 and 0.20. 

 

5.1 Free vibration analysis of the axial-loaded and three-step Timoshenko beam 
carrying single intermediate lumped mass without rotary inertia 

      

In the first numerical example the pinned-pinned, clamped-free and free-clamped Timoshenko 

beams carrying single intermediate lumped mass (m1) without rotary inertia are considered. In this 

numerical example, the magnitude and locations of the intermediate lumped mass are taken as: 

m1=(1.00·m ·L) located at z1
*
=0.375, z2

*
=0.625 and z3

*
=0.875, respectively. 

Using DTM, the frequency values obtained for the first five modes of the pinned-pinned 

Timoshenko beam are presented in Table 4, for the first five modes of the clamped-free 

Timoshenko beam are presented in Table 5, and for the first five modes of the free-clamped 

Timoshenko beam are presented in Table 6 being compared with the frequency values obtained by 

using NAT for the different values of nondimensionalized multiplication factors for the axial 

compressive force (Nr). 

For Nr=0.20, Figs. 3 and 4 show the first five mode shapes of the axial-loaded and three-step 

Timoshenko beam with pinned-pinned boundary condition. Fig. 3 is for the pinned-pinned and 

three-step Timoshenko beam without attachment, while Fig. 4 is for the pinned-pinned and three- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The dimensions of the three-step Timoshenko beam 

y 

x 

N N 

0 

d1 = 0.10 m d2 = 0.15 m 
d3 = 0.20 m d4 = 0.25 m 

m 50.011  Lx  m 50.02 L  m 50.03 L  m 50.04 L  

m 00.12 x  

m 50.13 x  

m 00.2L  
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Fig. 3 The first five mode shapes of the pinned-pinned and three-step Timoshenko beam without 

attachment, Nr=0.20 

 

 

Fig. 4 The first five mode shapes of the pinned-pinned and three-step Timoshenko beam carrying 

one lumped mass located at z1
*
=0.625, Nr=0.20 

 

 

step Timoshenko beam carrying one intermediate lumped mass located at z1
*
=0.625. For Nr=0.20, 

Figs. 5 and 6 show the first five mode shapes of the axial-loaded and three-step Timoshenko beam 

with clamped-free boundary condition. Fig. 5 is for the clamped-free and three-step Timoshenko 

beam without attachment, while Fig. 6 is for the clamped-free and three-step Timoshenko beam  
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Fig. 5 The first five mode shapes of the cantilever and three-step Timoshenko beam without 

attachment, Nr=0.20 

 

 

Fig. 6 The first five mode shapes of the cantilever and three-step Timoshenko beam carrying one 

lumped mass located at z1
*
=0.625, Nr=0.20 

 

 

carrying one intermediate lumped mass located at z1
*
=0.625. For Nr=0.20, Figs. 7 and 8 show the 

first five mode shapes of the axial-loaded and three-step Timoshenko beam with free-clamped 

boundary condition. Fig. 7 is for the free-clamped and three-step Timoshenko beam without  
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Fig. 7 The first five mode shapes of the free-clamped and three-step Timoshenko beam without 

attachment, Nr=0.20 

 

 

Fig. 8 The first five mode shapes of the free-clamped and three-step Timoshenko beam carrying 

one lumped mass located at z1
*
=0.625, Nr=0.20 

 

 

attachment, while Fig. 8 is for the free-clamped and three-step Timoshenko beam carrying one 

intermediate lumped mass located at z1
*
=0.625. 

From Tables 4-6, one can sees that increasing Nr causes an increase in the first five mode  
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Table 4 The first five natural frequencies of the pinned-pinned Timoshenko beam with three changes in 

cross-sections and carrying a lumped mass for different values of Nr 

Location of 

lumped mass, 

z1
*
=x1

*
/L 

ωα 

(rad/sec) 
METHOD 

(BEBT) 

Nr = 0.00 

(TBT) 

