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Abstract.  The cross sections of hollow cylindrical tubes ovalise under a pure bending condition, and this 
reduces their flexural stiffness as their curvatures increase. It is important to accurately evaluate this 
phenomenon, known as the „Brazier effect‟, to understand the bending behaviour of the systems considered. 
However, if the tubes are supported by an elastic medium or foundation, the ovalisation displacements of 
their cross sections may decrease. From this point of view, the purpose of this research is to analytically 
investigate the bending characteristics of single- and double-walled elastic tubes contacted by an elastic 
material by considering the Brazier effect. The Brazier moment, which is the maximum moment-carrying 
capacity of the ovalised cross section, can be calculated by introducing the strain energy per unit length of 
the tube in terms of the degree of ovalisation for the tube and the curvature. The total strain energy of the 
double-walled system is the sum of the strain energies of the outer and inner tubes and that of the compliant 
core. Results are comparatively presented to show the variation in the degree of ovalisation and the Brazier 
moment for single- and double-walled tubes. 
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1. Introduction 
 

Tube-shaped and thin cylindrical structures are widely used in many engineering fields such as 

offshore, civil, mechanical, and aircraft engineering. Practical examples range from huge 

cylindrical tunnel liners (Croll 2001) and pipe-in-pipe systems (Olso and Kyriakides 2003, 

Kyriakides and Netto 2004, Sato and Patel 2007, Sato et al. 2008, Arjomandi, K. and Taheri, F. 

2010, 2011a, b, 2012) to very small carbon nanotubes (Ru 2001, He et al. 2005, Sato and Shima 

2009). These structures are often supported by an inner or outer elastic medium. Analytical 

investigations of the elastic buckling of a thin cylindrical shell contacted with an elastic material 

have been conducted for a variety of loading configurations (Yao 1962, Seide 1962, Yabuta 1980, 

Karam and Gibson 1995, Hutchinson and He 2000, Dawson and Gibson 2007). In the practical 

design of such structures, one of the most important considerations is the precise estimation of 

their bending properties. 
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Under pure bending, the cross sections of hollow cylindrical tubes ovalise. This reduces the 

flexural stiffness of the tube as its curvature C increases. The evaluation of this phenomenon, 

known as the „Brazier effect‟ (Brazier 1927), is very important to understand the bending 

behaviour of the systems considered. However, if the tubes are supported by an elastic medium or 

foundation, the ovalisation displacements of their cross sections may decrease. From this point of 

view, the purpose of this research is to analytically investigate the mechanisms of the ovalisation 

phenomena for single- and double-walled tubes supported by an elastic medium by considering the 

Brazier effect. Results are presented to show the variation in the degree of ovalisation and the 

Brazier moment with the relative elastic modulus of the filler and tube materials, the filler 

thickness, and the thicknesses of the inner and outer tubes. The Brazier moment, which is the 

maximum moment-carrying capacity of the ovalised cross section, can be calculated by 

introducing the strain energy per unit length of the system in terms of the degree of ovalisation for 

outer and inner tubes, and the curvature. The total strain energy of the system is the sum of the 

strain energies of the outer and inner tubes and that of the compliant core. It is also clear that the 

moment of inertia of the cross section is increased owing to the presence of the core, compared to 

that of single-walled tubes.  

 

 

2. Analytical model 
 

Fig. 1 shows the configuration a perfectly cylindrical tube under pure bending. The cross 

section of the single-walled tube with radius a, thickness t, and Young‟s modulus E is assumed to 

be supported by a Winkler foundation with foundation modulus k, as shown in Fig. 2(a). On the 

other hand, for the double-walled tube, we consider the Poisson‟s effect (Karam and Gibson 1995) 

of the annulus fully filled with a material (with Young‟s modulus EC and Poisson‟s ratio C) that 

provides continuous structural support to both thin-walled outer and inner tubes with Young‟s 

modulus EP and Poisson‟s ratio P (see Fig. 2(b)). The following are the geometric variables for 

the double-walled tube: thickness of the outer tube t1, that of the inner tube t2, radius of the outer 

tube a1, and that of the inner tube a2. In the following formulation, the subscripts 1 and 2 

correspond to the outer and inner tubes, respectively. 

As shown in Fig. 3, under pure bending, the cross sections of the hollow, circular cylindrical 

tube ovalise, thus reducing the flexural stiffness of the tube as its curvature increases. 

