
 

 

 

 

 

 

 

Structural Engineering and Mechanics, Vol. 53, No. 3 (2015) 575-587 

DOI: http://dx.doi.org/10.12989/sem.2015.53.3.575                                                                                       575 

Copyright ©  2015 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sem&subpage=8               ISSN: 1225-4568 (Print), 1598-6217 (Online) 
 

 

 

 

 
 
 

Vibration of sumberged functionally graded cylindrical shell 
based on first order shear deformation theory using wave 

propagation method 
 

Hossein Farahani
1 and Farzan Barati2a 

 
1
Department of Mechanics, College of Engineering, Hamedan Science and Research Branch, Islamic Azad 

University, Hamedan, Iran 
2
Department of Mechanical Engineering, Islamic Azad University, Hamedan Brunch, Hamedan, Iran 

 
(Received June 15, 2014, Revised November 10, 2014, Accepted December 16, 2014) 

 
Abstract.  This paper focuses on vibration analysis of functionally graded cylindrical shell submerged in an 
incompressible fluid. The equation is established considering axial and lateral hydrostatic pressure based on 
first order shear deformation theory of shell motion using the wave propagation approach and classic Flügge 
shell equations. To study accuracy of the present analysis, a comparison carried out with a known data and 
the finite element package ABAQUS. With this method the effects of shell parameters, m, n, h/R, L/R, 
different boundary conditions and different power-law exponent of material of functionally graded 
cylindrical shells, on the frequencies are investigated. The results obtained from the present approach show 
good agreement with published results. 
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1. Introduction 
 

Due to the increasing demands for high structural performances, the study of functionally 

graded materials in structures has received considerable attention in recent years (Farahani et al. 

2014). Cylindrical shells in contact with fluid are the practical element of many types of 

engineering structures, such as pressure vessels, oil tankers, aero planes, ships, nuclear reactors 

and marine crafts and any types of engineering structures that are affected in high temperatures. 

Recently several researches have been carried out on analysis of FGM cylinders submerged in 

acoustic media. Loy et al. (1999) studied the vibration characteristics of cylindrical shells 

structured from functionally graded material. They deduced that the behavior of FGM cylindrical 

shells is similar to that of isotropic ones, but the two configurations of the shells affect their natural 

frequencies. The dynamic characteristics of a circular cylindrical shell in contact with a liquid are 

theoretically studied by Askaria and Jeongb (2010). In their paper the liquid is assumed to be 

incompressible and inviscid, the liquid motion be described as the velocity potentials written in  
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Fig. 1 Coordinate system of Functionally graded cylindrical shell 

 

 

terms of the appropriate Bessel functions for both the inner and the outer liquid regions. Kenji 

Saijyou (2006) precented the relationship between the dominant mode of the submerged thin 

cylindrical shell and the flexural wave velocity and the natural frequencies corresponding to the 

vibration mode is obtained as the solution of characteristic equation of thin cylindrical shell. A 

submerged evacuated circular cylindrical shell subjected to a sequence of two external shock 

waves generated at the same source is considered by Iakovleva et al. (2013). They used classical 

methods of mathematical physics with the finite-difference methodology for employed to simulate 

the interaction. Sharma et al. (1998) have analyzed frequency response of vertical cantilever 

composite shells containing fluid. Amabili (1996, 1999) has investigated free vibrations of circular 

cylindrical shells and tubes completely and partially filled with a dense medium and partially 

immersed in a different fluid having a free surface. Askari et al. (2011) investigated the effects of a 

rigid internal body on bulging and sloshing frequencies. Zhang et al. (2001a, b) studied the 

vibration characteristics of empty and fluidfilled cylindrical shells. Koo et al. (2002) proposed a 

simpler approach for the interface boundary Condition by placing a virtual rigid-wall between the 

external and internal fluids in the gap. Zhang (2002) employed the wave propagation approach to 

investigate the coupled frequency of submerged cylindrical shells in a dense medium. Kwak et al. 

(2011) carried out a theoretical study on a clamped-free thin cylindrical shell partially submerged 

in a fluid and found that the natural frequencies of the shell decreased significantly with the risein 

the water level. Arshad et al. (2010) analyzed the natural frequencies of the bi-layered cylindrical 

shells with layers of different materials. The layers of the shell were structured from isotropic as 

well as functionally graded materials. 

In this paper vibration analysis of functionally graded cylindrical shell submerged in an 

incompressible fluid is precented. Initially the stability equations considering axial and pressure of 

fluid obtained based on first order shear deformation theory of shell motion using the wave 

propagation approach and classic Flugge shell equations. To study accuracy of the present 

analysis, a comparison carried out with a known data and the finite element package ABAQUS. 

