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Abstract.  Elements used in steel structures may be considered as an assembly of number of thin flat walls. 
Local buckling of these members can limit the buckling capacity of axial load resistance or flexural strength. 
We can avoid a premature failure, caused by effects of local buckling, by limiting the value of the wall 
slenderness which depend on its critical buckling stress. According to Eurocode 3, the buckling stress is 
calculated for an internal wall assuming that the latter is a simply supported plate on its contour. This 
assumption considers, without further requirement, that the two orthogonal walls to this wall are sufficiently 
rigid to constitute fixed supports to it. 
In this paper, we focus on webs of steel profiles that are internal walls delimited by flanges profiles. The 
objective is to determine, for a given web, flanges dimensions from which the latter can be considered as 
simple support for this web. 
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1. Introduction 
 

The steel profiles, rolled or welded, can be considered as an assembly of a number of flat 

plates, each of them is delimited by a further plate which is orthogonal or by a free edge. A plate 

which is delimited by two orthogonal plates is called “internal wall”, on the other hand, a plate 

which is delimited by another orthogonal plate and by a free edge is called “outstanding wall”. 

As the plates of the steel profiles are relatively thin compared to their width, when they are 

subjected to compression (due to the application of axial loads on the entire cross-section and / or 

due to bending), they can buckle locally. Thus, the predisposition of any cross-section’s plate can 

limit the buckling capacity of the axial load resistance or flexural strength of the section, 

preventing it to reach its elastic limit. We can avoid a premature failure caused by the effects of 

local buckling by limiting the ratio width / thickness of the cross section walls. This is the basis of 

the cross-section classification approach adopted by the Eurocode 3 to take into account the 

incidence degree of local buckling, due to the compression, on the resistance of the section. This 

classification depends on the value of the wall slenderness which is defined as 
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where fy is the yield strength of the wall material and σcr is the critical buckling stress of the wall. 

According to Eurocode 3, the elastic buckling critical stress is calculated for an internal wall 

assuming that the latter is a simply supported plate on its contour. 

This assumption considers, without further requirement, that the two orthogonal walls to this 

wall are sufficiently rigid to constitute fixed supports to it. In this study we focus on webs of steel 

profiles that are internal walls delimited by the flanges profiles. The objective is to determine, for a 

given web, flanges dimensions from which the latter can be considered as simple supports for this 

web. For that reason, we will study the buckling stability of a web profile, considering it as a plate 

supported elastically by the flanges. By comparing the results of this study with those of a simply 

supported plate on its contour, we can then reach the objective of this work. 

The buckling is an important factor in the structure design, several studies have been carried 

out in order to analyze it in different situations. 

He and Ren (2012) proposed an analytical method to determine the vibration and buckling of 

rectangular thin plates supported by elastic foundation with different boundary conditions, the 

impact of the proposed method is discussed through various numerical examples. 

Benyoucef et al. (2010) examined the static response of simply supported stiffened plates 

subjected to a uniform transversal load or distributed sinusoidal load supported by an elastic 

foundation, using a model of hyperbolic displacement. Bodaghi and Saidi (2010) proposed an 

exact analytical solution for the critical buckling load of stiffened rectangular plates with different 

boundary conditions, and subjected to non-uniform distributed load in the plane acting on two 

simply supported opposite edges . 

Bedair (2009) developed equations for effective widths of the plates under an inhomogeneous 

loading applied in the plane of the plate. The proposed analytical expressions are used to calculate 

the effective width of I-slender sections for beams and columns. 

Tian and Fu (2008) studied the effects of damage evolution and the initial deflection in the 

elastic-plastic post-buckling state of orthotropic plates, while Zhulin (1998) estimated the ultimate 

strength of simply supported composite thin plates under compression. 

Jubran and Cofer (1991) analyzed the ultimate strength of the structural components, using an 

analytical model to include the effect of the material fracture on the overall structure behavior.  

