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Abstract.  In this paper, reliability-based design optimization (RBDO) of structures is addressed. For this 
purpose, the global search and optimization capabilities of genetic algorithm (GA) are combined with the 
efficiency and reasonable accuracy of an advanced moment-based finite element reliability method. For 
performing RBDO, three variants of GA including a real-coded, a binary-coded and an improved binary-
coded GA are developed. In these methods, GA performs (finite element) reliability analyses to evaluate 
reliability constraints. For truss structures which include finite element modeling, reliability constraints are 
evaluated using finite element reliability analysis. Response sensitivity required for finite element reliability 
analysis is obtained by direct differentiation method (DDM) rather than finite difference method (FDM). 
The proposed methods are examined within four standard test examples and real-world design problems. 
The results illustrate the superiority and efficiency of the improved binary-coded GA. Results also illustrate 
that DDM significantly reduces the computational cost and improves the efficiency of the optimization 
procedure. 
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1. Introduction 
 

Design of structures accounting for probability concepts necessitates the development of 

appropriate automatic procedures to solve the RBDO problems. Enevoldsen and Sorensen (1994) 

have presented several formulations for RBDO problem. They have solved the formulated 

problems using reliability index approach (RIA). Tu et al. (1999) have presented an approach 

denoted performance measure approach (PMA) in which the probabilistic constraints are defined 

in terms of performance measure obtained by inverse first-order reliability method (iFORM) 

approach (Togan et al. 2011). Since these approaches are very time-consuming, a number of 

methods such as single loop methods (Agarwal et al. 2007) and decoupling approaches (Der 

Kiureghian and Polak 1998, Royset et al. 2001, Aoues and Chateauneuf 2010) have been 

developed to improve the efficiency of RBDO. For more comprehensive review on the approaches 

to the RBDO problem, see (Valdebenito and Schueller 2010). 
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    As seen in the literature, most of the methods presented for solving the RBDO problems are 

based on traditional optimization methods including gradient-based mathematical programming 

and hill-climbing algorithms (Chen et al. 2013, Cho and Lee 2011, Royset et al. 2006, Lee and 

Lee 2005). In the situations where the objective function is not continuously differentiable or has 

multiple local optima, these methods are ineffective. In comparison, genetic algorithm (GA) due to 

its probabilistic nature does not encounter these difficulties. Moreover, high computational effort 

required for solving the RBDO problem necessitates the use of parallel computing in order to 

render the application of RBDO feasible for practical problems (Valdebenito and Schueller 2010). 

This can be accomplished by means of the methods that are amenable to parallelization. GA is 

amenable to parallel computing due to its exceptional ability to be parallelized. These advantages 

of GA motivate us to develop three hybrid optimization methods for solving reliability-based 

structural design problems in which GA is used as an optimization tool. 

    In the last decades, GA has been successfully used for a wide range of difficult problems in 

structural engineering due to its simple implementation and robust performance. A GA 

methodology for reliability-based design optimization of truss structures has been proposed by 

Dimou and Koumousis (2003). In their research, system reliability estimation is performed using 

Ditlevsen bounds. Shayanfar et al. (2013) recently proposed a GA combined with second-order 

reliability method (SORM) for mathematical RBDO problems having explicit limit-state functions 

without finite element modeling. 

    In this paper, three hybrid methods for reliability-based design optimization of structures that 

combine GA with reliability and finite element reliability analysis are proposed. For this purpose, 

three different variants of GA are developed for RBDO problems. The first two variants, namely 

GA-V1 and GA-V2, have been previously introduced only for deterministic problems and in this 

paper, we extend them for RBDO problems and study their effectiveness for this particular 

problem. The third variant (GA-V3) is proposed by the authors as an improved optimization 

method adjusted for RBDO problems. In this variant of GA, a novel representation method is 

introduced in order to improve the performance of the hybrid method. In general, because of their 

unacceptable computational costs, simulation methods may not be efficient tools for reliability 

analysis within the RBDO problems. Unlike the simulation methods, advanced first-order 

moment-based methods due to their appealing balance between accuracy and efficiency are 

appropriate choices for reliability assessment within the optimization procedure (Aoues and 

Chateauneuf 2010). Therefore, in this work, an advanced first-order moment-based method is used 

to perform reliability and finite element reliability analysis. Particularly, for truss structures which 

consist of finite element modeling, reliability assessment is performed by finite element reliability 

analysis.  