Nr = 0.00 Nr = 0.10 Nr = 0.20 

* 

ω1 
DTM ( N =34) 423.9048 418.9494 420.0096 421.0676 

NAT 423.9048 418.9495 420.0088 421.0669 

ω2 
DTM ( N =42) 2012.6557 1947.2010 1947.6836 1948.1640 

NAT 2012.6559 1947.2020 1947.6827 1948.1632 

ω3 
DTM ( N =48) 4638.1343 4275.9113 4276.2926 4276.6746 

NAT 4638.1346 4275.9114 4276.2929 4276.6742 

ω4 
DTM ( N =50) 8352.9477 7322.5740 7323.0841 7323.5952 

NAT 8352.9477 7322.5741 7323.0845 7323.5946 

ω5 
DTM ( N =54) 12574.9954 10162.0529 10162.5983 10163.1434 

NAT 12574.9958 10162.0528 10162.5982 10163.1437 

0.375 

ω1 
DTM ( N =34) 319.4341 316.5288 317.8596 319.1869 

NAT 319.4341 316.5288 317.8596 319.1866 

ω2 
DTM ( N =42) 1853.3864 1789.4207 1790.0342 1790.6480 

NAT 1853.3864 1789.4207 1790.0343 1790.6477 

ω3 
DTM ( N =48) 4110.1341 3825.8438 3826.1888 3826.5351 

NAT 4110.1341 3825.8438 3826.1892 3826.5344 

ω4 
DTM ( N =50) 7709.5714 6642.9094 6643.4722 6644.0375 

NAT 7709.5714 6642.9093 6643.4732 6644.0368 

ω5 
DTM ( N =54) 11621.7699 9886.6243 9887.2049 9887.7879 

NAT 11621.7699 9886.6243 9887.2055 9887.7868 

0.625 

ω1 
DTM ( N =34) 356.0274 352.5251 353.6694 354.8120 

NAT 356.0275 352.5250 353.6699 354.8129 

ω2 
DTM ( N =42) 1849.5144 1794.2629 1794.7777 1795.2931 

NAT 1849.5142 1794.2620 1794.7771 1795.2920 

ω3 
DTM ( N =48) 4637.8405 4275.7922 4276.1747 4276.5567 

NAT 4637.8401 4275.7928 4276.1742 4276.5554 

ω4 
DTM ( N =50) 7771.2653 6685.1369 6685.54774 6685.9594 

NAT 7771.2650 6685.1363 6685.5477 6685.9588 

ω5 
DTM ( N =54) 11249.5949 9455.6282 9456.2819 9456.9341 

NAT 11249.5944 9455.6275 9456.2804 9456.9333 

0.875 

ω1 
DTM ( N =34) 413.3018 408.6113 409.6698 410.7274 

NAT 413.3012 408.6111 409.6693 410.7262 

ω2 
DTM ( N =42) 1917.3749 1856.3775 1856.8449 1857.3136 

NAT 1917.3742 1856.3772 1856.8450 1857.3127 

ω3 
DTM ( N =48) 4285.5914 3950.0631 3950.4235 3950.7829 

NAT 4285.5916 3950.0636 3950.4224 3950.7810 

ω4 
DTM ( N =50) 7812.7115 6687.0796 6687.4973 6687.9150 

NAT 7812.7113 6687.0789 6687.4971 6687.9151 

ω5 
DTM ( N =54) 11490.8391 9473.5058 9474.1266 9474.7476 

NAT 11490.8385 9473.5052 9474.1259 9474.7466 

*For the case of m1=0 
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frequency values for three different boundary conditions, as expected. The frequency values 

obtained for the Timoshenko beam without the axial force effect are less than the values obtained 

for the Bernoulli-Euler beam as expected, since the shear deformation is considered in TBT. As 

the intermediate lumped mass is acted to the beam for Nr is being constant, the first five frequency 

values are decreased for all boundary conditions. This is a reasonable result, because in this 

situation, the displacements and so that the periods of the beam are increased.  

In application of DTM, the natural frequency values of the beams are calculated by increasing 

series size N . In Tables 4-6, convergences of the first five natural frequencies are introduced. 

Here, it is seen that; for pinned-pinned beam, when the series size is taken 54; for clamped-free  

 

 
Table 5 The first five natural frequencies of the cantilever Timoshenko beam with three changes in cross-

sections and carrying a lumped mass for different values of Nr. 

Location of 

lumped mass, 

z1
*
=x1

*
/L 

ωα 

(rad/sec) 
METHOD 

(BEBT) 

Nr=0.00 

(TBT) 

