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Abstract.  The wind-induced dynamic response of large-span flexible structures includes two important 
components-background response and resonant response. However, it is difficult to separate the two 
components in time-domain. To solve the problem, a relational expression of wavelet packet coefficients 
and power spectrum is derived based on the principles of digital signal processing and the theories of 
wavelet packet analysis. Further, a new approach is proposed for separation of the background response 
from the resonant response. Then a numerical example of frequency detection is provided to test the 
accuracy and the spectral resolution of the proposed approach. In the engineering example, the approach is 
applied to compute the power spectra of the wind-induced response of a large-span roof structure, and the 
accuracy of spectral estimation for stochastic signals is verified. The numerical results indicate that the 
proposed approach is efficient and accurate with high spectral resolution, so it is applicable for power 
spectral computation of various response signals of structures induced by the wind. Moreover, the 
background and the resonant response time histories are separated successfully using the proposed approach, 
which is sufficiently proved by detailed verifications. Therefore, the proposed approach is a powerful tool 
for the verification of the existing frequency-domain formulations. 
 

Keywords:  background response; large-span flexible structure; power spectral analysis; resonant 

response; wavelet packet transform; wind-induced response 

 
 
1. Introduction 
 

In the research
 
field of structural wind engineering, the wind-induced response is usually 

divided into three parts: the mean response, the background component, and the resonant 

component. This processing method is widely used in wind-resistant analysis of structures and 

determination of equivalent static wind loads (Chen and Zhou 2007, Holmes 2002, Li et al. 2011, 

Yang et al. 2013), because the method helps to reveal the mechanism of wind effects on structures. 

As a basic method for wind-induced response analysis of structures, the frequency-domain method 

is based on linear assumptions and able to obtain the formulations for the power spectra of 

background response, resonant response, and total response, respectively. In a word, the 

frequency-domain representations of the three types of stochastic responses can be derived using 

this method. 
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It should be noted that the correctness of the frequency-domain theory needs to be validated 

due to the great efforts made to derive the formulations and develop the corresponding computer 

program. However, the subject of validating the frequency-domain method is seldom involved in 

literature. In particular, the problem of how to validate the power spectra formulations of 

background response and resonant response respectively remains unanswered. On the other hand, 

the frequency-domain method has obvious limitations. For example, this method is not applicable 

for the wind-induced response analysis of the spatial structures with large span, light weight, and 

complex shape. Under this circumstance, the time-domain method is employed to take into 

account the nonsteady and the nonlinear factors. The time-domain analysis results-the time 

histories of various responses-can be decomposed into the mean response and the fluctuating 

response. And then, by power spectral analysis of the fluctuating response samples, the energy 

distribution features of structural vibration can be shown and known. Since both the time-domain 

and the frequency-domain methods can result in the power spectra of the wind-induced responses, 

the comparison of the numerical results obtained by these two methods respectively is an effective 

approach to verification of the correctness of the frequency-domain method. As mentioned earlier, 

the three types of stochastic responses including the time histories of the background and resonant 

components are the source data for power spectral estimation when using the time-domain method. 

However, it is difficult to extract the time histories of the background and resonant components 

from the fluctuating response, which needs to be solved. 

In order to validate the correctness of the frequency-domain method, the power spectral 

estimation of a stochastic response time history is an important step, and there are various kinds of 

methods for this purpose, in which the methods based on fast Fourier transform (FFT) are well 

established and widely utilized in engineering. However, the FFT-based methods have limitations, 

e.g., they are only applicable for steady signals and unable to give consideration to both the higher 

and the lower frequency components of the signal because the resolution is fixed. The theory of 

signal processing can be applied to wind-resistant analysis of engineering structures. According to 

the theory of stochastic vibration, the question of whether the structural response is stationary 

depends on the properties of the structural system and the excitation. For example, when a 

nonlinear structure is subjected to nonstationary wind loads, the stochastic response will be 

nonlinear and nonstationary (Clough and Penzien 2003). In such case the traditional FFT-based 

methods are not suitable for analysis. Fortunately, a new set of time-frequency analysis tools-the 

wavelet analysis methods-have been created and developed, which can be applied to structural 

wind engineering (Aksoy et al. 2004, Kitagawa and Nomura 2003, Terradellas and Morales 2001). 