    GA like other meta-heuristic algorithms requires many function evaluations to search and find 

the optimum design. Moreover, finite element reliability can be very time-consuming due to 

repeated structural analyses necessary to compute the gradients by finite difference method. To 

tackle these problems, in this research, response sensitivity analysis required for finite element 

reliability is performed by direct differentiation method (DDM) in order to decrease the 

computational time of optimization procedure. To handle the constraints, the hybrid GAs are 

integrated with the penalty function method.   

The structure of the paper is as follows: In section 2, the definition and formulation of the 

RBDO problem are presented. Section 3 discusses the issue of reliability and finite element 

reliability analysis. Response sensitivity analysis and DDM are also discussed in this section. 

Section 4 addresses the methods for solving the RBDO problem using hybridization of GA and 
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(finite element) reliability analysis. The details of the hybrid methods and implementation issues 

are discussed in this section. Four numerical examples are given in section 5. 

 

 

2. Definition and formulation of RBDO problem 
 

2.1 Definition  
 

The formulation of RBDO problems can be presented in different ways (Valdebenito and 

Schueller 2010). According to (Der Kiureghian and Polak 1998), three different types of 

reliability-based optimization problems can be defined: 

1- Minimization of the cost of the design subject to reliability and deterministic structural 

constraints 

2- Maximization of the reliability of structural design subject to deterministic and cost 

constraints 

3- Minimization of initial cost plus expected cost of failure subject to reliability and 

deterministic structural constraints. 

This paper focuses on the first problem. However, the proposed method could be extended for 

solving the third problem without additional difficulties. 

 
2.2 Formulation 
     

This paper considers a single-objective optimization problem, where particular constraints of 

the optimization problem are expressed in terms of the reliability of the design. The basic 

formulation of RBDO involves minimizing the objective function subject to reliability and 

deterministic constraints. In this context, the cost of the design (e.g., the total weight of structure) 

is defined as the objective function. In mathematical terms, typical RBDO problem can be 

represented as follows 

     

 

  dcj

rc
t
ii

njh

nigprob

C

,...,10

,...,1)()0),((tosubject
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
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d

xd

d

  (1) 

where C(.) denotes the cost of the design, d denotes the vector of design variables, x is the vector 

of random variables, gi(d,x) is the ith performance function, hj(.) is the jth deterministic constraint, 
t

i
  is the target reliability index for ith performance function, and nrc and ndc are the number of 

reliability and deterministic constraints, respectively. Notice that the design variables can be either 

deterministic variables or parameters of probability distribution such as mean value of random 

variables. 

 

 

3. Structural reliability 
 

3.1 Reliability analysis 
 

Formulation of structural reliability problems is usually based on the definition of performance 
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function(s), i.e., g=g(d,x). This function is defined in terms of design variables and uncertain 

parameters such that g(.)≤0 represents the failure domain. The probability of failure of a 

component, pf, for the design d is calculated by the following integral 

      

 
 

  xxd x
xd,

dfp

i
g

f 



0

...  (2) 

where pf is the probability of failure, and fx(x) is the joint PDF of x. Since the multi-dimensional 

integral of Eq. (2) does not have closed-form solution except for a few simple cases, some 

approximate methods have been developed. These methods consist of first-order reliability method 

(FORM), second-order reliability method (SORM), advanced simulation methods, and response 

surface methods (Basaga et al. 2012, Jiang et al. 2014). 

Among the various available methods, FORM due to its appropriate balance between accuracy 

and computational cost is a suitable choice for reliability assessment within the RBDO problems 

(Aoues and Chateauneuf 2010). FORM usually needs 5-10 evaluations of performance function in 

order to get sufficiently accurate probability approximation (Koduru and Haukaas 2010). For this 

reason, FORM is widely used for reliability assessment within RBDO problems.  

The first step in FORM is to transform the random variables of the problem into uncorrelated 

standard normal random variables. There exist various transformations in the literature which can 

be used in FORM. Rosenblatt and Nataf are two important transformations. Nataf presented by 

Der Kiureghian and Liu (1986) is an approximate transformation which requires marginal 

distributions and correlations of random variables. This transformation used in this research can be 

applied to almost all such reliability analyses. 