And finally effects of shell parameters and diferent boundary conditions on the natural frequencies 

are investigated. 

 

 

2. Formulation 

 

2.1 Material properties  

576



 

 

 

 

 

 

Vibration of sumberged functionally graded cylindrical shell based on first order shear... 

The Functionally graded cylindrical shell as shown in Fig. 1 that is assumed to be thin and of 

uniform thickness. It is of length L, thickness h, and radius R, Yong’s modulus E, Poisson’s ratio 

υ, and density ρT, is considered to be submerged in a fluid of density ρc where the velocity of 

sound is cf .  

The cylindrical coordinates system (x, φ, z) is applied in our work to define the position of 

points in the region. The coordinate axis x is chosen to coincide with the cylindrical shell 

centerline, while the coordinate axes z and φ respond to the radial and circumferential directions 

respectively. The displacements of shell are defined by u, v, w in the coordinates system (x, φ, z) 

respectively. 

For a functionally graded material with two constituent materials, the Youngs modulus E, 

Poisson ratio υ and the mass density ρ are (Loy et al. 1999) 
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Where N is the power-law exponent, 0≤N≤∞, from these equations, when z=−h/2, E=E2, υ=υ2 

and ρ=ρ2, and when z=h/2, E=E1, υ=υ1 and ρ=ρ1. The material properties vary continuously from 

material 2 at the inner surface of the cylindrical shell to material 1 at the outer surface of the 

cylindrical shell. In the next section, a formulation, based on First order shear deformation theory 

and the classic Flugge shell equations (Flügge 1973), for a functionally graded cylindrical shell is 

carried out. 

 
2.2 Motion equations of the shell and fluid 
 

The problem of the cylindrical shell is three-dimensional and is transformed into a two-

dimensional problem by assuming the plane stress condition, i.e., the strain and stress components 

are neglected in the z-direction. First order theory is used to deal with the influence of shear forces 

on the frequencies of the thick shell. According to the theory the displacement fields are 
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 (2) 

Where u0, v0, w0, ϕx and ϕφ are unknowns to be determined and also are the displacements on 

the surface z=0 and the rotations of transverse normal about its φ and x axis respectively. 

The constitutive relations for a thin cylindrical shell are stated by the two dimensional Hooke’s 

law as (Loy et al. 1999) 
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Qij (i, j=1, 2, 6) are the reduced stiffnesses, and for isotropic materials they are expressed as 
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From Love’s shell theory (Love 1952), the components in the strain vector {ε} are defined as 
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Where ε1, 
ε2 and γ are the reference surface strains, and k1, k2 and τ are the surface curvatures. 

These surface strains and curvatures are defined as 
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The force and moment resultants are defined as 
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Where 
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Where A, B, C, are 
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Governing shell motion equations are given by 
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(10) 

By substituting Eqs. (4)-(6), into Eq. (10), the equations of motion of the shell can be written 

with the displacement component u,v and w in a matrix form as 
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Where the differential operator Lij with respect to x and θ. 

The vibrational equations of cylindrical shell in which the hydrostatic pressure is modeled as 

the static prestress terms in the shell equations based on the classic Flugge shell equations (Flügge 

1973), can be rewritten as 
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Where Pm is the fluid acoustic pressure. 
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T1 and T2 including the impacts of the hydrostatic pressure which comprise of an axial 

strengthen component and a radial strengthen component and P0 is the external hydrostatic 

pressure.  

The equation of the motion of the fluid around the cylindrical shell is assumed non-viscous and 

isotropic which satisfy the acoustic wave equation can be written by Morse and Ingard (1968) in 

the cylindrical coordinate system (x, φ, r). 

Where P is the acoustic pressure and c is the sound speed of the fluid. The x and φ coordinates 

are the same as those of the shell, where According to Fig. 1 the r coordinate is taken from the z-

axis of the shell. 

 

 

3. Wave propagation method 
 

In the wave propagation approach the displacements of the shell are expressed in the format of 

wave propagation, associated with the longitudinal wave number kx and the circumferential modal 

parameter n and defined 
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Where Um, Vm and Wm are respectively the displacement amplitudes in x, φ, z directions, the 

rotation amplitudes of transverse normal about φ and x-axis, ω is circular frequency. 