Nr=0.00 Nr=0.10 Nr=0.20 

* 

ω1 
DTM ( N =38) 56.4543 56.3053 57.3894 58.4481 

NAT 56.4543 56.3052 57.3888 58.4486 

ω2 
DTM ( N =46) 834.1811 805.3909 806.8320 808.2732 

NAT 834.1810 805.3901 806.8326 808.2726 

ω3 
DTM ( N =52) 2960.8740 2798.9821 2799.7319 2800.4798 

NAT 2960.8742 2798.9829 2799.7311 2800.4793 

ω4 
DTM ( N =58) 6073.5394 5498.5509 5499.0138 5499.4762 

NAT 6073.5389 5498.5515 5499.0141 5499.4766 

ω5 
DTM ( N =62) 10600.8083 9051.2237 9051.7383 9052.2524 

NAT 10600.8083 9051.2237 9051.7384 9052.2528 

0.375 

ω1 
DTM ( N =38) 55.1250 54.9798 56.1426 57.2742 

NAT 55.1252 54.9800 56.1428 57.2746 

ω2 
DTM ( N =46) 616.6014 598.7798 600.6597 602.5338 

NAT 616.6019 598.7795 600.6598 602.5344 

ω3 
DTM ( N =52) 2702.3241 2552.4541 2553.2646 2554.0740 

NAT 2702.3239 2552.4545 2553.2644 2554.0744 

ω4 
DTM ( N =58) 5483.2364 4954.7431 4955.2019 4955.6598 

NAT 5483.2371 4954.7440 4955.2016 4955.6591 

ω5 
DTM ( N =62) 9570.9587 8221.0488 8221.6434 8222.2378 

NAT 9570.9588 8221.0485 8221.6425 8222.2363 

0.625 

ω1 
DTM ( N =38) 51.3966 51.2740 52.4705 53.6348 

NAT 51.3966 51.2740 52.4704 53.6342 

ω2 
DTM ( N =46) 752.3899 728.6084 730.0509 731.4928 

NAT 752.3895 728.6090 730.0518 731.4920 

ω3 
DTM ( N =52) 2687.6819 2549.4691 2550.2700 2551.0711 

NAT 2687.6819 2549.4690 2550.2704 2551.0717 

ω4 
DTM ( N =58) 6003.4198 5415.5676 5416.0290 5416.4900 

NAT 6003.4197 5415.5675 5416.0290 5416.4905 

ω5 
DTM ( N =62) 10139.8644 8630.5038 8630.9229 8631.3424 

NAT 10139.8645 8630.5031 8630.9223 8631.3413 
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Table 5 Continued 

0.875 

ω1 
DTM ( N =38) 46.3953 46.3030 47.4404 48.5466 

NAT 46.3953 46.3030 47.4404 48.5466 

ω2 
DTM ( N =46) 812.7784 785.7517 787.2210 788.6878 

NAT 812.7784 785.7517 787.2210 788.6878 

ω3 
DTM ( N =52) 2952.2398 2789.0856 2789.8405 2790.5957 

NAT 2952.2394 2789.0849 2789.8399 2790.5948 

ω4 
DTM ( N =58) 6061.9262 5496.9991 5497.4618 5497.9218 

NAT 6061.9262 5496.9991 5497.4606 5497.9220 

ω5 
DTM ( N =62) 10454.8614 8941.0095 8941.4770 8941.9442 

NAT 10454.8613 8941.0099 8941.4776 8941.9450 

*For the case of m1=0 

 
Table 6 The first five natural frequencies of the free-clamped Timoshenko beam with three changes in cross-

sections and carrying a lumped mass for different values of Nr 

Location of 

lumped mass, 

z1
*
=x1

*
/L 

ωα 

(rad/sec) 
METHOD 

(BEBT) 

Nr=0.00 

(TBT) 

Nr=0.00 Nr=0.10 Nr=0.20 

* 

ω1 
DTM ( N =36) 461.5130 457.1752 458.1299 459.0814 

NAT 461.5130 457.1750 458.1296 459.0803 

ω2 
DTM ( N =44) 1442.3630 1395.8694 1396.9639 1398.0580 

NAT 1442.3630 1395.8691 1396.9636 1398.0572 

ω3 
DTM ( N =52) 3234.0073 3008.5049 3009.2761 3010.0468 

NAT 3234.0074 3008.5045 3009.2752 3010.0459 

ω4 
DTM ( N =56) 6188.2742 5370.9840 5371.4239 5371.8631 

NAT 6188.2740 5370.9844 5371.4233 5371.8622 

ω5 
DTM ( N =60) 10581.3341 8645.3090 8645.7068 8646.1048 

NAT 10581.3339 8645.3088 8645.7064 8646.1037 

0.375 

ω1 
DTM ( N =36) 371.5354 367.9440 368.8474 369.7475 

NAT 371.5354 367.9440 368.8474 369.7473 

ω2 
DTM ( N =44) 1243.9063 1216.6220 1218.0334 1219.4425 

NAT 1243.9063 1216.6220 1218.0334 1219.4426 

ω3 
DTM ( N =52) 3082.0846 2827.0352 2827.7824 2828.5311 

NAT 3082.0846 2827.0352 2827.7827 2828.5302 

ω4 
DTM ( N =56) 5541.1410 4957.9240 4958.3938 4958.8612 

NAT 5541.1410 4957.9241 4958.3932 4958.8623 

ω5 
DTM ( N =60) 9599.3810 7673.7578 7674.2559 7674.7520 

NAT 9599.3811 7673.7573 7674.2553 7674.7531 

0.625 

ω1 
DTM ( N =36) 448.3169 443.7184 444.6269 445.5315 

NAT 448.3169 443.7184 444.6269 445.5316 

ω2 
DTM ( N =44) 1261.6793 1219.4420 1220.4996 1221.5562 

NAT 1261.6793 1219.4420 1220.4996 1221.5559 

ω3 
DTM ( N =52) 2840.5989 2681.0260 2681.9454 2682.8668 

NAT 2840.5990 2681.0260 2681.9456 2682.8652 

ω4 
DTM ( N =56) 6054.5019 5325.8814 5326.3419 5326.8017 

NAT 6054.5020 5325.8816 5326.3410 5326.8004 

ω5 
DTM ( N =60) 10191.8727 7978.1175 7978.4368 7978.7553 

NAT 10191.8725 7978.1182 7978.4363 7978.7542 
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Table 6 Contined 

