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Abstract.  The rational analytical solutions are presented for functionally graded beams subjected to 
arbitrary tractions on the upper and lower surfaces. The Young’s modulus is assumed to vary exponentially 
along the thickness direction while the Poisson’s ratio keeps unaltered. Within the framework of symplectic 
elasticity, zero eigensolutions along with general eigensolutions are investigated to derive the homogeneous 
solutions of functionally graded beams with no body force and traction-free lateral surfaces. Zero 
eigensolutions are proved to compose the basic solutions of the Saint-Venant problem, while general 
eigensolutions which vary exponentially with the axial coordinate have a significant influence on the local 
behavior. The complete elasticity solutions presented here include homogeneous solutions and particular 
solutions which satisfy the loading conditions on the lateral surfaces. Numerical examples are considered 
and compared with established results, illustrating the effects of material inhomogeneity on the localized 
stress distributions. 
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1. Introduction 
 

In recent decades, functionally graded materials (FGMs) as a new generation of 

inhomogeneous composite materials have been used in many different applications, such as 

aircraft, armor plating, rocking motor casing, fusion energy devices, biomedical sectors and other 

engineering structures. Due to the smooth variation of material properties, FGM structures have 

received continuous and even enormous scientific attention. The pure mechanical behavior of 

FGM beams and plates have also been studied by many researchers (Chan et al. 2004, Ying et al. 

2008, Lü et al. 2008, Vel 2010, Mantari et al. 2012). Sankar (2001) presented the analytical 

solutions for FGM beams with material properties varying exponentially along the thickness. 

Zhong and Yu (2007) obtained a general solution for functionally graded beams with arbitrary 

variations of material properties by means of Airy stress function approach. Ding et al.
 
(2007) 

proposed the proper generalized stress function method to obtain the analytical elasticity solutions 

for functionally graded anisotropic beams with arbitrarily graded material properties. Huang et al. 

(2009) extended their method to plane analysis of functionally graded beams subjected to arbitrary 

loads. Nie et al. (2013) presented the analytical solutions for functionally graded beams with 
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arbitrary material inhomogeneity along the thickness by the displacement function approach. 

Although there is a huge volume of published literature on analytical solutions of functionally 

graded beams, it is very difficult to obtain complete stress distribution solutions based on 

two-dimensional elasticity theory. For example, the stress function method usually requires ample 

skills and experiences in seeking the potential function. Besides, the elastic field is inaccurate near 

the two ends which is covered up by Saint-Venant principle. Recently, Zhong (1995), Yao and 

Zhong (2002) developed a rational analytical method based on Hamiltonian system for elasticity 

problems of homogeneous materials. Leung and Zheng
 
(2007) extended the work to derive the 

whole stress distributions for cantilever beams based on rigorous two-dimensional elasticity. The 

symplectic approach has been further extended to many various branches of applied mechanics 

(Yao and Xu 2001, Yao and Li 2006, Lim et al. 2007, Xu et al. 2008, Tarn et al. 2009, Tarn et al. 

2010, Zhong and Li 2009). Recently, Zhao et al. systematically developed the symplectic 

framework for isotropic elastic FGMs (Zhao et al. 2012a, b), transversely isotropic piezoelectric 

FGMs (Zhao and Chen 2009) and magneto-electro-elastic FGMs (Zhao and Chen 2010). The 

material constants of the plane beams are assumed to vary in the length direction. Zhao et al. 

(2012c) presented exact solutions for bi-directional functionally graded beams with elastic 

modulus varying exponentially both along the axial and transverse coordinates.  

It should be mentioned that, our previous analyses of axial-directional and bi-directional FGMs 

based on Hamiltonian system were carried out for plane beams with traction-free boundary 

conditions at the lateral surfaces. This paper attempts to obtain the complete stress distributions of 

functionally graded beams with material properties varying exponentially in the thickness 

direction. A particular solution is presented for generally supported beams subjected to arbitrary 

form tractions on the upper and lower surfaces. For homogeneous problem, a matrix state equation 

is derived with an operator matrix whose eigenvalues are classified into zero and general 

eigenvalues. The eigensolutions corresponding to zero eigenvalues compose the basic solutions of 

the Saint-Venant problem. Meanwhile, the general eigensolutions decay exponentially with the 

axial coordinate which are usually covered up by Saint-Venant principle. Two numerical examples 

are given to compare the accurate stress field with those for the homogeneous materials and 

established functionally graded loaded beam, respectively. 