The associated form of the acoustic pressure filed in the interior fluid, which satisfies the 

acoustic wave Eq. (15) can be expressed in the cylindrical coordinate system, associated with an 

axial wave number kx, radial wave number kr and circumferential modal parameter n, given as 
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Where Jn is the Bessel function of order n. This function is replace with second kind Hankel 

function of order n when considering exterior acoustic medium, then the acoustic pressure 

satisfying wave Eq. (17) given as 
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Where Pm is the fluid acoustic pressure amplitude; kr is the radial wave numbers respectively, 
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which have the relation 
2 2 2

0r mk k k   where k0=ω/cf that is the free wave number and (2)
nH  is the  

second kind of Hankel function. 

To ensure that fluid remains in contact with the shell wall, the fluid radial displacement and the 

shell radial displacement must be equal both at the interface of shell with outer wall and the fluid 

(Zhang 2001a, b). This coupling condition is then 
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Consequently, the above condition reduces to (Zhang et al. 2002) 
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Where ρc is the density of fluid and the prime on the '(2)
nH  denotes differentiation with respect 

to the argument krR. 

Substituting Eqs. (16), (17) or (18) into Eq. (12), with consideration of coupling Eq. (20) 

results in the equation of motion of coupled system in matrix form as 
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The elements of the matrix [L] is 
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Ω is the non-dimensionless frequency, 
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E

 
   , λ=kmR and FL is the fluid-loading 

term that for a submerged cylindrical shell is (Zhang et al. 2002) 
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When the FL term is removed, the frequency equation is reduced to the uncoupled cylindrical 

shell case. The eigenvalues in Eq. (21) are associated with the natural frequencies.  
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Table 1 Material properties of the cylindrical shell and surrounding fluid 

 E (N/m
2
) υ ρ (Kg/m

3
) c (m/s) 

Nickel 2.1×10
11

 0.3 8900 - 

Steel 2.1×10
11

 0.3 7850 - 

Water - - 1000 1500 

 
Table 2 Comparison of natural frequencies of a clamped/clamped viscoelastic cylindrical shell between 

ABAQUS, Love
,
s theory and present method (L/R=20, h/R=0.002, m=1) 

Order Modal shape 
Frequency(Hz) 

ABAQUS Love (Zhang et al. 2002) SYSNOISE (Zhang et al. 2002) Present 

1 (1,2) 5.00 4.95 4.92 5.21 

2 (1,3) 9.62 8.95 8.95 9.98 

3 (2,3) 11.22 10.66 10.66 11.36 

4 (2,2) 11.39 11.54 11.54 11.64 

5 (3,3) 15.18 14.73 14.73 14.98 

6 (1,4) 20.58 18.26 18.26 19.01 

7 (2,4) 20.96 18.71 18.71 19.47 

8 (3,4) 22.10 20.00 20.00 21.1 

 
 
4. Numerical result and discussion 

 
4.1 Material properties 
 

The material properties of the cylindrical shell and fluid as shown in Table 1. In the present 

study, the material is assumed to be functionally graded in the radial direction that nickel is taken 

at the outer surface and steel is at inner surface in the shell. 

 
4.2 Validation 
 

Variation of natural frequencies of a clamped/clamped viscoelastic cylindrical shell between 

ABAQUS, Love,s theory and present method are shown in Table 2 and Fig. 2 . According to Table 

1 and Fig. 2 the results with present theory are higher than those of Love’s theory and results of 

ABAQUS package and good agreement are seen. 

 

4.3 Results 
 

In Fig. 3, two frequency curves display the variations of natural frequencies of submerged and 

not submerged FGM cylindrical shells with the circumferential wave number n for simply 

supported boundary condition is shown. The axial wave number has been assumed to be equal to 

unity. It is clear from this figure that the frequencies of the cylindrical shell were considerably 

lowered by submerging it in fluid. 

Table 3 shows the variations of the natural frequencies with the circumferential wave numbers 

n for submerged FGM cylindrical shells. The influence of the value of N, which affects the  
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Fig. 2 Comparison of coupled natural frequencies of fluid-filled isotropic cylindrical shell between 

Loveʼs theory and present method (L/R=20, h/R=0.002, m=1) 

 
  

Fig. 3 Comparison of natural frequencies of submerged and not submerged thin FGM cylindrical shells 

for m=1, L/R=20, h/R=0.01 
 

 

constituent volume fraction, can be seen in Table. 3 and can be seen as N increased, the natural 

frequencies decreased. 