0.875 

ω1 
DTM ( N =36) 461.3359 456.9713 457.9243 458.8738 

NAT 461.3359 456.9710 457.9241 458.8733 

ω2 
DTM ( N =44) 1436.8977 1388.8416 1389.9234 1391.0022 

NAT 1436.8977 1388.8417 1389.9228 1391.0029 

ω3 
DTM ( N =52) 3181.0297 2937.3678 2938.1071 2938.8492 

NAT 3181.0296 2937.3674 2938.1077 2938.8481 

ω4 
DTM ( N =56) 5882.1422 5016.9318 5017.3460 5017.7581 

NAT 5882.1424 5016.9312 5017.3453 5017.7595 

ω5 
DTM ( N =60) 9937.3220 7687.6788 7687.9852 7688.2938 

NAT 9937.3226 7687.6798 7687.9860 7688.2922 

*For the case of m1=0 

 

 

beam, when the series size is taken 62 and for free-clamped beam, when the series size is taken 60, 

the natural frequency values of the fifth mode can be appeared. Additionally, here it is seen that 

higher modes appear when more terms are taken into account in DTM applications. Thus, 

depending on the order of the required mode, one must try a few values for the term number at the 

beginning of the calculations in order to find the adequate number of terms. 

 

5.2 Free vibration analysis of the axial-loaded and three-step Timoshenko beam 
carrying single rotary inertia without intermediate lumped mass 

     

In the second numerical example the pinned-pinned, clamped-free and free-clamped 

Timoshenko beams carrying single rotary inertia (I0,1) without intermediate lumped mass are 

considered. In this numerical example, the magnitude and locations of the rotary inertia are taken 

as: I0,1=(0.01· 1m ·L
3
) located at 1ẑ =0.375, 2ẑ =0.625 and 3ẑ =0.875, respectively. 

Using DTM, the frequency values obtained for the first five modes of the axial-loaded and 

three-step Timoshenko beam with pinned-pinned, clamped-free and free-clamped boundary 

conditions are presented in Tables 7, 8 and 9, respectively, being compared with the frequency 

values obtained by using NAT for the different values of nondimensionalized multiplication 

factors for the axial compressive force (Nr). 

From Tables 7-9, it can be seen that, as the axial compressive force acting to the beam is 

increased, the first five mode frequency values for three boundary conditions are increased.  

In application of DTM, the natural frequency values of the beams are calculated by increasing 

series size N . In Tables 7-9, convergences of the first five natural frequencies are introduced. 

Here, it is seen that; for pinned-pinned beam, when the series size is taken 54; for clamped-free 

beam, when the series size is taken 60 and for free-clamped beam, when the series size is taken 58, 

the natural frequency values of the fifth mode can be appeared.  

 

5.3 Free vibration analysis of the axial-loaded and three-step Timoshenko beam 
carrying three intermediate lumped masses and/or three rotary inertias 

      

In the third numerical example; the pinned-pinned, clamped-free and free-clamped Timoshenko 

beams carrying three intermediate lumped masses (m1, m2, m3) and/or three rotary inertias (I0,1, I0,2, 
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I0,3) are considered. In this numerical example, two different cases are studied. For the first case; 

the beam carries only three intermediate lumped masses. In this case, the magnitudes and locations 

of the intermediate lumped masses are taken as: m1=m2=m3=(1.00· 1m ·L) located at z1
*
=0.375, 

z2
*
=0.625 and z3

*
=0.875, respectively. For the second case; the beam carries three intermediate 

lumped masses and three rotary inertias. In this case, the magnitudes and locations of the 

intermediate lumped masses and rotary inertias are taken as: m1=m2=m3=(1.00· 1m ·L), 

I0,1=I0,2=I0,3=(0.01· 1m ·L
3
) located at z1

*
= 1ẑ =0.375, z3

*
= 3ẑ =0.625 and z1

*
= 1ẑ =0.875, respectively.  

 

 
Table 7 The first five natural frequencies of the pinned-pinned Timoshenko beam with three changes in 

cross-sections and with single rotary inertia for different values of Nr 

Location of 

lumped mass, 

z1
*
=x1

*
/L 

ωα 

(rad/sec) 
METHOD 

(BEBT) 

Nr=0.00 

(TBT) 