 
 

2. Symplectic framework 
 
2.1 Analysis model 

 
As shown in Fig. 1, we consider an isotropic functionally graded beam occupying the  

rectangular domain V: 0≤z≤l and −h≤x≤h, and subjected to normal and shear tractions, xi~  and 

xzi  ( 1,2i  ) at the upper and lower surfaces 

For the plane beam, the Young’s modulus E is assumed to vary exponentially with the thickness 

in the form of E=E0e
βx

, while Poisson’s ratio v keeps unaltered. Here, E0 
is a constant and β is the 

gradient index of the material. 

In absence of body force, the governing equations of equilibrium are 

          0x xz

x z

  
 

 
, 0xz z

x z

  
 

 
 (1) 

The constitutive relations for the two-dimensional elasticity are 
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Fig. 1 The plane problem of FGM beam 
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By introducing new form of stress variables ˆ e x

x x

   , ˆ e x

z z

    and ˆ e x

xz xz

   , the 

matrix state equation can be deduced from the governing equations in Eqs. (1) and (2) as 

        v Hv  (3) 

in which Tˆ ˆ[ , , , ]z x z xzu u  v  is the state vector, and the operator matrix H is defined as 
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x E
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x xx
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
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 
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 
   

    
  

H =  (4) 

Eq. (3) is usually referred to as the state equation. If β equals zero, the matrix H will degenerate 

to the conventional Hamiltonian matrix for homogeneous materials (Yao and Zhong 2002). 

 
2.2 Formulation of the eigen-problem 
 
In this section a brief review of symplectic formulations for FGM plane problems (Zhao et al. 

2012b) is first presented. Considering the state equation of Eq. (3) along with the free boundary 

conditions on the lateral surfaces 

       x h  : 0
ˆ ˆ 0x

x z

u
E

x
 


  


, ˆ 0xz   (5) 
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z 
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2x  
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we can assume the solution as follows using the method of separation of variables 

       T( , ) ( ) ( ) e [ ( ), ( ), ( ), ( )]zx z z x w x u x x x   v Φ  (6) 

where μ is the eigenvalue of the operator matrix H, and Φ(x) is the corresponding eigenvector. Eq. 

(3) and the homogeneous boundary conditions in Eq. (5) constitute a well-defined eigen-problem. 

Because of the inhomogeneity parameter β, the operator matrix H exhibits different properties 

compared with the Hamiltonian matrix (Yao and Zhong 2002) and the shift-Hamiltonian matrix 

(Zhao et al. 2012b). Using the same analytical method as that for bi-directional functionally 

graded materials (Zhao et al. 2012c), we investigate the eigenfunction of the eigenvalue μ and 

divide them into particular eigensolutions and general ones. 

To obtain the solution of the eigen-problem, the following eigenequation is derived from Eqs. 

(6) and (3) 

         ( ) ( )x xHΦ Φ  (7) 

We assume the solution in the form of 

         ( ) e xx Φ V  (8) 

where V is an undetermined constant vector, and η is the eigen-root of the following characteristic 

polynomial 

         4 3 2 2 2 2 2 2 42 ( 2 ) 2 0                 (9) 

Its four roots can be obtained as 

         

2 2 2 2

1 2

2 2 2 2

3 4

1 1 1 1
4 4 ,     4 4

2 2 2 2

1 1 1 1
4 4 ,     4 4

2 2 2 2

           

           

         

         

 (10) 

To obtain the eigen-solutions explicitly, we investigate all possible situations of repeated 

eigen-roots (Zhao et al. 2012c). Following the similar procedure as that for bi-directional FGMs, it 

is easy to prove that Eq. (9) has a pair of repeated roots only when μ=0. The zero eigenvalue is 

referred to as particular eigenvalue later on. Otherwise, the four roots of Eq. (9) are distinct from 

each other for the general eigenvalues μ≠0. Thus, the general solution of Eq. (7) can be obtained 

       
4

1

e i x

i

i

w A




 , 
4

1

e i x

i

i

u B




 , 
4

1

e i x

i

i

C




 , 
4

1

e i x

i

i

D




  (11) 

where Ai, Bi, Ci and Di are constants to be determined; they are not independent as to be shown 

below. 