Due to results in Fig. 3 and Table 3, the difference between the frequency of not submerged 

and submerged FGM cylindrical shells is shown that the natural frequencies of submerged 

cylindrical shells are less than that of the natural frequencies of the not submerged cylindrical 

shells. The results shows that natural frequencies first decrease up to circumferential wave number 

n=2 and then increase concurrently with increase the values of n and the natural frequencies 

decreased when N increased. 
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Table 3 Comparison of natural frequencies (Hz) of submerged thin FGM cylindrical shells with 

circumferential wave number n for m=1, L/R=20, h/R=0.01 

n N=0.5 N=0.7 N=1 N=2 N=5 N=30 

1 10.2825 10.2316 10.1768 10.1118 10.0922 9.7263 

2 4.0678 3.9887 3.9511 3.8552 3.7663 2.9857 

3 8.5875 8.0795 8.0369 8.0132 8.0026 7.5432 

4 18.3616 18.2963 18.1233 18.0921 18.0472 17.4468 

5 30.9040 30.7813 30.5945 30.4987 30.2645 29.8654 
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Fig. 4 Comparison of natural frequencies of submerged thin FGM cylindrical shells with 

diffrence boundary condition. (m=1, L/R=0, h/R=0.01, N=0.5) 

 

 

In Fig. 4, variation of natural frequencies of submerged cylindrical shells have been showed 

with circumferential wave number n that the boundary conditions considered are simply-simply 

supported (S-S), clamped-clamped (C-C) and clamped-simply supported (C-S). 

The results in Fig. 4 shows that the influence of boundary conditions on the shell frequencies 

gets more pronounced by adding the extra constraints. The effects of boundary conditions can be 

seen to be more significant at small circumferential mode n than at large circumferential modes 

that the natural frequencies of the (C-C) cylindrical shell is clearer and has the highest natural 

frequencies at low circumferential wave number amongst the (C-S) and (S-S) boundary conditions. 

So that, at high circumferential wave number, boundary conditions have little effect on the natural 

frequencies, So that after n=3 the results are very close together. This results are near to the results 

of other research (See ( Zhang 2002, p. 1269)).  

In Fig. 5 and Fig. 6, the natural frequencies for a submerged FGM cylindrical shell against the 

circumferential wave numbers n are determined for nondimensional L/R and h/R, respectively with 

simply-simply supported (S-S) boundary condition.  
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Fig. 5 Comparison of natural frequencies of submerged thin FGM cylindrical shells with for 

different values of h/R ratios with shell parameters m=1, L/R=20 
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Fig. 6 Comparison of natural frequencies of submerged thin FGM cylindrical shells for 

different values of L/R ratios with shell parameters m=1, h/R=0.002 

 

 

The Fig. 5 show that as h/R is decreased, the frequencies also decrease. So that in smaller ratio 

of thickness to radius, for example in h/R = 0.002 the natural frequencies in subtle increase but in 

larger ratio of thickness to radius (especially as h/R = 0.05) from n=2 the frequencies have a 

further increase. This is the same behavior beholded for isotropic cylindrical shells as in the case 

of a shell with not sumberged in the fluid on the exterior surface of the shell. This means that the 

natural frequencies of thin shells are lower than that of the thick shells, which is similar to the 

classical results. 

The Fig. 6 show that as L/R is increased, the frequencies decrease. In variations as ratio of 

length the radius, whatever L/R ratios increases, the natural frequencies decreases. In all of the 
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ratio of length the radius, since n=2 observed that the frequencies are increased , so that after n=3 

the natural frequencies have a little differences. Where n is increased, the natural frequencies will 

be closer together. This means that the natural frequencies of long shells are lower than those of 

short shells. 

 

 

5. Conclusions 
 

A study on the vibration of submerged functionally graded circular cylindrical shells has been 

presented. The analysis was carried out with first order shear deformation theory of shell motion 

using the wave propagation approach and classic Flügge shell equations. The natural frequencies 

of the system under different hydrostatic pressures are obtained by solving the coupled dispersion 

equation.This pressure is studied by the acoustic wave motion equation in cylindrical coordinates. 

A validation of the analysis has been carried out by comparing results with those in the literature 

and ABAQUS packege and has found to be accurate. The difference between the frequency of not 

submerged and submerged FGM cylindrical shells is very prominent. Natural frequencies of 

submerged cylindrical shells are lower than that of the natural frequencies of the not submerged 

cylindrical shells. The natural frequencies of long shells are lower than those of short shells, 

whereas natural frequencies of thin shells are lower than that of thick shells, which is similar to the 

classical results. The influence of the value of N, which affects the constituent volume fraction, can 

be seen from the tables. As N increased, the natural frequencies decreased. Furthermore, the shell 

frequency is affected by the variation of power law exponent so that the shell frequency decreases 

initially and increases with the ascending power law exponent values submerged FGM cylindrical 

shells. 
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