After transforming the input random variables, in the space of standard normal random 

variables, limit-state surface is replaced by a hyper-plane tangent at the closest point to the origin. 

The point of tangency, denoted by y*, is called “design point” or the most probable failure point 

(MPP). The reliability index, β, is defined as the Euclidean distance of design point (MPP) from 

the origin in the standard normal space. Therefore, structural reliability problem is converted to a 

constraint optimization problem for finding the design point expressed as 

      
  0tosubject

min





xd,

y

g


 (3) 

    The reliability index and probability of failure are related by following formula 

      
 fp  (4) 

where Ф denotes the standard normal cumulative distribution function. 

Finding the design point can be performed by standard nonlinear optimization algorithms such 

as the gradient projection method, the augmented Lagrangian method, the sequential quadratic 

programming method, etc. However, one of the most popular algorithms for solving the 

optimization problem of Eq. (3) is the well-known HL-RF algorithm. The HL-RF algorithm is an 

iterative scheme based on Newton-Raphson root finding approach. This algorithm can be 

expressed in mathematical terms as 

      

   
g

g

g

g j
jj

yy

y y
y







  (5) 

1102



 

 

 

 

 

 

Reliability-based design optimization of structural systems using a hybrid genetic algorithm 
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where gy is the gradient vector of performance function  .g  with respect to the transformed 

random variables.  

The HL-RF algorithm has been improved by adding a line search scheme. It is proved that the 

improved algorithm, denoted by iHL-RF, is unconditionally convergent. In particular, in this 

paper, iHL-RF is used to find the design point in structural reliability and finite element reliability 

analysis. 

    
3.2 Finite element reliability analysis 
     
Finite element reliability merges advanced reliability methods with finite element analysis to 

estimate the probability of failure for predefined performance functions (Haukaas and Der 

Kiureghian 2007). Finite element method (FEM) enters the reliability analysis through the 

definition of performance function. A typical performance function for truss structures has the 

following form 

      0)()( uug  xx  (7) 

where u(x) denotes a response quantity obtained by FEM and u0 is a response threshold. Notice 

that u(x) is a function of random variables. According to Eqs. (5) and (6), to perform reliability 

analysis for performance function of Eq. (7) by iHL-RF, it is necessary to compute the gradients of 

performance function with respect to random variables. The required gradient has the following 

form 

      
y

x

xy 














 u

u

gg
 (8) 

In the above equation, ∂g/∂u
 

is easily computed and ∂x/∂y is the Jacobian of Nataf 

transformation. The remaining gradient, ∂u/∂x, needs to be obtained by finite element method and 

represents the response sensitivity.  

However, a significant drawback is the high computational time required for repeated structural 

analyses to obtain this gradient using finite difference method (FDM). Moreover, FDM might lead 

to inaccurate results depending on the size of perturbation. 

Direct differentiation method (DDM) is an attractive alternative to FDM for sensitivity analysis 

within the reliability assessment. DDM includes deriving the analytical differentiation of the 

governing equations of structural response. The sensitivity equations are then implemented along 

with finite element response equations and calculated with the same precision. Therefore, unlike 

FDM, DDM provides the sensitivity of structural response without repeated analyses of structures 

for perturbed value of each random parameter. This leads to the efficiency of sensitivity algorithm 

which motivates us to employ DDM for sensitivity calculations of reliability assessment within the 

RBDO procedure proposed for truss structures.  

The structural response is obtained by solving the equations of static equilibrium. These 

equations have the general form 

      
   )(,int XXXu extPP   (9) 
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where Pext and Pint are the external and internal force vector, and X denotes the vector of random 

parameters of structures including material, geometric and load parameters and u(X) denotes the 

nodal displacement vector. The derivative of Eq. (9) with respect to a single parameter x in X is 

      
x

P

x

P

x

u
K

u



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


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

 ext
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where 

       u

P
K




 int

T  (11) 

where KT is the tangent stiffness matrix equal to the partial derivative of internal force vector with 

respect to nodal displacements, 
Fixedu

x

P



 int is the conditional derivative of internal force vector with 

respect to parameter x while the nodal displacements are held fixed, and 
x

P



 ext is equal to zero 

except in the situation where x presents a nodal force.  

