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Abstract.  Structural design is usually an optimization process. Numerous parameters such as the member 
shapes and sizes, the elasticity modulus of material, the locations of nodes and the support constraints can be 
selected as design variables. These variables are progressively revised in order to obtain a satisfactory 
structure. Each modification requires a fresh analysis for the displacements and stresses, and reanalysis can 
be employed to reduce the computational cost. This paper is focused on static reanalysis problem with 
modification of deleting some supports. An efficient reanalysis method is proposed. The method makes full 
use of the initial information and preserves the ease of implementation. Numerical examples show that the 
calculated results of the proposed method are the identical as those of the direct analysis, while the 
computational time is remarkably reduced. 
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1. Introduction 
 

Many large complex structures require to be designed in some fields such as civil engineering, 

petrochemical engineering and aerospace engineering. Structural analysis is indispensable during 

the process of design. Generally speaking, the design may be modified many times until a 

satisfactory structure is obtained. Each modification involves a fresh analysis. These repeated 

analyses cost much computational time and lead to an unacceptable numerical burden (Chen and 

Huang 2013). In order to improve the case, structural static reanalysis problem has been proposed. 

The objective of structural static reanalysis is to calculate the response of the modified structure by 

making full use of the information from the initial analysis so that the computational cost can be 

greatly reduced (Abu Kassim and Topping 1987). Static reanalysis is significant for designing 

large structures, especially for the case in which only a small part of the structure is progressively 

modified (Terdalkar and Rencis 2006). 

Some static reanalysis methods have already been proposed. Generally speaking, these methods 

can be divided into two classes: direct reanalysis methods and approximate reanalysis methods. 
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Direct methods provide exact closed-form solutions of the response. The computational costs of 

these methods depend on the number of the changed elements, and are unrelated to the extent of 

the changes. For this reason, direct methods are suitable for the modifications where the changes 

in design variables are large in magnitude, yet only affect a small part of the structure. Most of 

these methods utilize the famous Sherman-Morrison-Woodbury formulae, and several 

improvements and variations have been proposed (Akgün et al. 2001, Pais et al. 2012). 

Approximate reanalysis methods present the approximate solutions of the response. The 

accuracy of the approximate solution and the convergent speed are two key issues for these 

methods. Approximate methods can be broadly classified into four categories: local 

approximations, global approximations, combined approximations (CA), and preconditioned 

conjugate gradient (PCG) approximations. For the details of these approximate methods, we refer 

the readers to Kirsch (2008), Li and Wu (2007). Among the above four approximate methods, PCG 

approximations are the most efficient. Recently, a PCG approximation for unchanged number of 

degrees of freedom (DOFs) was proposed (Liu et al. 2012a). The method utilizes the algorithm of 

updating Cholesky factorization to construct a new preconditioner. It is especially efficient in 

dealing with the cases in which small parts of the structure are heavily modified while major parts 

are slightly modified. More importantly, an exact solution can be given by using the procedure of 

constructing the preconditioner when the number of changed elements is small. 

The above mentioned reanalysis methods can deal with various structural modifications such as 

cross-sectional modifications, material modifications, geometrical modifications and layout 

modifications. However, structural supports as the design variables have been brought into wide 

use (Takezawa et al. 2006, Tanskanen 2006, Zhu and Zhang 2010), especially in the fields of 

building construction, aircraft structures and printed circuit boards (Wang et al. 2004). In addition, 

elastic contact problems, such as normal, tangential, and rolling contacts, can be transformed into 

multiple point constraints for nodal displacements in the finite elements analysis method (Liu et al. 

2010). The reanalysis methods for such modifications are relatively few. The supporting 

modifications include the variations of the location, the number, and the type of the structural 

supports (Olhoff and Taylor 1983). A small change in supports has great effect on structural 

performance, especially on the nodal displacements and the natural frequency. Meanwhile, these 

modifications often result in the variations of the number of DOFs. Therefore, the reanalysis for 

the support modifications is a challenging problem in the field of structural reanalysis. Liu et al. 