Nr=0.00 Nr=0.10 Nr=0.20 

0.375 

ω1 
DTM ( N =34) 423.9012 418.9430 420.0045 421.0618 

NAT 423.9010 418.9435 420.0038 421.0627 

ω2 
DTM ( N =42) 1632.7664 1611.7041 1612.1111 1612.5196 

NAT 1632.7664 1611.7041 1612.1111 1612.5182 

ω3 
DTM ( N =48) 3766.7278 3541.1114 3541.5556 3541.9984 

NAT 3766.7277 3541.1112 3541.5553 3541.9995 

ω4 
DTM ( N =52) 6036.8610 5598.9681 5599.4379 5599.9047 

NAT 6036.8602 5598.9683 5599.4373 5599.9058 

ω5 
DTM ( N =54) 9807.0239 7827.8997 7828.2820 7828.6644 

NAT 9807.0239 7827.8997 7828.2819 7828.6639 

0.625 

ω1 
DTM ( N =34) 419.694 414.8865 415.9529 417.0183 

NAT 419.6955 414.8865 415.9528 417.0178 

ω2 
DTM ( N =42) 1980.1535 1918.8699 1919.3264 1919.7836 

NAT 1980.1536 1918.8690 1919.3260 1919.7828 

ω3 
DTM ( N =48) 3808.6405 3690.8707 3691.2134 3691.5596 

NAT 3808.6399 3690.8698 3691.2140 3691.5581 

ω4 
DTM ( N =52) 7479.9365 6843.5165 6844.0450 6844.5731 

NAT 7479.9365 6843.5165 6844.0450 6844.5731 

ω5 
DTM ( N =54) 10978.0630 8740.3387 8740.5457 8740.7534 

NAT 10978.0629 8740.3385 8740.5458 8740.7532 

0.875 

ω1 
DTM ( N =34) 417.1940 412.4990 413.5581 414.6178 

NAT 417.1941 412.4993 413.5589 414.6174 

ω2 
DTM ( N =42) 1962.5020 1905.9285 1906.4102 1906.8919 

NAT 1962.5020 1905.9286 1906.4102 1906.8917 

ω3 
DTM ( N =48) 4509.0212 4200.1526 4200.5434 4200.9367 

NAT 4509.0209 4200.1522 4200.5440 4200.9355 

ω4 
DTM ( N =52) 8271.3273 7293.9294 7294.4527 7294.9738 

NAT 8271.3270 7293.9300 7294.4511 7294.9720 

ω5 
DTM ( N =54) 12565.3279 10152.6587 10153.1849 10153.7222 

NAT 12565.3279 10152.6587 10153.1857 10153.7218 
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Table 8 The first five natural frequencies of the cantilever Timoshenko beam with three changes in cross-

sections and with single rotary inertia for different values of Nr 

Location of 

lumped mass, 

z1
*
=x1

*
/L 

ωα 

(rad/sec) 
METHOD 

(BEBT) 

Nr=0.00 

(TBT) 

Nr=0.00 Nr=0.10 Nr=0.20 

0.375 

ω1 
DTM ( N =38) 56.2276 56.0804 57.1560 58.2078 

NAT 56.2276 56.0807 57.1564 58.2084 

ω2 
DTM ( N =46) 833.8913 805.2655 806.6982 808.1280 

NAT 833.8913 805.2655 806.6983 808.1283 

ω3 
DTM ( N =52) 2185.4953 2138.1515 2138.8562 2139.5650 

NAT 2185.4953 2138.1515 2138.8574 2139.5636 

ω4 
DTM ( N =56) 4679.3441 4340.8275 4341.3359 4341.8447 

NAT 4679.3440 4340.8276 4341.3355 4341.8434 

ω5 
DTM ( N =60) 7840.6684 6853.5644 6854.0036 6854.4459 

NAT 7840.6682 6853.5641 6854.0045 6854.4445 

0.625 

ω1 
DTM ( N =38) 56.2001 56.0536 57.1286 58.1804 

NAT 56.2002 56.0536 57.1282 58.1791 

ω2 
DTM ( N =46) 804.3480 778.1856 779.6499 781.1116 

NAT 804.3483 778.1857 779.6495 781.1108 

ω3 
DTM ( N =52) 2948.7688 2790.8717 2791.5973 2792.3259 

NAT 2948.7688 2790.8717 2791.5982 2792.3246 

ω4 
DTM ( N =56) 4748.4793 4632.5326 4632.9509 4633.3680 

NAT 4748.4794 4632.5325 4632.9504 4633.3683 

ω5 
DTM ( N =60) 8847.1946 7701.0811 7701.4875 7701.8935 

NAT 8847.1942 7701.0807 7701.4868 7701.8926 

0.875 

ω1 
DTM ( N =38) 56.1969 56.0503 57.1247 58.1754 

NAT 56.1969 56.0503 57.1247 58.1754 

ω2 
DTM ( N =46) 788.5650 764.1013 765.5276 766.9513 

NAT 788.5650 764.1013 765.5276 766.9513 

ω3 
DTM ( N =52) 2707.2935 2595.0536 2595.7860 2596.5198 

NAT 2707.2935 2595.0536 2595.7865 2596.5193 

ω4 
DTM ( N =56) 5377.9510 5008.0436 5008.5179 5008.9957 

NAT 5377.9504 5008.0430 5008.5187 5008.9944 

ω5 
DTM ( N =60) 9787.3082 8277.1557 8277.5683 8277.9774 

NAT 9787.3079 8277.1561 8277.5675 8277.9786 

 
Table 9 The first five natural frequencies of the free-clamped Timoshenko beam with three changes in cross-

sections and with single rotary inertia for different values of Nr 

Location of 

lumped mass, 

z1
*
=x1

*
/L 

ωα 

(rad/sec) 
METHOD 

(BEBT) 

Nr=0.00 

(TBT) 