    Therefore, the nodal response sensitivity is obtained by solving the following system of linear 

equations 

            

)( int1
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ext
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


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






   (12) 

More details about DDM equations and the solution procedures can be found in (Kleiber et al. 

1997). 
   

 
4. Proposed hybrid genetic algorithms for RBDO 
 

This section describes three hybrid approaches in which, GA is combined with finite element 

reliability analysis to perform reliability-based design optimization. More precisely in the 

proposed approaches GA is used as an optimization tool to minimize the cost of structural design 

while it performs finite element reliability analyses in order to evaluate the reliability constraints. 
In the following subsections three variants of GA, denoted by GA-V1, GA-V2 and GA-V3, are 

developed for RBDO problems with real-valued design variables. The general features of these 

variants are borrowed from the standard GA and include the following steps: 1) Encoding and 

decoding. 2) Initialization 3) Selection. 4) Crossover. 5) Mutation. 6) Fitness evaluation and 

constraint handling (see Fig. 1). On the other hand each variant utilizes different versions of the 

encoding, crossover and mutation steps which are proposed based on the nature of the current 

problem of reliability-based design. The constraints will be handled by penalty function method 

which transforms the constrained optimization problem into an unconstrained problem. 

The first step of a GA is generating an initial population. Before starting the iterative loop of 

the GA, the initial population of individuals is randomly generated. The population size should be 

selected in a way to provide a balance between diversification of the population and efficiency of 

the algorithm. The fitness value of each individual in the population is evaluated in all generations. 

A roulette wheel approach is then used to select the individuals for reproduction. As it is not  
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Fig. 1 Schematic representation of the hybrid optimization methodology 

 

 

guaranteed to select the fittest individual by using the roulette wheel approach, an elitist strategy is 

also employed in the proposed algorithm. Using this strategy, the best five individuals of the 

current population are selected and directly carried over to the next generation. 

After that, Crossover and mutation operators are applied to the selected individuals to construct 

the next population. Mutation operator is used to prevent the algorithm to be trapped into a local 

minimum. In addition, mutation prevents permanent loss of genetic data and also produces new 

data during the optimization process. 

 

4.1 GA-V1: a real-coded GA 
 
In the real-coded GA, design variables are applied as real-valued variables. Therefore, unlike 

the other variants there is no need to encode and decode the design variables.  

In this variant of GA, an arithmetic crossover is employed to create two new offspring. The 

basic idea of this method is taken from convex set theory. In this method, the resulting offspring, 

c1 and c2, are produced using linear combination of two parents, P1 and P2, as given bellow 
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where α is a random number uniformly distributed between 0 and 1. 

GA-V1 utilizes a nonlinear mutation operator. For this purpose, Consider an individual

),...,,...,,(
21 nk

xxxxx  , a component of x, xk, is randomly selected and replaced by 
k

x obtained as 

follows 
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where 
u

kx  and 
l

kx are upper and lower bounds of kx . The function Δ(t, dx) is defined as 
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(15) 

In the above equation, t is the generation number, T denotes the maximum number of 

generation and b is the parameter that determines the nonlinearity assumed as b=3, and r is a real 

random number between 0 and 1. 

 

4.2 GA-V2: a binary-coded GA 
 
In GA-V2, a binary encoding method is utilized. In this method, each design variable is 

transformed into a set of binary digits and a total combination of these sets forms an individual. 

Since the design variables of the problem are real-valued, for encoding and decoding a binary 

string, the following equation is used (Shayanfar et al. 2013) 

            
)(

2
minmaxmin

CC
B

CC
L



 
(16) 

where C is the real value the string represents, Cmax and Cmin are respectively upper and lower 

bounds of the design variable, B denotes the decimal value of the binary string, and L is the length 

of binary string. The required accuracy specifies the length of the binary string. In this paper, the 

length of binary strings used for encoding each design variable is taken to 10. 