The wavelet analysis provides an auto-adaptive time-frequency window, whose time scale is wider 

at a lower frequency band; in contrast, the time scale is narrower at a higher frequency band. Such 

features make the wavelet methods very suitable for time-frequency analysis of wind-induced 

response signals containing both stationary and nonstationary segments. It is known that the 

wavelet transform can be classified into the continuous wavelet transform, the discrete wavelet 

transform, and the wavelet packet transform. Compared with the other two types, the wavelet 

packet transform has the advantages such as fine division of frequency band and high efficiency. 

Moreover, as a type of time-frequency transform, it stores the necessary information in 

time-domain, so it enables us to extract the background and the resonant component time histories 

from a total response signal. Therefore, the wavelet packet transform is superior for the wind 

response analysis of large-span flexible structures. 

In this paper, the relation between wavelet packet transform and power spectrum is derived 

based on the principle of digital signal processing and the theory of wavelet analysis. Further, a 
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new approach is proposed for separation of the background response from the resonant response. 

The proposed approach is applied to analysis of wind-induced response signals of a large-span 

roof structure, and the power spectra of various responses are obtained. Then the ratios of the 

background/resonant response variance to total-response variance are determined. Finally, the 

background and the resonant signals are extracted successfully from the fluctuating response 

signal. The above results prove the effectiveness of the proposed approach. 

 
 
2. Fundamentals of wavelet packet analysis 

 

A subspace 
n
jU  corresponding to frequency band n of layer j is defined as the closure space of  

the function un(x), and let un(x) satisfy the two-scale equations (Percival and Walden 2000) 
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where {hk} and {gk} denote the coefficients of low-pass filter and the coefficients of high-pass 

filter, respectively. Using the above equations the spatial decomposition can be obtained 
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The cluster of functions {un(x)} constructed by Eq. (1) is called the wavelet packet which is 

determined by the basis function υ(x)=u0(x). The tree of wavelet packet decomposition is shown in 

Fig. 1. 

For a given signal, Mallat’s fast algorithm for wavelet packet decomposition is applied to 

compute the two series }{ 2, nj

ld  and }{ 12, nj

ld  from the known }{ ,1 nj

ld 
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where l, j, n are the parameters for translation, scale, and frequency band respectively, 
nj

ld 2,
 and 

12, nj

ld  are the wavelet packet coefficients in the subspaces 
n

jU 2
 and 

12 n

jU  respectively, and 

lkh 2 , lkg 2  are the coefficients of low-pass and high-pass filters, respectively.  
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Fig. 1 Three-layer tree of wavelet packet decomposition 
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3. Time-domain method for wind-induced response analysis of structures 
 

The substance of time-domain method for wind-induced response analysis is the nonlinear 

finite element analysis. The main steps are as follows:  

(1) The wind pressure time series are obtained through the synchronous pressure measurement 

on a rigid model of the structure in an atmospheric boundary layer wind tunnel.  

(2) The structure is discretized as finite elements, and wind pressure is applied to the 

corresponding element. Then the nodal displacement, velocity, and acceleration at each time-step 

are obtained by solving the differential equation of motion using the nonlinear finite element 

method. 

(3) On the basis of the statistical analysis of various response samples, the mean, the root mean 

square (RMS) and the spectral feature of response (i.e., nodal displacement and element stress or 

force) can be obtained. Further, the rules of structural vibration are concluded. 

The above steps are applicable to any structure subjected to any excitation and able to offer the 

whole-process information on structural dynamic response. Therefore the time-domain method is 

an effective approach for wind-induced response analysis of large-span flexible structures. 

 
 
4. Formulation of power spectrum based on wavelet packet decomposition for 
stochastic signals 

 

Let f(t) be a stochastic process, which is sampled with time interval Δt to obtain the series {fr}, 

where r is the time parameter. Setting W=exp(−i2π/N), where i is the imaginary unit and N is the 

number of data points, the Fourier transform of {fr} is 
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The auto-correlation function of {fr} is 
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where r is the time lag and −(N−1)≤r≤N−1. 

According to the Wiener-Khintchine theorem, there is a relation of Fourier transform between 

the correlation function and the power spectrum of the signal, so the spectral density function of 

{fr} is 
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where R(τ) is the correlation function. 

The above equation needs discretization. Setting ω=kΔω, τ=rΔt and Sk=S(kΔω)Δω, we can get 
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Substitution of Eq. (5) into Eq. (7) gets 
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Let t=s+r, then 
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Because the time series {fr} is of finite length, the upper bound and lower bound of the second 

summation sign in the above equation can be modified to get 
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where Fk is the Fourier transform of {fr}, and 
*

kF  denotes the conjugate complex number of Fk. 