Nr=0.00 Nr=0.10 Nr=0.20 

0.375 

ω1 
DTM ( N =36) 446.0660 442.4513 443.3527 444.2513 

NAT 446.0659 442.4513 443.3529 444.2506 

ω2 
DTM ( N =46) 1409.1399 1361.3431 1362.2625 1363.1804 

NAT 1409.1399 1361.3431 1362.2622 1363.1800 

ω3 
DTM ( N =50) 2451.6606 2413.5054 2414.4628 2415.4210 

NAT 2451.6605 2413.5058 2414.4637 2415.4221 
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Table 9 Continued 

0.375 

ω4 
DTM ( N =54) 4931.1577 4288.4994 4288.9101 4289.3213 

NAT 4931.1576 4288.4991 4288.9097 4289.3204 

ω5 
DTM ( N =58) 7752.4304 6899.9765 6900.4102 6900.8439 

NAT 7752.4304 6899.9765 6900.4101 6900.8435 

0.625 

ω1 
DTM ( N =36) 457.1416 452.9944 453.9262 454.8568 

NAT 457.1416 452.9946 453.9271 454.8556 

ω2 
DTM ( N =46) 1411.7109 1372.1336 1373.2375 1374.3397 

NAT 1411.7100 1372.1333 1373.2366 1374.3389 

ω3 
DTM ( N =50) 3227.0156 2987.9685 2988.6867 2989.4050 

NAT 3227.0157 2987.9685 2988.6859 2989.4034 

ω4 
DTM ( N =54) 4781.4130 4488.7990 4489.2316 4489.6638 

NAT 4781.4122 4488.7982 4489.2306 4489.6631 

ω5 
DTM ( N =58) 8799.6974 7774.3161 7774.7115 7775.1068 

NAT 8799.6975 7774.3161 7774.7109 7775.1055 

0.875 

ω1 
DTM ( N =36) 461.0895 456.7648 457.7167 458.6649 

NAT 461.0895 456.7641 457.7159 458.6637 

ω2 
DTM ( N =46) 1430.4980 1385.7016 1386.7819 1387.8590 

NAT 1430.4974 1385.7016 1386.7801 1387.8575 

ω3 
DTM ( N =50) 3136.0608 2946.9945 2947.7568 2948.5174 

NAT 3136.0603 2946.9943 2947.7557 2948.5171 

ω4 
DTM ( N =54) 5762.9677 5232.7760 5233.2354 5233.6928 

NAT 5762.9677 5232.7766 5233.2347 5233.6927 

ω5 
DTM ( N =58) 9962.1583 8537.7533 8538.1578 8538.5626 

NAT 9962.1584 8537.7533 8538.1576 8538.5616 

 

 

Using DTM, the frequency values obtained for the first five modes of the pinned-pinned 

Timoshenko beam are presented in Table 10, for the first five modes of the clamped-free 

Timoshenko beam are presented in Table 11, and for the first five modes of the free-clamped 

Timoshenko beam are presented in Table 12 being compared with the frequency values obtained 

by using NAT for the different values of nondimensionalized multiplication factors for the axial 

compressive force (Nr). 

For Nr=0.20, Figs. 9 and 10 show the first five mode shapes of the axial-loaded and three-step 

Timoshenko beam with pinned-pinned boundary condition. Fig. 9 is for the pinned-pinned and 

three-step Timoshenko beam carrying three intermediate lumped masses without rotary inertias, 

while Fig. 10 is for the pinned-pinned and three-step Timoshenko beam carrying three 

intermediate lumped masses and three rotary inertias. For Nr=0.20, Figs. 11 and 12 show the first 

five mode shapes of the axial-loaded and three-step Timoshenko beam with clamped-free 

boundary condition. Fig. 11 is for the clamped-free and three-step Timoshenko beam carrying 

three intermediate lumped masses without rotary inertias, while Fig. 12 is for the clamped-free and 

three-step Timoshenko beam carrying three intermediate lumped masses and three rotary inertias. 

For  Nr=0.20, Figs. 13 and 14 show the first five mode shapes of the axial-loaded and three-step 

Timoshenko beam with free-clamped boundary condition. Fig. 13 is for the free-clamped and 

three-step Timoshenko beam carrying three intermediate lumped masses without rotary inertias, 

while Fig. 14 is for the free-clamped and three-step Timoshenko beam carrying three intermediate  
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Fig. 9 The first five mode shapes of the pinned-pinned and three-step Timoshenko beam carrying 

three lumped masses, Nr=0.20 

 

 

Fig. 10 The first five mode shapes of the pinned-pinned and three-step Timoshenko beam carrying 

three lumped masses together with three rotary inertias, Nr = 0.20 

 

 

lumped masses and three rotary inertias. 