(2012b) studied the case of adding some supports whose orientations are the same as that of some 

axes of the global coordinate system. The method requires to solve several linear system with the 

same coefficient matrix, i.e., the initial stiffness matrix, then a linear system with lower order is 

involved for calculating the response of the modified structure. The exact solution is provided. 

Thus, the method belongs to the direct reanalysis method. 

This paper is a follow up to Liu et al. (2012b). Static reanalysis problem with modification of 

deleting some support constraints whose orientations are the same as that of some axes of global 

coordinate system is studied. The initial information has been fully utilized, a property of 

Cholesky factorization is studied and employed, finally a new method is proposed. The paper is 

organized as follows. The Cholesky factorization is reviewed, and its property related to our 

problem is studied in Section 2. The mathematical formulations of the considered problem are 

given in Section 3. Section 4 contains our method for dealing with the problem. Numerical 

examples are used to validate the effectiveness of the proposed method in Section 5, and finally 

some conclusions are drawn in Section 6. 
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2. Cholesky factorization and its property related to our problem 
 

Cholesky factorization is a fundamental factorization for symmetric and positive definite (SPD) 

matrix, it is mainly used to solve SPD linear system. Any SPD matrix A∈R
n×n

 can be factored in 

the form 

T
GGA                                   (1) 

where G∈R
n×n

 is a lower triangular matrix with positive entries on its diagonal, and G
T
 denotes 

the transpose of G. This factorization is called the Cholesky factorization of A, and G is named as 

the Cholesky triangle. Given a SPD matrix A, its Cholesky factorization is unique (Golub and Van 

Loan 1996), i.e., if a lower triangular matrix G1 satisfies the following equation 

T

11GGA                                  (2) 

then we have G1=G. Once the Cholesky factorization A=GG
T
 has been calculated, the linear 

system Ax=b can be solved via the two triangular systems Gy=b and G
T
x=y with little cost. The 

algorithm for computing the Cholesky factorization can be derived by manipulating the equation 

A=GG
T
 (Golub and Van Loan 1996). 

 

Algorithm 1 (Cholesky factorization) 

1111 ag   

For ni  , ,2   

  for 1 , ,1  ij   

    for 1 , ,1  jk   

      jkikijij ggaa   

    end 

    jjijij gag /  

  end 

  for 1 , ,1  ik   

    
2

ikiiii gaa   

  end 

  iiii ag   

End 

This algorithm requires (1/3)n
3
 floating point operations (flops) and is numerical stable. When 

the bandwidth of A is taken into account, the algorithm can be slightly revised and the 

computational cost is reduced, see Golub and Van Loan (1996). Cholesky factorization can be 

regarded as a variant of Gaussian elimination that operates on both the left and the right of the 

matrix at once, preserving and exploiting symmetry. For the further research on Cholesky 

factorization, see Davis (2006). 

In order to deal with our problem, the following property of Cholesky factorization is 

introduced. 

Property 1 Suppose A∈R
n×n

 is SPD, and its Cholesky factorization is A=GG
T
. Assume 
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Proof Let the Cholesky factorization of B be partitioned in the form 
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1111GGA   can be obtained by utilizing the 

multiplication of block matrix. From the uniqueness of Cholesky factorization, we have G11=G, 

i.e., the Cholesky factorization of B has the form 
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An important role of the above property is that when the Cholesky factorization of A has 

already been known, it can be used to calculate the factorization of B instead of factoring B 

directly. It will be seen in the following that this property is especially valuable for our problem. 

 

 

3. Mathematical formulations of the considered problem 
 

The static reanalysis problem for deleting some support constraints whose orientations are the 

same as that of some axes of global coordinate system can be stated as follows. 