 
2.3 Zero eigensolutions 
 

Since zero eigenvalue is multiple, its fundamental eigensolutions and Jordan form 

eigensolutions need to be considered.  

Following the similar procedure as that for homogeneous materials (Yao and Zhong 2002), the 

fundamental and first-order Jordan normal form eigenvectors corresponding to the first Jordan 

chain are 
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        (0) T

0,1 [1,0,0,0]Φ , (1) T

0,1 0[0, , ,0]x E Φ  (12) 

The eigensolutions of the problem can be constructed as 

         (0) (0)

0,1 0,1v Φ ,  (1) (1) (0) T

0,1 0,1 0,1 0[ , , e , 0]x

t z z x E    v M Φ Φ  (13) 

which represent rigid translation along the z-axis and the solution of extension. 

The eigenvectors of the second Jordan chain can be obtained as  

         (0) T

0,2 [0,1,0,0]Φ , (1) T

0,2 [ ,0,0,0]x Φ , (2) 2 T

0,2 0

1
[0, , ,0]

2
x E x Φ  (14) 

Then, the original solutions associated with the above eigenvectors are expressed as 

         (0) (0)

0,2 0,2v Φ , (1) (1) (0) T

0,2 0,2 0,2 [ , , 0, 0]z x z   v Φ Φ  

         (2) (2) (1) 2 (0) 2 2 T

0,2 0,2 0,2 0,2 0

1 1
[ , ( ) , e , 0]

2 2

x

t z z xz x z E x
 

       
 

v M Φ Φ Φ  
(15) 

where diag[1,1,e ,e ]x x

t

 M is the transform matrix between the eigenvectors and original solutions 

of the problem. The physical interpretations of Eq. (15) represent rigid translation along the 

x -axis, rigid rotation about the y axis and the solution of pure bending, respectively.  

It should be noted that the eigenvectors (0)

0,1Φ , (0)

0,2Φ , (1)

0,2Φ  and their corresponding original 

solutions are either symmetric or antisymmetric deformations. But for the eigenvector (1)

0,1Φ  and 
(2)

0,2Φ , the original solutions of their eigenvectors are asymmetric deformations. 

It should be emphasized that the first Jordan chain terminates for (1)

0,1Φ  because there is no next 

grade eigenvector that satisfies the lateral boundary conditions. But the second Jordan chain does 

not terminate. To obtain the shear bending solution as that for the homogeneous material (Yao and 

Zhong 2002), a new eigenvector is introduced by combining two fundamental eigenvectors as 

         (2) (2) (1)

0 0,2 0 0,1A Φ Φ Φ  (16) 

Then Jordan form eigenvector (3)

0Φ  of the reconstructed eigenvector is solved from the 

equation (3) (2)

0 0HΦ =Φ . The eigenvector (3)

0Φ  can be obtained 

         

3 2 201

0 22 2

0

(3)

0

0 0 0 0

12

1 1 1 1
2(1 )

6 22

0

0

x

x

Ac
x x x e x A x c

E

E E A E
x c e





  
  

 





  
         

  
  

  
 
 
   
  

Φ  (17) 

in which  0 cosh( ) / sinh( ) 1 /A h h h     , 1 0 / sinh( )c E h h   and 2

2 2(1 ) / sinh( )c h h    .  