 

 

3. Formulation 
 

3.1 Single-walled tubes on elastic foundation 
 

For the single-walled tube, the strain energies U, Uz, and Uk in the circumferential () and 

axial (z-) directions and due to the surrounding elastic foundation with the foundation modulus k, 

respectively, are expressed as follows 
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(a) Single-walled tube (b) Double-walled tube 

Fig. 2 Cross sections of single- and double-walled elastic tubes 
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Fig. 3 Ovalisation in double-walled tube (the degree of ovalisation is i=i/ai (i=1, 2)) 
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where (u, v, w) are the deformations of the tube in the axial, circumferential, and radial directions, 

respectively. Note that the total strain energy U
(1)

 is the sum of the strain energy values obtained 

from Eqs. (1) to (3). The static equilibrium state under bending can be represented by considering 

the ovalisation of the cross section, wherein the deformation functions can be derived as follows 

(Calladine 1983) 

M M

 

Fig. 1 Elastic tube under pure bending 
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  cossinsin vwaCzu                          (4) 

 2cosaw                                  (5) 

 2sin
2

1
av  .                               (6) 

where C is a curvature. The substitution of Eqs. (4)-(6) in Eqs. (1)-(3) and applying the equations 

of the form 
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give the non-dimensional parameter  of the flattening of the cross section and the corresponding 

bending moment M. 
 

3.2 Double-walled tube with elastic core 
 
3.2.1 Strain energy associated with ovalisation of core  
Here, we develop the formulation for the double-walled tube with elastic core under bending 

using the procedure proposed by Karam and Gibson (1995). The strain energy UC per unit length 

in the ovalised core is expressed as 
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where r, , r and r, , r are the core stresses and strains in the radial, circumferential, and 

shear directions, respectively. As shown in Fig. 2(b), the radial and tangential displacement ui and 

vi (i=1 (for outer tube), 2, (for inner tube)), respectively, of the outer and inner pipes ovalised by i 

(Calladine 1983) are 
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The basic equation for the core is expressed by the stress function  (r,) in polar coordinates 

(Timoshenko and Goodier 1970) as 
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The normal stresses in the radial and circumferential directions r and , respectively, and the 

shear stress r
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In the problem considered here, the two displacement components for the core (the radial 

displacement u(r,) and the circumferential displacement v(r,)), are assumed to have 

circumferentially periodic forms, written as 
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The general solution of Eq. (12) is as follows 
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are 

 2cos)246( 24 DrBrAr                        (20) 

 2cos)2126( 24 DrCrA                        (21) 

  2sin)2626( 224 DrCrBrAr                    (22) 

The strain components for the plane strain problem are derived by 
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The corresponding displacements in the radial and circumferential directions u(r,) and v(r,), 

respectively, can be obtained from Eqs. (20)-(23) and thus, the following displacement-strain 

relationship is derived as 
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where P and Q are constants of integration. For the problem considered here, the outer and inner 

pipes are assumed to be perfectly bonded to the core. The middle-surface outer pipe displacements 

21



 

 

 

 

 

 

Motohiro Sato and Yuta Ishiwata 

(u1, v1) and inner pipe displacements (u2, v2) are assumed to have circumferentially periodic forms 

written as 

ii uau ),(                                  (26) 

ii vav ),(                                  (27) 

From Eqs. (2), (10), and (11), we can obtain the constants A, B, C, and D as functions of 1 and 

2. This indicates that the strain energy associated with the ovalisation of the core (Eq. (1)) can be 

expressed by the displacements of the outer and inner tubes. Substituting the constants in the stress 

and strain equations, we obtain the strain energy, which is a function of 1 and 2. 

In addition, we compute the strain energy UF of the outer and inner flattening tubes (Calladine 

1983) as 
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3.2.2 Strain energy associated with bending of double-walled tube 
The strain energy UB per unit length to bend the double-walled tube of flexural rigidity (EI)DWT 

to a curvature C is 
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For a hollow pipe with ovalisation, the moments of inertia (Calladine 1983) are 
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Substituting Eqs. (30)–(32) in Eq.(29) gives 

)
8

5

2

3
1)(

4
1(

2

1
)

8

5

2

3
1)(

4
1(

2

1 2

22

2

2
2

3

2

22

11

1

1
1

3

1

2  
tE

aE
taEC

tE

aE
taECU

P

C

P

C
B

  (33) 

Moreover, the strain energy per unit length associated with the Poisson‟s ratio to maintain the 

circular cross section due to bending (Karam and Gibson 1995) is then 
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(a) Flattening ratio  (b) Non-dimensional bending moment M* 

Fig. 4 Flattening ratio  and non-dimensional bending moment M*(=M/Eta) plotted against the non-

dimensional curvature C*(=Ca) for the single-walled tubes. For both figures, dotted lines correspond to 

the plots for k*=0 

 

 

 

 

 

 

 

 

 

 

3.2.3 Brazier moment 
The final result for the strain energy U

(2)
 of the double-walled system is expressed by the 

summation  

PBFC UUUUU )2(                    (35) 

We can find the optimum values of 1 and 2 for a given value of C from the condition 

U
(2)

/i=0 and thereafter obtain the value for M from M= U
(2)

/C. Moreover, the Brazier 

moment and ovalisation at the Brazier moment can be obtained from  U
(2)

/C=0. 