Many studies have been performed to analyze the behavior of plates using different expressions 

of displacement field according to the studied case. Shear deformation plate theories are usually 

used in case of thick plates and non-homogeneous material plate such a functionally graded plate 

(FGP). Bouazza et al. (2010) investigated the thermo elastic buckling of FGP using first shear 

plate theory. Effects of changing plate characteristics, material composition and volume fraction of 

constituent materials on the critical temperature difference for FGP with simply supported edges 

are also investigated. A new hyperbolic shear deformation theory taking into account transverse 

shear deformation effects is presented by El Meiche et al. (2011) for the buckling and free 

vibration analysis of thick functionally graded sandwich plates. Bourada and his coworkers (2012) 

used four-variable refined plate theory to the thermal buckling behavior of functionally graded 

sandwich plates. It seems that this theory is simple to use because it has strong similarities with the 

classical plate theory in some aspects such as governing equation, boundary conditions and 

moment expressions. Tounsi et al. (2013) investigated the thermo elastic bending of functionally 
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graded sandwich plates. The refined trigonometric shear deformation plate theory used by the 

authors accounts for trigonometric distribution of transverse shear stress, and satisfies the free 

transverse shear stress conditions on the top and bottom surfaces of the plate without using shear 

correction factor. An analytical solution to the thermo mechanical bending response of 

functionally graded plates (FGP) resting Winkler-Pasternak elastic foundations has been 

developed by Bouderba et al. (2013). They used theoretical formulations based on refined 

trigonometric shear deformation theory developed by Tounsi et al. (2013). Thermal buckling 

analysis of FGP has been developed by Bouiadjra et al. (2013) using an efficient sinusoidal shear 

deformation theory based on exact position of neutral surface and taken into consideration the non-

linear strain-displacement relations. Using only five unknown functions as against six or more in 

case of other shear and normal deformation theories, Bousahla et al. (2014) developed a new 

trigonometric higher-order theory for the static analysis of advanced composite plates. 

The present paper is an analytical contribution to the study of buckling walls of steel profiles. 

Since the walls of steel profiles are often thin plates, classical thin plate theory will be used in this 

study. 

 

 

2. Analytical study of the webs buckling stability 
 

In this section, we perform an analytical approach to the study of the plate buckling 

phenomenon.  In fact, the search of the plate deformation whose shape, support user and loading 

mode are given, is reduced to a mathematical problem that consists to solve the fundamental 

plates’ equation of Saint-Venant (Timoshenko 1963) who satisfies the support conditions on the 

plate contour. 

 
2.1 Simply supported web on its contour 
 

Examine a structural steel compressed element which is made of an elastic material. In the 

design code (Eurocode 3 1999), the web of profile is considered as a simply supported plate on its 

contour Fig. 1, it is able to ruin by instability, when applied compressive stress reaches a critical 

value (σcr), called critical buckling stress. Its expression is given by several researchers 

Timoshenko (1963) and Estanave (1900) as the following formula 

    
   

  

        
(
𝑡 
𝑑
)
 

         𝑡            
   

𝑡 
   

   

𝑑 𝑡 
                                    

Where kσ the buckling coefficient is given by 

   (
𝑚𝑑

𝑎
+

𝑎

𝑚𝑑
)
 

                                                                   3  

For aspect ratios a/d> 1, the buckling coefficient (kσ) tends to the value 4. 

 
2.2 Web resting on two elastic supports: 

 
In the following study, the web of the same structural steel element, is considered as a simply 

supported plate on the two edges perpendicular to the load (transversal direction) and on the 

flanges which are considered as elastic supports (longitudinal direction). 
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Fig. 1 Web’s profile considered as a plate supported on four sides and subjected to a 

unidirectional compressive loading 

 

 

Fig. 2 Web of steel profile considered as a simply supported plate in (y-y) and elastically supported in (x-x) 

 

 

The differential equation of the plate is derived from the Saint-Venant’s equation (Timoshenko 

1963). The only force acting is a compressive force (-Nx) 

𝜕4𝑊

𝜕𝑥4
+  

𝜕4𝑊

𝜕𝑥 𝜕𝑦 
+

𝜕4𝑊

𝜕𝑦4
 

 

 
(  𝑥

𝜕 𝑊

𝜕𝑥 
)                                             4  

The solution for rectangular plates simply supported on two opposite sides is given by Maurice 

Levy (Estanave 1900, Courbon 1980) by 

𝑊 𝑥, 𝑦  ∑ 𝑓𝑚 𝑦 

∞

𝑚=1

𝑠 𝑛
𝑚 𝑥

𝑎
                                                          5  

The boundary conditions of a plate which is simply supported on both sides Fig. 2 are: 

displacement and bending moments are zero on the supported sides. 