Eq. (10) gives a power spectral computation method based on FFT, whose limitation is that 

only the transform for frequency domain is used without any resolution of time domain. To solve 

the problem, a time-frequency analysis tool-the wavelet packet transform-will be introduced in the 

following.  

There is Parseval’s formula (Mitra 2001) for the energy conservation theorem 
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where f(t) is the stochastic process, )(ˆ f  represents the continuous Fourier transform of f(t), ω 

represents the angular frequency component of f(t), and the overline denotes the conjugate 

complex. Then dt is replaced by Δt, dω is replaced by Δω, so 
ktFNf )(ˆ  , and the above 

equation is written in the discrete form 
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The wavelet packet decomposition with the layer j is applied to the signal f(t), and f(t) is 

expanded using the wavelet packet basis as 
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where cn,k is the wavelet packet coefficient, and Zk
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 is the normalized orthogonal basis 

in the subspace 
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jU . 

Substitution of Eq. (13) into Eq. (11) obtains 
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Using the orthogonal relations 
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where δkl is the Kronecker delta, Eq. (14) can be simplified as 
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When the frequency range of the signal is divided finely, i.e., the value of j is large, the 

variation of Sk in each frequency band n (0≤n≤2
j
−1) is so small that it can be regarded as a constant 

Gn. Taking )2//( j

k

kn NSG  , we can get the equation from Eq. (12) 
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By wavelet packet decomposition of the signal to the layer j, the total energy of the signal can 

be decomposed into the energy components corresponding to the different frequency bands, then 

from Eqs. (16)-(17), the energy component corresponding to the frequency band n can be 

expressed as 
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Therefore the power spectrum of the signal f(t) is 
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Eq. (19) offers a new form to express the power spectrum of stochastic signals, where the 

coefficient cn,k has two subscripts-the frequency band number n and the translation parameter k, 

which denote the frequency and the time, respectively. Using such advantage of time-frequency 

representation, the background and the resonant response time histories can be extracted from the 

response signal of the structure. 

 
 
5. A numerical approach for separation of background component from resonant 
component 

 

On the basis of the work of the above section, a new approach is proposed for separation of 

background component from resonant component in time domain. The detailed procedures are as 

follows: 

(1) The wind-induced response analysis of structure is performed using the time-domain 

method. 

(2) The wavelet basis function and the layer of wavelet packet decomposition are selected. 

(3) The wavelet packet decomposition is applied to the displacement (or internal force) time 

history f(t) of a node (or an element) to obtain the wavelet packet coefficients cn,k, and the power 
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spectral density of the signal is determined by Eq. (19). 

(4) The response time history f(t) can be expressed as the summation of the mean response μf  

and the fluctuating response )(
~

tf  with zero mean. Let fs be the sampling frequency of f(t), and  

then the frequency interval of power spectrum is [0, πfs] (rad/s). Further, the frequency dividing 

point ωb between background response and resonant response is determined reasonably (Zhou and 

Gu 2010), which will be demonstrated by the engineering example. Let ωb be located in the 

frequency band numbered nb, and the background and resonant response time histories are 

obtained using the reconstruction technique of multiple frequency bands, namely 
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where fb(t), fr(t) denote the background and resonant response time histories, respectively, ci,k is the  

wavelet packet coefficient, )(, tkj

i is the wavelet function, and i,j,k are the parameters for  

frequency band, scale, and translation, respectively. 

(5) Procedures (3)-(4) are repeated for other node or element until the separations of 

background and resonant responses are finished for all the displacements of nodes or internal 

forces of elements of the structure.  

 
 
6. Verification criteria for power spectral estimation of stochastic signals 

 

The various signals in engineering can be classified into two types: the determinate signal and 

the stochastic signal. For a determinate signal, e.g., the sine or cosine signal, the spectral curve can 

be verified intuitively because only a few frequency components are contained. However, for a 

stochastic signal, it is difficult to judge the truth of the spectral curve, so a reasonable and effective 

method is required for verification of the power spectrum. Here two criteria based on the statistics 

of the signal are proposed. 

(1) RMS criterion: the RMS obtained by the power spectrum should equal the standard 

deviation of the signal, i.e. 