Given an initial design, the corresponding stiffness matrix is K0∈R
m×m

. The displacement 

vector y0 can be achieved by solving the equilibrium equations 

                              000 ryK                                   (3) 

where r0∈R
m
 denotes the load vector. The stiffness matrix K0 is SPD. From the initial analysis, its 

Cholesky factorization has already been known 

                              
T

000 LLK                                  (4) 

where L0 is the Cholesky triangle of K0, and 
T

0L  stands for the transpose of L0. Assume some 

supports are deleted, the number is s, and the orientations of these supports are the same as that of 

some axes of global coordinate system. The truss structure in Fig. 1 is employed to illustrate the 

type of modification that our proposed method can deal with. Suppose the initial structure is Fig. 

1(a), the modification of deleting support constraint like Fig. 1(b) is studied, while modification of 

deleting skew support constraint is not considered in this paper. 

Compared with the number of the initial DOFs, the number of deleted support constraints is 

usually very small, i.e., s<<m. The modified equilibrium equation is 

                                rKx                                    (5) 

where K∈R
(m+s)×(m+s)

 is the modified stiffness matrix and is also SPD, x∈R
m+s

 represents the 

displacements vector and r∈R
m+s

 denotes the modified load vector. The relationship between K0  
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(a) (b) 

Fig. 1 Truss structure. (a) initial design, (b) modified design with deleting a support constraint along 

vertical axis of the global coordinate system 
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The locations of the inserted rows and columns are only associated with the numberings of 

nodes whose supports are deleted. The objective of static reanalysis is to calculate the 

displacement vector x by making full use of the initial information, especially the Cholesky 

factorization of the initial stiffness matrix, so that the computational cost can be remarkably 

reduced. Once the displacements are achieved, the stresses can be readily determined by utilizing 

stress-displacement relations. 

 

 

4. The static reanalysis method for modification of deleting some supports 
 

In this section, our proposed method is first derived, then the details of computation is given, 

finally the efficiency of the method is studied. 

 

4.1 The derivation of the method for the problem 
 

Suppose x and r in Eq. (5) are the vectors with components xi and ri, respectively. Then Eq. (5) 

can be written in the following form 
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Put the variables 
sii xx  , ,

1
  at the ends of all the equations, i.e. 
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Rearrange the sequence of the above equations as follows 
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Eq. (10) is equivalent to Eq. (8), note that the coefficient matrix in Eq. (10) is 








22

T

12

120

KK

KK
, 

where K12∈R
m×s

, K22∈R
s×s

. The above process can be summarized at matrix-vector level as 

follows. There exists a permutation matrix P such that 

PrPxPKP T
                              (11) 

where 
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C  Pxx   and Prr  , then 

we have 

rxC                                   (12) 

  It is important to emphasize that C is SPD since K is SPD and C=PKP
T
. Assume the Cholesky 

factorization of C is 
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T
LLC                                  (13) 

where L is the Cholesky triangle of matrix C. Let L be partitioned in the following form 











2221

11

LL

0L
L                              (14) 

where L11∈R
m×m

, L21∈R
s×m

, L22∈R
s×s

, and 0 denotes the corresponding zero matrix. 

Recall from property 1 in Section 2, we have L11=L0. Thus, only L21 and L22 require to be 

calculated. The Cholesky factorization of C can be computed from the m+1th row, as given in the 

following algorithm. 

 

Algorithm 2 

For smmi   , ,1   

  for 1 , ,1  ij   

    for 1 , ,1  jk   

      
jkikijij llcc   

    end 

    
jjijij lcl /  

  end 

  for 1 , ,1  ik   

    2

ikiiii lcc   

  end 

  
iiii cl   

End 

We name Algorithm 2 the continued Cholesky factorization algorithm. The algorithm involves 

3m
2
s+3ms

2
+s

3
 flops and is numerical stable since it can be viewed as a part of Cholesky 

factorization algorithm of matrix C. 

 

4.2 The details of computation 
 

During the process of computing, we do not need to explicitly form the matrices P and C. 