For x=0: 

𝑊 0, 𝑦  0                                                                   𝑠𝑎𝑡 𝑠𝑓 𝑒𝑑 𝑐𝑜𝑛𝑑 𝑡 𝑜𝑛 

𝜕 𝑊 0, 𝑦 

𝜕𝑥 
 +  

𝜕 𝑊 0, 𝑦 

𝜕𝑦 
 0                                 𝑠𝑎𝑡 𝑠𝑓 𝑒𝑑 𝑐𝑜𝑛𝑑 𝑡 𝑜𝑛 

For x=a: 

150



 

 

 

 

 

 

Analytical study of buckling profile web stability 

𝑊 𝑎, 𝑦  0                                                                   𝑠𝑎𝑡 𝑠𝑓 𝑒𝑑 𝑐𝑜𝑛𝑑 𝑡 𝑜𝑛 
𝜕 𝑊 𝑎, 𝑦 

𝜕𝑥 
 +  

𝜕 𝑊 𝑎, 𝑦 

𝜕𝑦 
 0                                 𝑠𝑎𝑡 𝑠𝑓 𝑒𝑑 𝑐𝑜𝑛𝑑 𝑡 𝑜𝑛 

Let’s calculate the 4th order partial derivatives of the solution (5) and replace in the differential 

Eq. (4), which allows transforming the partial differential equation to an ordinary differential 

equation 

𝑓 4  𝑦   (
𝑚 

𝑎
)
 

𝑓    𝑦 + [(
𝑚 

𝑎
)
4

 
 𝑥

 
(
𝑚 

𝑎
)
 

] 𝑓 𝑦  0                               6  

The mathematical solution of this equation is given by 

𝑓 𝑦  𝐶𝑒𝑅                                                                         7  

Let’s calculate and replace the second and fourth derivatives f(y) in the Eq. (6), the following 

characteristic equation is obtained 

𝑅4   (
𝑚 

𝑎
)
 

𝑅 + [(
𝑚 

𝑎
)
4

 
 𝑥

 
(
𝑚 

𝑎
)
 

]  0                                           8  

Its solutions are given as follows 

𝑅1
  (

𝑚 

𝑎
)
 

+ (
𝑚 

𝑎
)√

 𝑥

 
                            

                                                                                                                                                          9 

𝑅 
    [ (

𝑚 

𝑎
)
 

+ (
𝑚 

𝑎
)√

 𝑥

 
]                               

 

The second solution 𝑅 
  is defined only if 

 𝑥

 
> (

𝑚 

𝑎
)
 

                                                                          0  

We proposed to determine the dimensions of the flanges from which the sides y=d/2 and y=-d/2 

are considered, as simply supported and so that the buckling coefficient in this case is that of a 

plate which is simply supported on its contour. Considering expressions (2) and (3), the inequality 

(10) becomes 

  

𝑑 
(
𝑚𝑑

𝑎
+

𝑎

𝑚𝑑
)
 

> (
𝑚 

𝑎
)
 

                                                                

This condition is satisfied, and then we maintain the solution given in (9). 

Substituting the expression (2) in the solution (9) 

𝑅1  ±√(
𝑚 

𝑎
)
 

+ (
𝑚  

𝑎𝑑
)√   ±𝛼                                   

                                                                                                                                                             

𝑅  ± √ (
𝑚 

𝑎
)
 

+ (
𝑚  

𝑎𝑑
)√   ± 𝛽             𝑡             

  

𝑑 
> (

𝑚 

𝑎
)
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Replace the expressions of R1 and R2 in the solution of the ordinary differential Eq. (7). The 

general solution (5) of the plate differential equation becomes 

𝑊 𝑥, 𝑦   𝐶1𝑒
𝛼 + 𝐶 𝑒

−𝛼 + 𝐶3 𝑐𝑜𝑠𝛽𝑦 + 𝐶4𝑠 𝑛𝛽𝑦 𝑠 𝑛
𝑚 𝑥

𝑎
                              3  

To determine the constants of this solution, we use the boundary conditions as given by 

Timoshenko (1963). Rotational freedom conditions require that 

𝜕 𝑊

𝜕𝑦 
+ 𝑣

𝜕 𝑊

𝜕𝑥 
 0                 𝑓𝑜𝑟  𝑦  ±

𝑑

 
                                                 4  

By calling EIf the flange flexural rigidity, the differential equation of the elastic line is given by 