   1std    fS
i

i
                          (21) 

where std({f}) is the standard deviation of structural response signal, {Si} is the spectral series, Δω  

is the frequency increment, ɛ1 is a small enough tolerance. If {f} is the background or resonant 

response signal, the spectral curve for the background or resonant response can also be verified. 

(2) Correlation function criterion: it is known from Eq. (6) that the correlation function values at 

different time lags can be obtained by inverse Fourier transform (IFT) of the power spectrum, and 

the value should equal that obtained by statistical analysis of the signal, i.e. 
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where IFT({Si},r) denotes the correlation function value at time lag r obtained by IFT of the series 

{Si}, and ɛ2 is a small enough tolerance. 

 
 
7. A numerical example of frequency detection 

 

The emulational signal is a combinative function with two frequencies which are very close to 

each other 

)cos(2π+)sin(2π=)( 21 tftfts  

where f1=1.5 Hz, f2=1.56 Hz, and the sampling interval Δt=0.15s. The waveform of the signal is 

shown in Fig. 2. In the wavelet packet analysis, the coif4 wavelet function is used, and 

decomposition layer j=8. As a result, the spectrum is shown in Fig. 3. 

 

 

0 5 10 15 20 25 30
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t/s

s (
t )

 
Fig. 2 Waveform of double-frequency signal 
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Fig. 3 Spectrum of double-frequency signal 
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Table 1 Results of frequency detection (Hz) 

 Wavelet function f1 f2 

Given value  1.500 1.560 

Detected value 
coif4 1.504 1.556 

sym6 1.501 1.559 

 

 
(a) Elevation 

Diagonal strut

Lower compression ring

Tension ring

Typical node/element

Upper 

radial cable

Upper 

compression ring

Lower 

radial cable

 
(b) Plan 

Fig. 4 Cable-membrane structure 

 

 

As seen in Fig. 3, the two highest spectral peaks corresponding to the two frequency 

components separate from each other distinctly, which indicates a high spectral resolution. Besides 

the detected frequency components, several small-amplitude side lobes are formed naturally. It can 

be known by analysis that the location of side lobe is relevant to the neighboring major frequency. 

Further, two wavelet functions are selected respectively to compute the spectrum, and comparisons 

of the given frequency and the detected value by spectral analysis are shown in Table 1. It is seen 

that the frequency components are detected accurately using the proposed approach.  

 
 
8. Engineering example 

 

The roof structure of the Foshan Century Lotus Stadium as shown in Fig. 4 is a typical tensile  
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Table 2 Lower-order natural frequencies of the cable-membrane structure 

Order No. 1 2 3 4 5 6 

Frequency (Hz) 0.7586 0.8690 0.8690 0.9658 0.9809 0.9809 
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(a) Logarithmic scale (b) Linear scale 

Fig. 5 Auto-spectrum of wind pressure acting on typical node A 

 

 

cable-membrane structure. The horizontal projection is annular and covers 63000 m
2
 with outside 

diameter of 310 m and inside diameter of 125 m. As the skeleton of the roof structure, a cable-net is 

composed by the inner tension ring, upper radial cables, lower radial cables, and hanger cables. 

Also, the difference in height of the two compression rings is 20 m. Therefore, a stable structural 

system is formed by the exterior compression rings, the interior tension ring, various cables, and 

membrane to carry deadweight and wind loading. The roof structure is connected to the 

infrastructure via 40 prestressed concrete pillars. 

The wind pressure time histories acting on the prototype roof are obtained according to the 

wind tunnel experiment on the roof model (Wacker 2004). Form-finding analysis and 

wind-induced vibration analysis are performed using the Strand7 software, and the finite element 

model is shown in Fig. 4. Also, the lower-order natural frequencies are captured by modal 

analysis, shown in Table 2. 

To investigate the power spectral characteristics of wind pressure, the auto-spectrum of the 

pressure acting on typical node A of the roof is plotted according to experimental data in Fig. 5. 

Further, the spectral curve is smoothed to show the tendency more clearly. 

As shown in Fig. 5, the typical wind pressure spectrum is decreasing, whose energy is 

distributed on the lower frequency band of [0, ωu], where ωu is a proper upper cut-off frequency 

beyond which the spectral value is regarded as zero.  