Instead we work directly with the last ths  rows of C. Once the Cholesky factorization of C is 

achieved, x  can be calculated via the forward and backward substitutions with little cost. 

xPx
T  can be obtained by the following way instead of using matrix-vector multiplication. Put 

the last ths  entries of x  into the i1th, i2th, …, isth component of x, and the remainder of x is 

padded with the first thm  entries of x  in order. In addition, most part of L, i.e., the upper-left 

corner is band matrix L0, this property can be utilized by the forward and backward substitutions 

for reducing the computational cost. 

 

4.3 The efficiency of the method 
 

The computational cost of our proposed algorithm can be quantified by the number of flops. 
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Assume the half-band widths of the initial stiffness matrix and the modified stiffness matrix are the 

same, and let b denote the half-band width. The case of b<<m is studied. Recall from the last part 

of Section 4.1, the Cholesky factorization of C involves 3m
2
s+3ms

2
+s

3
 flops by utilizing the 

proposed algorithm. The forward and backward substitutions require 2mb+4ms+2s
2
 since the 

upper-left corner of L is a band matrix L0. Thus, the total computational cost of the proposed 

algorithm is 3m
2
s+3ms

2
+s

3
+2mb+4ms+2s

2
 flops. Direct analysis method costs (m+s)(b

2
+8b+1) 

flops (Golub and Van Loan 1996) since the Cholesky factorization of the modified stiffness matrix 

is required. The theoretical speed up St is defined as the ratio of the flops using the direct analysis 

method to that using the proposed method (Leu and Tsou 2000), that is 

2322

2

24233

)18)((

smsmbsmssm

bbsm
St




                    (15) 

Eq. (15) can be approximately by 

sbsms

bb

msmbmssm

bbm
St

4233

8

4233

)8(
2

2

22

2









               (16) 

since s<<m and b<<m. From Eq. (16), it can be observed that the smaller s is, the larger St is. 

Using Eq. (16) yields St≥1, if 

6

43167224129 22 


mbmbm
s                   (17) 

i.e., when the number of the deleted support constraints s satisfies the inequality (17), the 

computational cost of the proposed method is equal to or less than that of the direct analysis 

method. 

Note that the matrix C may not be a band matrix, the method does not keep the band wide of 

the modified stiffness matrix K, this is a drawback of our method. Fortunately, the number of the 

entries in L which need to be calculated is small since s<<m. 

 

 

5. Numerical examples 
 

In this section, two examples are given to demonstrate the effectiveness of the proposed 

method. All the computations are completed on a PC: Pentium 4, quad-core CPU with 2.66 GHz, 2 

GB RAM. Compaq Visual Fortran 6.5 is used. 

 

Example 1 
An offshore oil platform is studied in this example, as shown in Fig. 2. The material modulus of 

elasticity is E=2×10
11

 Pa and the Poisson‟s ratio is υ=0.3. The height of the structure is 162 m in 

which h1=15 m and h2=6 m. The length, width and thickness of the two rectangular platforms are 

16 m, 12 m and 3.6×10
-2

 m, respectively. The structure is discretized into a finite element model 

with 396 elements and 192 nodes. Every node has 6 DOFs except the 8 constrained nodes and the 

total number of DOFs of the structure is 1104. Fig. 3 shows the 8 constrained nodes, where ● 

denotes the constrained node. Three kinds of elements are used, i.e., 40 beam elements, 96 plate 

elements and 260 pipe elements. All the beams are under the two rectangular platforms, as shown  
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Fig. 2 An offshore oil platform Fig. 3 The initial constrained nodes of the offshore oil platform 

 

 

Fig. 4 The beams of the offshore oil platform 

 

 

in Fig. 4. The beam cross-section is 0.3 m×0.3 m. There are three pipe cross-section sizes: outer 

radius 0.6 m, thickness 3×10
-2

 m; outer radius 0.4 m, thickness 2×10
-2 

m; and outer radius 0.15 m, 

thickness 0.1 m. The size of each plate element is 2 m×2 m, and the thickness is 3.6×10
-2

 m. Every 

node of the structure is subjected to a vertical load P=−1×10
4 
N. The modification is deleting the 

two side constrained nodes of the structure. Thus, the modified structure has 6 constrained nodes, 

as shown in Fig. 5. The number of DOFs of the modified structure is 1116. 