 𝐼𝑓
𝜕4𝑊

𝜕𝑥4
  *

𝜕3𝑊

𝜕𝑦3
+    𝑣 

𝜕3𝑊

𝜕𝑥 𝜕𝑦
+  𝐴𝑓 𝑥

𝜕 𝑊

𝜕𝑥 
          𝑓𝑜𝑟  𝑦  

𝑑

 
                      

                                                                                                                                                           5 

 𝐼𝑓
𝜕4𝑊

𝜕𝑥4
   *

𝜕3𝑊

𝜕𝑦3
+    𝑣 

𝜕3𝑊

𝜕𝑥 𝜕𝑦
+  𝐴𝑓 𝑥

𝜕 𝑊

𝜕𝑥 
    𝑓𝑜𝑟  𝑦  

 𝑑

 
                     

 

By substituting the solution (13) into these boundary conditions, we obtain a system of four 

equations with four unknowns. Equaling its determinant to zero, we obtain a complex expression 

which allows calculating the values of the critical buckling stresses. 

 

 

3. Analytical developments exploitation: 
 

Developments carried out above do not allow to simply determine the critical stresses values, 

for this reason, we explore the expression obtained to determine the characteristics of elastic 

beams, which make the plate having the same critical stress for a simply supported plate on its four 

sides, i.e., for (a/d> 1) then (kσ=4). 

For simplification reasons, the following change of variables is posed 

𝛾  
𝑎

𝑑
               𝛿  

𝑡𝑓

𝑡 
                𝑓  

𝑏𝑓

𝑡𝑓
 

𝑏𝑓

𝛿𝑡 
                 

𝑑

𝑡 
                                  6  

The geometrical characteristics of elastic supports (the flanges), and stress applied to the elastic 

supports become 

𝐼𝑓  
𝑡𝑓𝑏𝑓

3

  
 

 𝑓
3𝛿4𝑡 

4

  
      𝐴𝑓  𝑏𝑓𝑡𝑓   𝑓𝛿

 𝑡 
                                   

                                                                                                                                                           7 

 𝑥  
   

  

        
(
𝑡 
𝑑
)
 

 
 

        

   
 

  
 

                                  

 

This problem is introduced as a matrix form, and taking into account (15) and (16), then we set 

α d

 
 G  

 

 
√
𝑚 

𝛾 
+

𝑚√  

𝛾
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β d

 
 G   

 

 
√ 

𝑚 

𝛾 
+

𝑚√  

𝛾
                            

S  α  𝑣 
𝑚   

𝑎 
   

  

  
 𝑡 

 
*   𝜈 

𝑚 

𝛾 
+

𝑚√  

𝛾
+                     

S  β + 𝑣 
𝑚   

𝑎 
   

  

  
 𝑡 

 
*   + 𝜈 

𝑚 

𝛾 
+

𝑚√  

𝛾
+                      

S3   𝐼𝑓
𝑚4 4

𝑎4
 A𝑓 𝑥

𝑚   

𝑎 
   

E 4

  

 𝑓

  
4
*
𝑚4𝛿4 𝑓

 

𝛾4
 

  𝑚
 

  𝜈 
×

𝛿 

𝛾 
+                  

S4   α3      𝑣 
𝑚   

𝑎 
𝛼   

E 3

      𝜈    
3
[√(

𝑚 

𝛾 
+

𝑚 √  

𝛾
)

3

    𝜈 
𝑚 

𝛾 
√
𝑚 

𝛾 
+

𝑚  √  

𝛾
] 

S5   β3 +     𝑣 
𝑚   

𝑎 
𝛽  

E 3

      𝜈    
3
[√( 

𝑚 

𝛾 
+

𝑚 √  

𝛾
)

3

+    𝜈 
𝑚 

𝛾 
√ 

𝑚 

𝛾 
+

𝑚  √  

𝛾
] 

 

  8  
In a matrix form, the equation’s system is given as follows 

(

 
 

S ∗ 𝑒G1 S ∗ 𝑒−G1  S ∗ Cos[G ]  S ∗ Sin[G ]