It can be seen from Tables 10-12 that, as the axial compressive force acting to the beam is 

increased, the first five natural frequency values of the axial-loaded and three-step Timoshenko  
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Fig. 11 The first five mode shapes of the cantilever and three-step Timoshenko beam carrying three 

lumped masses, Nr=0.20 

 

 

Fig. 12 The first five mode shapes of the cantilever and three-step Timoshenko beam carrying three 

lumped masses together with three rotary inertias, Nr = 0.20 

 

 

beam with pinned-pinned, clamped-free and free-clamped boundary conditions are increased. As 

the rotary inertias are acted to the beam for Nr is being constant, all natural frequency values of 

Timoshenko beams are decreased for three different boundary conditions. This is a reasonable  
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Fig. 13 The first five mode shapes of the free-clamped and three-step Timoshenko beam carrying 

three lumped masses, Nr=0.20 

 

 

Fig. 14 The first five mode shapes of the free-clamped and three-step Timoshenko beam carrying 

three lumped masses together with three rotary inertias, Nr=0.20 

 

 

result, because in this situation, the displacements and so that the periods of the beam are 

increased.  

In application of DTM, the natural frequency values of the beams are calculated by increasing 
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series size N . In Tables 10-12, convergences of the first five natural frequencies are introduced. 

Here, it is seen that; for pinned-pinned beam, when the series size is taken 60; for clamped-free 

beam, when the series size is taken 70 and for free-clamped beam, when the series size is taken 68, 

the natural frequency values of the fifth mode can be appeared. Additionally, here it is seen that 

higher modes appear when more terms are taken into account in DTM applications. 

 

 
Table 10 The first five natural frequencies of the pinned-pinned Timoshenko beam with three changes in 

cross-sections and carrying three lumped mass and/or three rotary inertias for different values of Nr 

Attachments 

mn , I0,s 

(n=s=1, 2, 3) 

ωα 

(rad/sec) 
METHOD 

(BEBT) 

Nr=0.00 

(TBT) 

Nr=0.00 Nr=0.10 Nr=0.20 

mn 

ω1 
DTM ( N =38) 284.5443 282.1787 283.5490 284.9168 

NAT 284.5444 282.1789 283.5499 284.9162 

ω2 
DTM ( N =46) 1540.4575 1494.1636 1494.8571 1495.5529 

NAT 1540.4573 1494.1635 1494.8579 1495.5520 

ω3 
DTM ( N =50) 3918.5378 3653.2225 3653.5449 3653.8672 

NAT 3918.5373 3653.2219 3653.5443 3653.8664 

ω4 
DTM ( N =56) 6098.9910 5217.9438 5218.3762 5218.8061 

NAT 6098.9919 5217.9431 5218.3753 5218.8072 

ω5 
DTM ( N =60) 10574.6797 9163.0789 9163.7748 9164.4671 

NAT 10574.6788 9163.0782 9163.7733 9164.4684 

mn , I0,s 

ω1 
DTM ( N =38) 281.2446 278.9596 280.3356 281.7069 

NAT 281.2446 278.9596 280.3351 281.7057 

ω2 
DTM ( N =46) 1352.4144 1329.7706 1330.3570 1330.9435 

NAT 1352.4144 1329.7707 1330.3567 1330.9427 

ω3 
DTM ( N =50) 2775.1731 2710.5750 2710.9296 2711.2840 

NAT 2775.1730 2710.5757 2710.9289 2711.2822 

ω4 
DTM ( N =56) 5591.9247 5041.3045 5041.8237 5042.3400 

NAT 5591.9250 5041.3044 5041.8229 5042.3411 

ω5 
DTM ( N =60) 6008.5274 5390.4820 5390.9623 5391.4421 

NAT 6008.5288 5390.4821 5390.9625 5391.4425 

 
Table 11 The first five natural frequencies of the cantilever Timoshenko beam with three changes in cross-

sections and carrying three lumped mass and/or three rotary inertias for different values of Nr 

Attachments 

mn , I0,s 

(n=s=1, 2, 3) 

ωα 

(rad/sec) 
METHOD 

(BEBT) 

Nr=0.00 

(TBT) 

Nr=0.00 Nr=0.10 Nr=0.20 

mn 

ω1 
DTM ( N =42) 42.8529 42.7712 44.0625 45.3068 

NAT 42.8529 42.7712 44.0623 45.3060 

ω2 
DTM ( N =50) 565.9431 550.9221 552.8258 554.7207 

NAT 565.9431 550.9222 552.8252 554.7216 

ω3 
DTM ( N =54) 2253.8761 2140.9554 2141.8722 2142.7894 

NAT 2253.8760 2140.9552 2141.8725 2142.7889 

ω4 
DTM ( N =62) 5393.5935 4869.4082 4869.8660 4870.3239 

NAT 5393.5936 4869.4086 4869.8652 4870.3233 
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Table 11 Continued 

mn ω5 
DTM ( N =70) 9032.8189 7901.7277 7902.2209 7902.7147 

NAT 9032.8188 7901.7281 7902.2219 7902.7136 

mn , I0,s 

ω1 
DTM ( N =42) 42.5326 42.4532 43.7250 44.9495 

NAT 42.5325 42.4532 43.7245 44.9486 

ω2 
DTM ( N =50) 541.0259 527.6540 529.5587 531.4584 

NAT 541.0257 527.6543 529.5596 531.4576 

ω3 
DTM ( N =54) 1842.1150 1794.8317 1795.6731 1796.5188 

NAT 1842.1149 1794.8308 1795.6741 1796.5176 

ω4 
DTM ( N =62) 3258.3858 3183.9040 3184.3599 3184.8190 

NAT 3258.3856 3183.9040 3184.3606 3184.8173 

ω5 
DTM ( N =70) 6264.6768 5771.7279 5772.2815 5772.8324 

NAT 6264.6763 5771.7275 5772.2807 5772.8338 

 
Table 12 The first five natural frequencies of the free-clamped Timoshenko beam with three changes in 

cross-sections and carrying three lumped mass and/or three rotary inertias for different values of Nr 