Table 1 presents the 2-norm of the displacement vectors xp and xd of the modified structure 

calculated by the proposed method and direct analysis, respectively. The 2-norm of their difference 

is also given in this table. It can be observed that, the calculated results of the two methods are 

almost identical. Here, direct analysis means that the displacements vector is obtained by the  
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Fig. 5 The constrained nodes of the offshore oil platform after modification 

 
Table 1 The 2-norm of the displacement vectors and their difference of the modified offshore oil platform 

 xp xd xp−xd 

The 2-norm 0.261101 0.261101 2.411969×10
-13

 

 
Table 2 The computational times for the modified offshore oil platform 

 Proposed method Direct analysis 

The computational times 0.110938s 3.737500s 

 

 

Cholesky factorization of the modified stiffness matrix, the forward and back substitutions. The 

computational times for the offshore oil platform are listed in Table 2. It can be seen that the 

computational time of the proposed method is much less than that of direct analysis. 

 

Example 2 
Consider the framework of a six-storey building, as shown in Fig. 6. The length, width and 

height of the building are 36 m, 18 m and 24 m, respectively. The height of each floor is 4 m. The 

material modulus of elasticity and the Poisson‟s ratio are E=3×10
10

 Pa and υ=0.2, respectively. A 

finite element model is employed to simulate the framework under a given load. The model has 

918 elements and 561 nodes. Every node has 6 DOFs except the 15 constrained nodes and the total 

number of DOFs of the structure is 3276. All the constrained nodes are at the bottom of the  
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Fig. 6 The framework of a six-storey building 

 

 

Fig. 7 The initial constrained nodes of the framework 

 
Table 3 The 2-norm of the displacement vectors and their difference of the modified framework 

 xp xd xp−xd 

The 2-norm 0.030071 0.030071 4.654269×10
-16

 

 

 

structure, as showed in Fig. 7, in which „‟ denotes the constrained node. The structure includes 

two types of elements: 486 beam elements and 432 plate elements. The thickness of each plate is 

0.18 m and the size is 3 m×3 m. The beams have two cross-section sizes, i.e., 0.6 m×0.6 m (those 

are perpendicular to the ground) and 0.3 m×0.6 m (others). The modification is deleting the 

rotation constraints of three nodes denoted by „∆‟ in Fig. 8. Thus, the total number of DOFs of the 

modified structure is 3285. The nodes which are on the roof of the building are subjected to a 

vertical load P=−2×10
4
 N. 

Table 3 gives the 2-norm of the displacement vectors xp, xd and their difference. For the 

meanings of xp and xd, see the above example. The computational times for the modified structure 

are given in Table 4. It is can be observed that the computational time of our proposed method is 

much less compared with direct analysis. 
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Fig. 8 The constrained nodes of the framework after modification 

 
Table 4 The computational times for the modified framework 

 Proposed method Direct analysis 

The computational times 0.982813s 15.992188s 

 

 

6. Conclusions 
 

This paper has focused on the static reanalysis problem with deleting some support constraints 

whose orientations are the same as the orientations of some axes of the global coordinate system. 

An efficient reanalysis method has been proposed. The method makes full use of the initial 

information. A property of Cholesky factorization is studied and utilized. An algorithm named the 

continued Cholesky factorization algorithm is proposed and employed for our problem. The 

method provides exact solutions, thus it belongs to the direct reanalysis methods. Numerical 

examples have shown that the calculated results of the proposed method are the same as that of 

direct analysis, meanwhile the computational times can be significantly reduced. However, the 

proposed method can only deal with a special case of support modifications. Future work is to 

study the static reanalysis problem for the general support modifications (adding or deleting of 

some support constraints, and the orientations of the added or deleted support constraints are 

unlimited). 
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