The RBDO problems usually have multiple design variables. Encoding the multiple design 

variables is performed by concatenating each of encoded design variables next to each other. For 

example, consider a problem with two design variables w and t where each of the design variables 

is encoded by a 10-digit string. In this case, an individual is formed by concatenating two encoded 

design variables and contains 20 digits. This process is shown schematically in Fig. 2. 

In the GA-V2, a multi-point crossover method with three cutting points is applied to the 

parents. In multi-point crossover, first, 3 points are randomly chosen along the binary bits of 

 

 

 

Fig. 2 Schematic representation of encoding process for multiple design variables in GA-V2 
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Fig. 3 Schematic representation of multi-point crossover 

 

 

Fig. 4 Schematic representation of bit flip mutation 

 

 

encoded individuals. Then, the contents between these points are swapped to produce two new 

children. This process is shown schematically in Fig. 3. 

In this variant of GA, with a mutation probability of Pm, a bit flip mutation is performed, in 

which a binary bit along the encoded individual is randomly selected and flipped as shown in Fig. 4. 

 

4.3 GA-V3: an improved binary-coded GA  
     

The main difference of GA-V3 compared with GA-V2 is in the representation method used for 

individuals. In GA-V3, a novel representation is introduced in order to improve the performance of 

the hybrid RBDO method. In this variant of GA, each design variable is represented using two 

binary strings. The first string, str1, represents the integer part of the design variable. The length of 

this string is set to the length of the maximum allowable value of the design variable in base-2 

numeral system. The second string, str2, represents the fractional part of design variable. The 

length of the second string is specified by the required accuracy. Coding and decoding of a binary 

string are based on the following formulas 
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(17) 

where x1 is the real valued design variable, binary2decimal(.) is an operator that converts the 

binary string to its decimal value which equals integer part of the design variable x1. B is decimal  
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Fig. 5 Schematic representation of encoding for problems with 2 design variables in GA-V3 

 

 

value of the second binary string, and L is the length of str2 set to 8. 

    In this method, each design solution (individual) including multiple parameters consists of two 

sections. The first section is formed by concatenating integer parts of all design variables and the 

second section is constructed by concatenating fractional parts of all design variables. This process 

for a problem with 2 design variables is illustrated in Fig. 5. 

In the GA-V3, like GA-V2 the multipoint crossover with 3 cutting points chosen randomly 

along the binary string and bit flip mutation are applied to the selected individuals for 

reproduction. 

 

4.4 Fitness evaluation and constraint handling 
 
To evaluate the fitness value of individuals, first, each one is decoded to a set of real-valued 

design variables. However, as mentioned above, in the case of GA-V1 there is no need to encode 

the design variables. Reliability analysis is then performed by iHL-RF method for each individual. 

In each generation of iHL-RF method, it is necessary to evaluate the limit state function and its 

derivatives with respect to random variables. As another novelty in RBDO problem, for truss 

structures, response sensitivity analysis required for finite element reliability is performed by 

DDM. Since DDM does not need to repeated structural analysis for computing the gradients, the 

computational cost of RBDO significantly decreases. 

The hybrid methods use the penalty function approach to handle the constraints. Therefore, 

poor fitness values will be assigned to the infeasible solutions by adding a penalty term to the 

objective function.  Using a quadratic penalty function, the constrained optimization problem of 

Eq. (1) is converted into the following unconstrained optimization problem 

  

N

iPDCD

1

2
.)(fitmin 

 

(18) 

where Pi is defined in Eq. (19), D is an individual corresponding to the vector of design variables 

x, fit(D) is the fitness of the individual D, C(D) is the cost of the design, N is the number of 

reliability constraints, βi is the reliability index of ith performance function, βallowale,i 
is the 

minimum allowable reliability index corresponding to the ith performance function, and α is a 

penalty coefficient. 
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(19) 

For minimization problems, it is required to rescale the fitness values using the following equation 

        
   DFD fit2fit

maxrescaled
  (20) 
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Table 1 Pseudo-code of the hybrid optimization method 

Notation 

Nitr : Number of allowed generation 

Size : Size of population 

c
P :  probability of crossover 

Pm :   probability of mutation 

P :  Current population of individuals 

SelectBest (P) :  An operator that returns the best five individuals in the population P 