The solution of the original problem for eigenvector (3)

0Φ  can be written as 
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(3) (3) (2) 2 (1) 3 (0) (1) 2 (0)

0 0 0,2 0,2 0,2 0 0,1 0,1

3 2 2 2 201

0 22 2

0

2 3

0

0 0
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2 6 2

1 1 1 1 1
2(1 ) ( )

6 2 22

1 1

2 6

e ( )

1
e

t

x

x

x

z z z A z z

Ac
x x x e x xz A x z c

E

x z z A xz

E xz A z

cx
E







  
  

 

 



    
         

    

 
          

 

 


 

 

v M Φ Φ Φ Φ Φ Φ

0

0

x A
e

E







 
 
 
 
 
 
 
 
  

  
  

 (18) 

For detailed comparison with the case of homogeneous materials, we may perform limit 

analysis by setting β→0 for Eq. (18), which leads to 

       

2 3 2

2 3

(3)

0

0

2 2

0

1 1
(1 ) (2 )

6 2

1 1

2 6

1
( )

2

h x x xz

x z z

E xz

E x h

 



 
     
 
  

  
 
 
 


  

v  (19) 

The above degenerated result accords with the one corresponding to zero eigenvalue for 

homogeneous materials (Yao and Zhong 2002), for which the physical interpretation is the 

shear-bending in the x-z plane. Therefore, a new group of particular eigenvectors for eigenvalues  

zero are consist of (0)

0,1Φ , (1)

0,1Φ , (0)

0,2Φ , (1)

0,2Φ , (2)

0,2Φ and (3)

0Φ . Moreover, their eigensolutions actually  

correspond to the classical solutions of the Saint-Venant problem. 

 
2.4 Particular solutions 
 

The particular solutions for FGM beams subjected to external loads on the lateral surfaces can  

 

 

 

Fig. 2 The rectangular domain with transverse loads at lateral surfaces 
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be determined from the Jordan normal form solution. Consider the plane rectangular domain as 

below 

The conditions at the upper and lower surfaces are 

          x h  : 
0 1e

hu
E q

x




 


, 0   

         x h : 
0 2e

hu
E q

x

 
 


, 0   

(20) 

A particular solution of (3)

0HΦ = kΦ can be solved as follows 

     

 
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e
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
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 
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           

   

  
      

  



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
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2 1
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2(1 ) 1 1
e
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x x A x
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
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



 
 
 
 
 
 
 
  
 
 
 
 
         
  
 

  

 (21) 

in which the coefficients can be expressed as 1 2

0 0 0 0
1 2 3 2

2
2 cosh( ) sinh( )

q q
k

E E A E
c h h h h 

  




  
    
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and 01 2

3 12

e e1
cosh( )

sinh( ) 2

h h Eq q
c kh c h

k h

 


 

   
    

  
. 

The particular solution of the plane problem can be constructed as 

       (3) 2 (2) 3 (1) 4 (0) 2 (1) 3 (0)

0 0,2 0,2 0,2 0 0,1 0,1

1 1 1 1 1

2 6 24 2 6
t k z z z z A z z
     

           
     

v M Φ Φ Φ Φ Φ Φ Φ  (22) 

It should be emphasized that particular solutions of the FGM beams can be solved for arbitrary 

form of external normal forces along z-axis, such as uniform loads, linear distribution loads and 

cosinusoidal loads applying on the upper and lower surfaces. In the numerical examples below we 

present the complete analytical solutions for FGM beams subjected to uniform and cosinusoidal 

normal tractions at the top and bottom surfaces.  

Following the similar procedure, particular solutions can be deduced from (1)

0,1HΦ = kΦ  for  

external shear tractions along z-axis.  

 
2.5 General eigensolutions 
 

Similar to the analysis procedure for bi-directional FGM (Zhao et al. 2012c), we assume that 
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there is no Jordan form solution for the general eigenvalue μ≠0. Thus, the general solution (11) is 

constructed according to the distinct roots η1≠η2≠η3≠η4. From Eq. (7) and Eq. (11), we can obtain 

the relations between coefficients Ai, Bi, Ci and Di as follows 

       

 

 

 

 

2
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1
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C D
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  


   

 



  
   

   


  
    

    


  



 (23) 

Thus, we have only four independent constants Di (i=1,2,3,4) to be determined. 