S ∗ 𝑒−G1 S ∗ 𝑒G1  S ∗ Cos[G ] S ∗ Sin[G ]

𝑒G1 ∗  S3  S4 𝑒−G1 ∗  S3 + S4 S3 ∗ Cos[G ]  S5 ∗ Sin[G ] S5 ∗ Cos[G ] + S3 ∗ Sin[G ]

𝑒−G1 ∗  S3 + S4 𝑒G1 ∗  S3  S4 S3 ∗ Cos[G ]  S5 ∗ Sin[G ]  S5 ∗ Cos[G ]  S3 ∗ Sin[G ])

 
 

 

        × (

𝐶1

𝐶 

𝐶3 

𝐶4

)  (

0
0
0
0

)                                                                                     9  

By equaling to zero the determinant of this system, we obtain an equation as a function of (δ), 

(v), (kσ), (γ), (m), (λw) and (λf). 

In the case of a plate supported on four sides, and aspect ratios a/d greater than 1 (common case 

in steel construction) the buckling coefficient (kσ) is equal to 4, and is given by expression (3). By 

using the notation (16), we obtain 

(
𝑚

𝛾
+

𝛾

𝑚
)
 

 4  → 𝑚  𝛾                                                                  0  

For all values of (m) and (γ) which satisfy the Eq. (20) the steel profile internal wall can be 

considered as a plate supported on four sides (kσ=4). 

By replacing parameters: v=0.3 (steel), kσ=4 and γ=m in the determinant of the equations 

system (19), we obtain an equation as a function of (λw), (λf) and (δ). 

 

3.1 Parametric study 
 

In order to develop numerical results, we proceed to vary the web slenderness and calculate the 

corresponding flanges slenderness. The expressions exploitation of λf=f(λw) for each values of (δ), 

allowed us to plot the following curves. 
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Fig. 4 Variation of flanges slenderness depending on the web slenderness λf=f(λw) 

 

 
Remark: 
From the graph of Fig. 4, we can calculate the minimum flanges slenderness to form efficient 

supports to the web. In this case, the assumption that the web is considered as a plate supported on 

four sides becomes acceptable. 

 

 
4. Curves exploitation 
 

To check that the flanges are efficient supports for the web of a steel profile, the following 

method is proposed: 

We begin by calculating the ratio of flanges thickness on web thickness (δ=tf/tw) and web width 

on its thickness (λw=d/tw). Thereafter, to obtain the flanges slenderness value (λf), we project the 

(λw) value in the appropriate curve of the Fig. 4. 

 

4.1 Practical example 
 

Consider the case of the profile IPE220. For this profile and according to the standard EU 19-

57 (Euronormes), its geometric characteristics are: d=178 mm; tw=5.9 mm; bf=110 mm; tf=9,2 mm. 

We can then calculate: δ=tf/tw=1.56; λw=d/tw=30.17; λf=bf/tf=11.96. The minimum flanges 

slenderness is (λf=1.63). 

 

Result: 
 

In order to consider the web of an IPE220 profile as a simply supported plate on its contour, it is 

sufficient that the flanges slenderness be equal to (1.63), whereas in reality it is (11.96). Therefore 

this condition is largely satisfied. 
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4.2 Application on rolled profiles 
 

The same work was carried out for the profiles IPE, HEA and HEB types. It is presented as a 

table showing minimum flanges widths and real flanges widths of rolled profiles. 

From the results of this table we find that the assumption usually made which considers the 

web of a rolled profile (I or H) as a plate supported on four sides is widely checked. 

 

4.3 Application on welded profiles 
 

A simple and practical formulation is proposed for welded profiles. The aim of this approach is 

to provide the minimum flanges dimensions needed in order that the use of the classifications 

internal walls tables (Eurocode 3 1999), remains valid for the webs of these profiles. Smoothing 

curves to approximate the graphs of Fig. 4 in the form of a second degree equation gives 

λf  Aλw
  + Bλw + C                                                                   

 

 

Table 1 Minimum flanges widths and real flanges widths for profiles IPE, HEA and HEB types 

Profile bf (mm) bf min (mm) Profile bf (mm) bf min (mm) Profile bf (mm) bf min (mm) 