Using the proposed approach, the power spectra of the structural response are computed, and the 

background and resonant response time histories are extracted. The parameters are taken as: 

sampling interval Δt=0.2s, wavelet function is db5, and decomposition layer j=10. The results are 

given in the following. 
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(a) Displacement of Node NU (b) Displacement of Node NL 
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(c) Displacement of Node TR (d) Axial force of Element CU 
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(e) Axial force of Element CL (f) Major principal stress of Element M 

Fig. 6 Response power spectra of typical nodes and elements 

 

 

8.1 Response power spectra 
 

The response power spectra (variance-normalized spectra) of the typical nodes and elements 

(see Fig. 4) are shown in Fig. 6. Figs. 6(a)-(c) are displacement spectra, and (d)-(f) are internal 

force spectra. 

As shown in Fig. 6, the spectral curves of the six types of responses are similar in shape: each 

curve can be divided into two parts, i.e., the monotone decreasing curve at lower frequency band 

and the small-amplitude spectral peaks at higher frequency band. Because structural displacements 

are the solutions of the equation of motion, the features of displacement power spectra provide 
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scientific basis for determination of the frequency dividing point ωb between the background 

response and the resonant response. In order to determine the value of ωb more reasonably, the 

following factors are considered: 

(1) The displacement spectral curves shown in Figs. 6(a)-(b) are typical for the wind-induced 

response. It is noted that the shape of the monotone decreasing part of each displacement spectral 

curve is very similar to that of the wind pressure spectrum shown in Fig. 5, which indicates the 

quasi-static effect of the fluctuating wind pressure, namely the background response, so the point 

for ωb should be located in the connection of the two parts of the spectral curve.  

(2) The frequency band [0, ωb] should contain most of the energy (e.g., 95%) of the wind 

pressure spectrum. In other words, ωb can be regarded as the upper cut-off frequency ωu of the 

wind pressure spectrum. 

(3) By modal analysis of the structure (see Table 2) we know the first-order frequency 

ω1=2πf1=4.766 rad/s, and ωb should be less than ω1. 

Considering the above three factors we obtain the value of frequency dividing point as 

ωb=4.50rad/s. 

 

8.2 Power spectral verification 
 

The accuracy of the computed power spectrum is verified using the proposed criteria, shown in 

Table 3 and Fig. 7. 

 

 
Table 3 Verification of RMS response 

Response type RMS From power spectrum From time history 

Displacement of tension ring (m) 

σb
*
 5.562E-02 5.577E-02 

σr 4.260E-02 4.222E-02 

σ 7.006E-02 6.995E-02 

Axial force of upper radial cable (kN) 

σb 119.4 118.8 

σr 104.7 104.2 

σ 158.9 158.0 

σb: The root mean square (RMS) of background response; σr: The RMS of resonant response; σ: The RMS 

of total response. 
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(a) Displacement of node of upper radial cable (b) Axial force of upper radial cable 

Fig. 7 Verification of correlation functions 
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Table 4 Ratio of the background/resonant variance to total variance 

Response type 
22

b /  22

r /  

Displacement of node of upper radial cable 0.653 0.347 

Displacement of node of lower radial cable 0.630 0.370 

Displacement of node of tension ring 0.683 0.317 

Axial force of upper radial cable 0.572 0.428 

Axial force of lower radial cable 0.477 0.523 

Major principal stress of membrane 0.444 0.556 

 

 

As seen in Table 3, the RMS response obtained by quadrature of power spectrum approximates 

the corresponding sample statistic. As shown in Fig. 7, the correlation function obtained by IFT of 

power spectrum coincides well with that from statistical analysis of sample. The above results 

indicate that the power spectrum computed by the proposed approach truly reveals the rules of 

energy distribution for the stochastic signal, i.e. the computed spectrum is accurate.  

 
8.3 Background and resonant response time histories 
 

We can get herein the ratio of background variance to total variance 22
b /  and the ratio of 

resonant variance to total variance 22

r /  based on the power spectra, shown in Table 4. 

As seen in Table 4,
 
the ratio of background/resonant variance to total variance varies with the 

response type. As stated previously, the displacement power spectra show the basic features of 

structural vibration, and the results of the three types of displacements indicate that the 

background response is primary, and that the resonant response is secondary for the large-span 

cable-membrane structure. This conclusion is consistent with that from the related research (Wu et 

al. 2008). 

Before discussing the background response and the resonant response time histories, a residual 

is defined as 

)()()()( rb tftftftr ff                          (23) 

where μf is the mean response, fb(t) and fr(t) are the background and the resonant responses 

respectively, f(t) is the total response, rf(t) is the residual. 