PMate: A set of offspring produced by mating operators 

RouletteWheel (P,k) : An operator that returns k individuals of population P based on roulette 

wheel approach 

 : An empty set 

 : Assignment operator 

Pseudo-code 

//Initialization 

Generate random initial population, P 

Decode individuals in P to design parameters  

Perform reliability analysis for each individual in P using (finite element) reliability analysis 

Evaluate fitness values of individuals in P using Eq. (18) 

//Main Loop 

FOR i=1 to Nitr 

 PMate

 


 
 best  SelectBest(P)   // elitist strategy 

 // Mating (Crossover and Mutation) 

 FOR j=1 to (PC×Size)   

  (X1,X2) RouletteWheel (P,2)    

  (Y1,Y2) MultiPointCrossover (X1,X2)    

   // Mutation 

   IF  rand (0,1) < Pm 

    
1

Y FlipMutation (Y1)  

   END IF 

   IF  rand (0,1) < Pm 

    
2

Y  FlipMutation (Y2) 

   END IF 

     MateMate PP  21 ,YY  

 END FOR   

Decode individuals in PMate to design parameters 

Perform reliability analysis for each individual in PMate using (finite element) reliability analysis 

Evaluate fitness values of individuals in PMate using Eq. (18)   

PPPool Mate   

P  

P  RouletteWheel(Pool,Size-5) ⋃ best 

END FOR 

Return P              \\ Final result 

 

 
where the parameter Fmax represents the maximum fitness of the individuals in the current 
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population. Notice that the coefficient of 2 in Eq. (20) is added to improve the diversity of the 

population and prevent the algorithm from premature convergence. This coefficient has been 

obtained by a trial and error process. 

 

4.5 Implementation of hybrid RBDO method 
 

In this research, first, GA generates randomly an initial population of N individuals. The 

reliability (finite element reliability) analysis for each individual, i, is then performed by iHL-RF 

method. In the case of truss structure, the gradients are obtained by DDM within finite element 

reliability analysis. The cost of the design and the penalty terms obtained using the reliability 

indices are utilized to calculate the fitness value for each individual according to Eq. (18). As seen 

in pseudo-code in Table 1, this procedure is repeated for each generation until the given number of 

generations is met. 

 
 
5. Numerical examples 
     

In GAs the parameter values such as population size, crossover and mutation probability, and 

the number of elite individuals are usually tuned by trial and error. The parameters tuned for the 

current problem are as follows: the size of population is 200, the probability of crossover is 0.7, 

the probability of mutation is 0.1, and the number of elite individuals is 5. The penalty coefficient, 

α, in Eq. (18) is set to 104.  

The hybrid optimization procedures have been implemented in MATLABTM 7.8. Optimization 

runs have been performed on a PC with 2.2 GHz Intel Core 2 Duo processor and 2GB of RAM 

memory. The solutions have been compared with the results recently published in the literature. To 

evaluate the accuracy of reliability constraints at optimum design, Monte Carlo simulation 

(Schueller 2009) with 107 sample size is utilized.  

 

5.1 Example 1: mathematical problem with multiple nonlinear limit-state functions 
     

The first example is a mathematical problem (Chen et al. 2013, Cho and Lee 2011) with two 

random design variables and three nonlinear reliability constraints. The random variables are 

statistically independent and normal. The formulation of the problem is 
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      The optimization results are listed in Table 2 where the first row of the table is taken from 

(Chen et al. 2013) for comparison. Table 2 shows that the proposed method (GA-V3) leads to the 

best solution in comparison to other variants of GA implemented in this research and other 

methods in the literature. In this table, 
MCS

i
 stands for reliability index of ith performance function 

calculated using Monte Carlo simulation (MCS) with 107 sample size to confirm whether the 

reliability constraint is satisfied. Since the 3th reliability constraint is inactive in optimum, the 

corresponding reliability index is infinite. The results also show that GA-V3 leads to the better 

results compared with other variants of GA implemented in this research.  