IPE80 46 9 HEA100 100 11 HEB100 100 14 

IPE100 55 10 HEA120 120 12 HEB120 120 15 

IPE120 64 11 HEA140 140 13 HEB140 140 16 

IPE140 73 12 HEA160 160 14 HEB160 160 18 

IPE160 82 12 HEA180 180 14 HEB180 180 20 

IPE180 91 13 HEA200 200 16 HEB200 200 21 

IPE200 100 14 HEA220 220 17 HEB220 220 22 

IPE220 110 15 HEA240 240 18 HEB240 240 23 

IPE240 120 16 HEA260 260 18 HEB260 260 24 

IPE270 135 17 HEA280 280 20 HEB280 280 25 

IPE300 150 19 HEA300 300 21 HEB300 300 26 

IPE330 160 20 HEA320 300 22 HEB320 300 27 

IPE360 170 21 HEA340 300 23 HEB340 300 28 

IPE400 180 23 HEA360 300 25 HEB360 300 30 

IPE450 190 25 HEA400 300 27 HEB400 300 32 

IPE500 200 27 HEA450 300 29 HEB450 300 34 

IPE550 210 30 HEA500 300 30 HEB500 300 35 

IPE600 220 32 HEA550 300 31 HEB550 300 37 

/ / / HEA600 300 33 HEB600 300 38 

/ / / HEA650 300 34 HEB650 300 40 

/ / / HEA700 300 37 HEB700 300 43 

/ / / HEA800 300 39 HEB800 300 45 

/ / / HEA900 300 42 HEB900 300 48 

/ / / HEA1000 300 44 HEB1000 300 50 
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Table 2 The coefficients values of the equation λf=f (λw) 

 
A×103 B C 

δ=1,0 -0,050 0,019 2,162 

δ=1,2 -0,040 0,014 1,789 

δ=1,4 -0,030 0,010 1,526 

δ=1,6 -0,030 0,008 1,330 

δ=1,8 -0,020 0,007 1,179 

δ=2,0 -0,020 0,005 1,059 

δ=2,2 -0,010 0,004 0,961 

δ=2,2 -0,010 0,004 0,880 

δ=2,5 -0,010 0,003 0,844 

 

 

The values of the coefficients A, B and C for each value of (δ) are given in Table 2. 

To check that the flanges are efficient supports for the web of a steel profile, we project directly 

the value of (λw) in the appropriate curve of the Fig. 4, or we replace (λw) in Eq. (21). 

 

 

5. Conclusions 
 

Through this work, we have attracted the attention of steel structures designers that a problem 

exists on the concept of “internal wall” as it is defined in the normative requirements for buckling 

instability (Eurocode 3 1999). The web of a profile does not behave as a supported plate on its four 

sides only if the flanges dimensions exceed a given values. 

The exploitation of results found allowed us to check that for current rolled profiles, the flanges 

dimensions (and their rigidities) are largely sufficient to be able to assume that the webs of these 

profiles are simply supported on the flanges. This result serves to reassure the steel structures 

designers on the stability of current rolled profiles webs. 

For welded profiles, the results of this study are used to calculate the minimum dimensions 

required for flanges. 

We can use the results of this work, for profiles under compression, for the other cases of 

solicitations as pure bending and unsymmetrical bending. 
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Nomenclature 
 

fy : Yield strength of materiel. 

σcr : Critical buckling stress. 

 ̅  : Reduced wall slenderness. 

kσ : Buckling coefficient. 

E : Materiel elastic modulus. 

v : Poisson ratio. 

tw : Thickness of the web. 

d : Straight part of web steel profile. 

Ncr : Critical value of compressive force. 

Nx : Compressive forces per unit length in the x direction. 

D : Plate bending rigidity per unit width. 

m : Number of half waves in the longitudinal direction. 

a : Length of the steel profile. 
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W(x, y) : Out of plane deflection. 

f(y) : Deflexion in the x direction. 

C1, C2, C3, C4 : The general solution constants of the plate differential equation. 

R1, R2, α, β : Solutions of the characteristic equation. 

If : The flange flexional inertia. 

Af : Area of the flange. 

γ : Plate aspect ratio. 

δ : The web thickness on flange thickness ratio. 

λf : The flange slenderness.  

λw : The web slenderness. 

σx : Membrane stresses acting in the x direction. 

S1, S2, S3, S4, S5: Matrix components.  

bf : Width of the flanges steel profile. 

tf : Thickness of the flange. 
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