The displacement sample of typical node NU is taken for example to verify the accuracy of the 

proposed approach. First, the background and resonant components are extracted from the total 

displacement time history using the proposed approach; second, the residual is computed by Eq. 

(23); third, the wavelet packet transforms are applied to the background and the resonant signals 

respectively, and the power spectra are computed by Eq. (19); finally, the results are plotted in Fig. 8. 

As shown in Fig. 8, the residual is much less than any of the response time histories, so it is 

regarded as zero. In other words, the extracted background and resonant responses can be used to 

reconstruct the total response time history accurately. As for the spectral features of the two 

extracted components, it is seen that the power spectrum of the background response covers the 

lower frequency range of [0, 4.4792]. In contrast, the power spectrum of resonant response covers 

the higher frequency range of [4.4792, 12.088]. Both of the spectral curves of the extracted 

components coincide perfectly with the corresponding parts of the total-response spectrum. 

Therefore, it has been fully proved that the extracted time histories shown in Figs. 8(b)-(c) are in 

619



 

 

 

 

 

 

Jing Li, Lijuan Li and Xin Wang 

truth the background and the resonant responses, respectively. 

The total displacement time history of another typical node TR and the corresponding mean 

response, background component, and resonant component are shown in Fig. 9. 

As shown in Figs. 8-9, the wind-induced response of structure has obvious nonstationary 

feature; the background response time history reflects the variational tendency of the fluctuating 

response (with zero mean) with time and has the low-frequency and nonstationary feature; in 

contrast, there are many sharp spikes in the resonant response time history, so the resonant 

response has the high-frequency and stationary feature. 
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(a) Total displacement time history (b) Background response time history 
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(c) Resonant response time history (d) Residual 
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(e) Spectrum of background response (f) Spectrum of resonant response 

Fig. 8 Separation of background and resonant response time histories and verifications of residual and 

power spectra for typical node NU 
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(a) Displacement time history (b) Mean response 
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(c) Background response time history (d) Resonant response time history 

Fig. 9 Displacement time history of typical node TR and its background and resonant components 

 
 
9. Conclusions 

 

The time-domain method is applicable for wind-induced dynamic response analysis of flexible 

structures. For large-span structures, the power spectral analysis of a large number of response 

signals is required. On the other hand, it is difficult for implementation of the time-domain method 

to separate the background and resonant response time histories from each other. Through the 

research work of this paper, it is found that the wavelet packet transform can be applied for 

accurate and efficient computation of power spectra of response signals. Also, taking advantage of 

the time-frequency transform, the background and the resonant response time histories are 

extracted successfully from the total-response signal.  

In this paper, the essential linkage between wavelet packet analysis and power spectrum is 

revealed by derivation of equations. On this basis, a new approach is proposed for power spectral 

computation of wind-induced response and separation of background response from resonant 

response. Also, verification criteria of power spectrum are proposed. Further, an engineering 

example is adopted to illustrate the proposed approach. The conclusions can be summarized as 

follows. 

(1) The frequency range of a signal can be finely divided using the wavelet packet transform to 

realize the uniform high resolution in the whole frequency range. For the determinative signals, the 

frequency components contained in the signal are detected accurately and distinguished clearly 

even if they are very close in value. 

(2) For the wind-induced response signal (stochastic signal), it is proved by the two criteria that 
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the power spectral curve obtained by the proposed approach truly describes the rules of energy 

distribution of the signal, which indicates the high accuracy of the power spectrum. Meanwhile, 

the application of Mallat’s fast algorithm in wavelet packet decomposition ensures the high 

efficiency of computation. Because the proposed approach is both accurate and efficient, it is 

advantageous for power spectral analysis of various responses of large-span flexible structures. 

(3) When the wavelet packet transform is used to compute the power spectrum of the signal, 

the information in time-domain is still retained taking advantage of the time-frequency transform 

of wavelet packet analysis. Therefore the wavelet packet analysis of the structural response signal 

is an effective approach to separation of background and resonant response time histories. 

(4) Both the background response and the resonant response are not negligible for large-span 

flexible structures. The ratio of background/resonant variance to total variance varies with the 

response type. The numerical results show that the background response is larger than the resonant 

response for large-span cable-membrane structures, and the wind-induced response has the 

features of wide band and forced vibration. 

(5) The background response time history reflects the variational tendency of the zero-mean 

fluctuating response with time and has the low-frequency and nonstationary feature. In contrast, 

the resonant response time history has the high-frequency and stationary feature. 
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