The free boundary conditions on the lateral surfaces lead to the following equations satisfied by 

the constants Di (i=1,2,3,4) 
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 (24) 

To make sure the nontrivial solutions of Eq. (24) exist, the coefficients determinant must vanish, 

which yields a transcendental equation in term of the general eigenvalues μ 
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Along with Eq. (10), the general eigenvalue μn can be obtained from Eq. (25) using appropriate 

numerical method. Thus, a nontrivial solution Di (i=1,2,3,4) can be deduced from Eq. (24). 
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 (26) 

where the subscript n indicates the n-th general eigenvalue. 

The eigenvector Фn for each μn is then determined and its eigensolution can be obtained as 

     z
e n

n t n


v = M Φ  (27) 

34



 

 

 

 

 

 

Symplectic analysis of functionally graded beams subjected to arbitrary lateral loads 

where Фn is expressed in Eq. (11). 

 
2.6 Complete analytical solution  
 

The complete analytical solution of a loaded beam is formed by zero eigensolutions, general 

eigensolutions and particular solution corresponding to nonhomogeneous boundary conditions on 

the lateral surfaces. It should be emphasized that each general eigenvalue is a complex number 

whose eigensolution decaying with distance from the end of the beam. The effects of these 

eigensolutions are usually covered by the well-known Saint-Venant principle. All the general 

eigenvalues can be divided into two groups as follows 

     (A) 
i ,  Re( ) 0i   ( 1, 2, , )i n   

     (B) 
i
, Re( ) 0i   ( 1, 2, , )i n   

(28) 

In the above classification, μ-i is the symplectic conjugate adjoint of μi. The eigenvalues with 

negative real part correspond to the eigensolutions decaying along the positive z-direction. 

Meanwhile, the eigensolutions in group B decay along the negative z-direction.  

The complete solution can be expressed as 

     (0) (1) (0) (1) (2) (3)

1 0,1 2 0,1 3 0,2 4 0,2 5 0,2 6 0

1

( )
N

i i i i

i

m m m m m m a b 



 v = v v + v + v + v + v + v + v v  (29) 

In the expansion series above, v is the particular solution for certain lateral loads applying on 

the upper and lower surfaces, 
iv , 

iv  represent A-set and B-set eigensolutions, respectively. N is 

a truncated number that should be large enough to ensure the accuracy of the symplectic 

expansion. The constants mi (i=1,2,…,6), ai and bi can be determined by a linear system of 

equations resulted from the Hamiltonian variational principle (Yao and Zhong 2002). Similar as 

that of Zhao and Chen (2008), B-set eigensolutions in the symplectic expansion series are 

rewritten to avoid the overflow problem. 

 
 
3. Numerical examples 

 
3.1 Example 1 
 

The clamped-free beam of thickness 2h=1 m and length-to-thickness ratio l/(2h)=5 is subjected 

to prescribed normal tractions q1=q2=0.5 N/m
2
 at its upper and lower surfaces (Fig. 2). The 

Young’s modulus varies exponentially along x with its value at x=0 being E0=2.0×10
11

 N/m
2
, and 

the Poisson’s ratio v=0.29 keeps constant. The material gradient index takes three values as 

βh=0.1, βh=1 and βh=2. 

  Fig. 3 shows the normal and shear stress distributions through the thickness of the beam at the 

clamped end. The stress distributions corresponding to the homogeneous material are given for 

comparison (Yao and Zhong, 2002). Seen from Figs. 3(a)-(b), with the material inhomogeneity 

parameter βh decreasing (βh=2, βh=1, βh=0.1), the stress distributions gradually tend to those of 

homogeneous material (βh=0). It is verified that the symplectic framework is suitable for obtaining 

highly accurate local stress distributions, which are completely covered up the Saint-Venant 

principle employed in the conventional analytical methods. 
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Fig. 3 Stress distributions at the clamped end 
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Fig. 4 Contours of normal and shear stresses (βh=0.1) 
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Fig. 5 Contours of normal and shear stresses (βh=1) 
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Fig. 6 Contours of normal and shear stresses (βh=2) 
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(a) The normal stress σz/p0 at z=0 (b) The shear stress τxz/p0 at z=l/2 