 

 

4. Results and discussion 
 

4.1 Single-walled tubes with elastic foundation 
 

Fig. 4 shows the changes in the flattening ratio  and the non-dimensional bending moment 

M*(=M/Eta) plotted against the non-dimensional curvature C*(=Ca) for single-walled tubes. It can 

be seen from Fig. 4(a) that the Brazier effect in tubes with elastic foundation is drastically reduced 

in the range k*>10
-3

 by comparing it with the result for tubes with no elastic foundation, i.e., k*=0. 

However, the rigidity of the surrounding elastic foundation has little effect on the bending moment 

of the tube. These results provide useful information for the practical structural design of related 

structures such as buried pipes. 

 

4.2 Double-walled tubes 
 

Figs. 5 (a)-(d) show the plot of the displacement ratio 2/1 due to bending against the core 

thickness ratio a2/a1, for various values of the ratio of outer and inner tube thicknesses to the outer 
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tube radius and core-to-tube stiffness ratio. From a comparison of these figures, it is clear that as 

the core stiffness increases, the displacement of the inner tube increases. Moreover, the effect of 

the change in the outer tube thickness on the displacement ratio is negligible, and this value can be 

determined using the core thickness to inner tube thickness ratio. 

 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6








a
2
 / a

1

  t
1
 / a

1
 = t

2
 / a

1
 = 0.01

  t
1
 / a

1
 = 0.01,  t

2
 / a

1
 = 0.005

  t
1
 / a

1
 = 0.005,  t

2
 / a

1
 = 0.01

  t
1
 / a

1
 = t

2
 / a

1
 = 0.005

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6








a
2
 / a

1

  t
1
 / a

1
 = t

2
 / a

1
 = 0.01

  t
1
 / a

1
 = 0.01,  t

2
 / a

1
 = 0.005

  t
1
 / a

1
 = 0.005,  t

2
 / a

1
 = 0.01

  t
1
 / a

1
 = t

2
 / a

1
 = 0.005

 
(a) EC/EP=10

-2
 (b) EC/EP=10

-3
 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6








a
2
 / a

1

  t
1
 / a

1
 = t

2
 / a

1
 = 0.01

  t
1
 / a

1
 = 0.01,  t

2
 / a

1
 = 0.005

  t
1
 / a

1
 = 0.005,  t

2
 / a

1
 = 0.01

  t
1
 / a

1
 = t

2
 / a

1
 = 0.005

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6








a
2
 / a

1

  t
1
 / a

1
 = t

2
 / a

1
 = 0.01

  t
1
 / a

1
 = 0.01,  t

2
 / a

1
 = 0.005

  t
1
 / a

1
 = 0.005,  t

2
 / a

1
 = 0.01

  t
1
 / a

1
 = t

2
 / a

1
 = 0.005

 
(c) EC/EP=10

-4
 (d) EC/EP=10

-5
 

Fig. 5 Displacement ratio (Inner to outer pipe, P=0.4) 
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Fig. 7 Non-dimensional moment-curvature relationship (P=0.4) 

 

 
Fig. 6 and Figs. 7 (a), (b) show the non-dimensional bending moment-curvature relationship. 

In all cases, for small values of Ca1, we find that the relationship between the bending moment and 

curvature is almost linear. However, with increase in curvature increase, the relationship becomes 

non-linear and finally, the values of M reach the maximum value, i.e., „the Brazier moment‟. As 

expected, the Brazier moment increased with increase in core thickness. Figs. 7 (a), (b) show the 

comparison of the moment-curvature relationship for different outer/inner tube thickness and core 

thickness ratios. The contribution of the outer pipe thickness is more significant than that of the 

inner tube to the bending moment-curvature relationship.  

 

 

5. Conclusions 
 

This paper presents the bending characteristics of single- and double-walled tubes analytically, 

by considering the Brazier effect. It should be noted that the outer tube thickness and the core 

stiffness, rather than the inner tube thickness, play an important role in the bending moment-
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curvature relationship for double-walled tubes. At present, this research is a simplified analytical 

investigation. However, the author‟s research group has planned to conduct further studies 

including the analytical investigations of „rippling‟ modes due to buckling under bending. 
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