Attachments 

mn , I0,s 

(n=s=1, 2, 3) 

ωα 

(rad/sec) 
METHOD 

(BEBT) 

Nr=0.00 

(TBT) 

Nr=0.00 Nr=0.10 Nr=0.20 

mn 

ω1 
DTM  42N  363.6915 359.9651 360.8453 361.7224 

NAT 363.6915 359.9651 360.8453 361.7221 

ω2 
DTM  48N  1163.4392 1134.2011 1135.5040 1136.8068 

NAT 1163.4392 1134.2011 1135.5048 1136.8061 

ω3 
DTM  54N  2475.7427 2299.7289 2300.6600 2301.5925 

NAT 2475.7426 2299.7284 2300.6597 2301.5911 

ω4 
DTM  60N  5309.9510 4769.6919 4770.1627 4770.6339 

NAT 5309.9511 4769.6918 4770.1621 4770.6323 

ω5 
DTM  68N  8287.2256 6254.2770 6254.6019 6254.9258 

NAT 8287.2252 6254.2775 6254.6012 6254.9247 

mn , I0,s 

ω1 
DTM  42N  354.2023 350.9590 351.7977 352.6330 

NAT 354.2023 350.9588 351.7981 352.6338 

ω2 
DTM  48N  1107.5328 1081.4575 1082.5648 1083.6685 

NAT 1107.5324 1081.4581 1082.5640 1083.6674 

ω3 
DTM  54N  2178.5565 2102.0149 2103.0623 2104.1108 

NAT 2178.5562 2102.0143 2103.0620 2104.1099 

ω4 
DTM  60N  3449.9718 3251.7054 3252.1549 3252.6048 

NAT 3449.9718 3251.7049 3252.1543 3252.6040 

ω5 
DTM  68N  6328.3044 5597.5224 5598.0364 5598.5523 

NAT 6328.3042 5597.5229 5598.0372 5598.5514 
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6. Conclusions 
      

In this study, the frequency values and the mode shapes for free vibration of the axial-loaded 

Timoshenko multiple-step beam carrying a number of intermediate lumped masses and/or rotary 

inertias are investigated by using DTM and NAT. In three numerical examples, the frequency 

values are determined for Timoshenko beams with/without the axial force effect and these values 

are presented in the tables. The frequency values obtained for the Timoshenko beams without the 

axial force effect are less than the values obtained for the Bernoulli-Euler beams, as expected, 

since the shear deformation is considered in Timoshenko beam theory. The increase in the values 

of axial force also causes an increase in the frequency values for three different boundary 

conditions. 

It can be seen from the tables that the frequency values show a very high decrease as a lumped 

mass is attached to the beam. The rotary inertias have significant influence on the first five natural 

frequencies of the axial-loaded Timoshenko multiple-step beam with pinned-pinned, clamped-free 

and free-clamped boundary conditions. The first five natural frequencies and the associated mode 

shapes of the pinned-pinned, clamped-free and free-clamped Timoshenko beam carrying a number 

of lumped masses together with their rotary inertias are different from the corresponding ones of 

the same beam carrying the same lumped masses only for Nr is being constant. 

The essential steps of the DTM application includes transforming the governing equations of 

motion into algebraic equations, solving the transformed equations and then applying a process of 

inverse transformation to obtain any desired natural frequency. All the steps of the DTM are very 

straightforward and the application of the DTM to both the equations of motion and the boundary 

conditions seem to be very involved computationally. However, all the algebraic calculations are 

finished quickly using symbolic computational software. Besides all these, the analysis of the 

convergence of the results show that DTM solutions converge fast. When the results of the DTM 

are compared with the results of NAT, very good agreement is observed.  
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Appendix 
 

The details for the application of Hamilton’s principle and the derivation of the equations of 

motion are presented below. 

The virtual kinetic energy δVi and the virtual potential energy δПi can be written for i
th 

segment 

of an axial-loaded Timoshenko multiple-step beam as 
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The equations of motion for an axial-loaded Timoshenko multiple-step beam are derived by 

applying Hamilton’s principle, which is given by 
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where 

iii,g VL                                                            (A.4) 

is termed as the Lagrangian density function. 

By taking the variation of the Lagrangian density function; integrating Eq. (A.3) by parts, and 

then collecting all the terms of the integrand with respect to δyi(xi,t) and δθi(xi,t), one can derive the 

following equations of motion as the coefficients of  δyi(xi,t) and δθi(xi,t) 
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