 

5.2 Example 2: welded beam design 
     

This example (Chen et al. 2013) investigates the reliability-based optimization of a welded 

beam shown in Fig. 6. The problem has four random design variables and five reliability 

constraints. In this example the objective function is welding cost and reliability constraints are 

imposed on quantities such as maximum allowable stress, buckling and tip displacement. The 

random variables are normal and statistically independent. The deterministic parameters of the 

system are given in Table 3. The RBDO problem is formulated as 
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Table 4 presents the results of the optimization problem. Reliability constraints are also 

evaluated using MCS with a sample size of 107 and listed in Table 4. The results show that in 

comparison with other variants, GA-V3 leads to better results. It can be seen that the improved  

 

 
Table 2 Summary of results for example 1 

RBDO Methods 
Design variables 

Objective 
MCS

1
  

MCS

2


 
MCS

3


 d1 d2 

Chen et al. (2013) 3.4391 3.2866 6.7260 2.97 3.05 infinite 

GA-V1 3.4287 3.3007 6.7294 2.95 3.11 infinite 

GA-V2 3.4306 3.3013 6.7319 2.96 3.10 infinite 

GA-V3 3.4351 3.2815 6.7166 2.97 3.04 infinite 

 

 

Fig. 6 Welded beam structure 

 
Table 3 Deterministic parameters of the system for welded beam problem 

z1
 2.6688×104 (N)

 

z2
 

3.556×102 (mm)
 

z3
 2.0685×105 (MPa)

 

z4
 8.274×104 (MPa)

 

z5
 6.35 (mm)

 

z6
 9.377×10 (MPa)

 

z7
 2.0685×102 (MPa)

 

c1
 6.74135×10-5 ($/mm3)

 

c2
 2.93585×10-6 ($/mm3)
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Table 4 Summary of results for example 2 

RBDO Methods Objective 
MCS

1
  

MCS

2


 
MCS

3


 
MCS

4


 
MCS

5


 
Chen et al. (2013) 2.5914 2.99 3.01 2.99 infinite 3.00 

Lee and Lee (2005) 3.09 - - - - - 

GA-V1 3.1893 4.11 Infinite 3.29 Infinite Infinite 

GA-V2 2.6904 2.96 Infinite 3.01 Infinite infinite 

GA-V3 2.5928 2.98 3.10 3.14 Infinite 3.84 

 

 
Fig. 7 Convergence history for example 2 

 

 

Fig. 8 A ten-bar truss structure 

 

 

proposed GA (GA-V3) outperforms the GA-V1 and GA-V2 by 22.86% and 3.64%, respectively. 

Convergence history is illustrated in Fig. 7. This figure shows that GA-V3 achieves the best 

answer in near 20 generations. 

 

5.3 Example 3: ten-bar truss 
     

The 10-bar truss shown in Fig. 8 includes six nodes and ten truss elements constructed from 

aluminum with the Young’s modules of E=107 psi. This example and its modified versions are  
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Table 5 Statistic parameters of ten-bar truss 

Random variable Dist Mean S.D 

A1 Normal d1 0.05d1 

A2 Normal d2 0.05d2 

A3 Normal d3 0.05d3 

A4 Normal d4 0.05d4 

A5 Normal d5 0.05d5 

A6 Normal d6 0.05d6 

A7 Normal d7 0.05d7 

A8 Normal d8 0.05d8 

A9 Normal d9 0.05d9 

A10 Normal d10 0.05d10 

 

 

investigated by a number of researchers (Rahman and Wei 2008, Luo and Grandhi 1997). 

The truss is under two concentrated load of P=105 lb at the nodes 2 and 4. The truss design is 

performed by minimizing the weight such that the transverse displacement at node 2 is less than or 

equal to 2 in. The problem has ten random design variables and one reliability constraint. The 

random variables are statistically independent with the characteristics listed in Table 5.  

The RBDO problem can be formulated as follows: 
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where Ai is the cross-sectional area of ith element of truss, Li is the length of ith element, ρ is the  

material density equal to 0.1 lb/in3, W denotes the total weight of the truss, and u2 is the vertical 

displacement at the node 2. 

The results of the optimization problem are listed in Table 6.  The reliability index for the 

performance function at the optimum design is calculated using MCS with the sample size of 107 

to verify the validity of solutions and presented in Table 6. The results show that the proposed 

method outperforms the other approaches in finding the minimum design without violating the 

reliability constraint. GA-V3 achieves the results that are 25%, 6.2% and 1.8% better than the GA-

V1, GA-V2, and the method used by Luo and Grandhi (1997), respectively. Convergence history 

is illustrated in Fig. 9. This figure shows that the GA-V3 achieves the best answer in near 100 

generations. In addition, the figure indicated that the GA-V3 has the higher convergence rate in 

comparison to GA-V1 and GA-V2. 