Fig. 7 The normal and shear stress distributions along the thickness direction 

 

 

Figs. 4-6 depict the contours of the analytical normal and shear stress distributions for the 

cantilever FGM beams with βh=0.1, 1 and 2, respectively. For both normal and shear stresses, the 

local accurate behaviors near the clamped end can be displayed evidently. It can also be seen that 

the gradient index βh has evident effects on the normal and shear stresses at the vicinity of 

clamped end. The contours of normal stress σz are dissymmetrical about x=0 for functionally 

graded materials which are different from that of homogeneous materials. Furthermore, with the 

material gradient increasing (βh=0.1, 1 and 2), the dissymmetry tends to be more evident. There 

are similar properties for the contours of shear stress τxz. With the high accurate local stress 

distributions and stress contours, the beam can be optimally designed according to certain loaded 

conditions. 

 

3.2 Example 2 
 
Consider the cantilever FGM beam with the length l=1 m and the thickness 2h=0.2 m,  

37



 

 

 

 

 

 

Li Zhao and Wei Z. Gan 

z

x
 /

 2
h

 

 

0 0.2 0.4 0.6 0.8 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-200

-150

-100

-50

0

50

 z

x
 /

 2
h

 

 

0 0.2 0.4 0.6 0.8 1
0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

-35

-30

-25

-20

-15

-10

-5

0
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Fig. 8 Contours of normal and shear stresses 

 

 

subjected to a cosinusoidal normal traction p(z)=−p0cos(πz/l) (p0=0.1 MPa) at its upper surface. We 

assume the Young’s modulus at the upper and lower surfaces being E(h)=−10 MPa, E(h)=1 MPa 

and 
0 10MPaE  , meanwhile, the Poisson’s ratio v=0.3 keeps constant. Then, the material 

gradient index is taken to be β=−5 ln10. (Nie et al. 2003) 

Figs. 7(a)-(b) depict the distributions of the normal stress
z at the clamped end and the shear 

stress τxz at z=l/2 with certain truncated terms in the symplectic expansion, respectively. It is 

obvious that the general eigensolutions play a significant role in the accurate local stress 

distributions, especially at the corner of the clamped end. However, it has little effect on the shear 

stress far away from the clamped end which is not covered up by Saint-Venant principle. The 

stress distributions accord with the results presented by Nie et al. (2013) which employed the 

displacement function approach with one term remained in the Fourier Cosine series. 

To further illustrate the complete stress distributions of the beam, Fig. 8(a) depicts the contour 

of the normal stress while Fig. 8(b) depicts the shear stress contour. To consider local effects, one 

hundred expansion terms in Eq. (29) are concerned in the calculation. Within the symplectic 

framework, the whole normal and shear stress field of the beam can be obtained accurately. Also 

the local behaviors are displayed around the clamped end which is usual covered up by 

Saint-Venant principle. 

 
 

4. Conclusions 
 
The complete stress distributions are presented for functionally graded beams subjected to 

arbitrary lateral loads (either normal or shear load) in the framework of symplectic analysis. The 

Young’s modulus of the beam is assumed to vary exponentially along the thickness direction and 

the Poisson’s ratio keeps constant. In the symplectic framework, a particular solution of the FGM 

beam is obtained which satisfies the lateral boundary conditions. The complete solution is obtained 

by superposing the particular solution and the eigen-solutions. Numerical results show that the 

symplectic approach is effective in predicting accurate local stress distributions and exhibiting 
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obvious singularity behavior at the corner of the clamped end. Also, complete stress distribution 

contours of the FGM beams are displayed for the first time.  

Along with the plane analysis of axially directional and bi-directional functionally graded 

beams, this paper further completes analytical solutions of functionally graded plane beams with 

exponential FGM model within the framework of symplectic elasticity. It should be pointed that, 

the similar analytical procedure is valid for the complete stress field of axial-directional and 

bi-directional FGMs beams subjected to arbitrary tractions on the lateral surfaces. 
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