In this example, the limit-state function for reliability assessment is an implicit function of 

random variables. Here, the reliability constraint of the optimization problem is evaluated using 

finite element reliability analysis. Gradients of structural responses required for finite element  
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Table 6 Summary of results for example 3 

Design Variables 
RBDO Methods 

Luo and Grandhi 1997 GA-V1 GA-V2 GA-V3 

A1
 33.955 24.6390 32.5461 35.00 

A2
 0.7092 11.4374 1.2929 0.116 

A3
 23.436 29.0491 20.7878 23.516 

A4
 16.066 14.9618 19.9357 17.921 

A5
 0.10 2.5213 0.3045 0.1 

A6
 0.6626 8.9616 1.7359 0.108 

A7
 4.9484 20.0429 6.7801 1.835 

A8
 224.101 19.0886 24.0938 23.57 

A9
 23.748 17.3400 25.5252 24.611 

A10
 0.5333 9.2821 0.3045 0.108 

Objective function 5412.8 lb 6644.15 lb 5644.6 lb 5315.2 lb 

βMCS

 
2.972 3.217 3.323 3.144 

 

 

Fig. 9 Convergence history for example 3 

 

 

reliability analysis are obtained by DDM. In order to compare the efficiency of DDM with FDM, 

GA-V3 is also implemented in a way that FDM is used for computing the gradients. The numbers 

of function evaluations necessary for a single reliability assessment by DDM and FDM are 4 and 

44, respectively. The comparison shows that the number of function evaluations for a single 

reliability analysis is reduced by 40 (91 percent) using DDM. 

 

5.4 Example 4: seventy two-bar spatial truss 
     

Reliability-based optimization of 72-bar spatial truss shown in Fig. 10 is considered in this 

example. The material density is equal to 0.1 lb/in3 (2767.9907 kg/m3). The truss structure is 

subjected to three nodal loads in the x, y, and z directions at node 1. A deterministic version of this 

example is solved by a number of researchers to evaluate different optimization algorithms (Kaveh 

et al. 2014). The objective is minimization of the weight of the truss under eight reliability 

constraints. The reliability constraints are imposed on lateral displacements of uppermost nodes of  
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Fig. 10 Seventy two-bar spatial truss 

 
Table 7 Uncertain parameters of 72-bar spatial truss  

Parameter Distribution Mean COV 

PX Lognarmal 5 kip 0.1 

PY Lognarmal 5 kip 0.1 

PZ Lognarmal -5 kip 0.1 

E Lognarmal 104 ksi 0.05 

Ai Normal Assigned by RBDO method 0.05 

 

 

the truss in both x and y directions. The uncertain parameters of this problem are given in Table 7.  

The elements of truss structure are collected in 16 design groups given in table 8. Thus, the RBDO 

problem has 16 random design variables. The formulation of RBDO problem is as follows: 
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where uix and uiy are the lateral displacement of node i in the direction of x and y, respectively. 

    The results of optimization problem are listed in Table 8. Reliability indices for all performance 

functions computed by MCS are shown in Table 9. The results indicate that the GA-V3 

outperforms other methods in finding optimum design. However, Table 9 shows that all the 

methods have some violations due to highly nonlinear behavior of limit state function. 

Convergence history for all three methods is illustrated in Fig. 11. 

Table 10 indicates the reduction in the number of function evaluations obtained by using DDM 

rather than FDM for examples 3 and 4. As shown in Table 10, for 72-bar truss the numbers of 

function evaluations required for a single reliability analysis for the first limit state function using  

 

 
Table 8 Optimization results for 72-bar spatial truss 

Elements group Elements number GA-V1 GA-V2 GA-V3 

1 1-4 0.787 0.153 0.141 

2 5-12 1.346 0.939 0.756 

3 13- 16 0.250 0.810 0.557 

4 17,18 0.353 1.618 0.953 

5 19- 22 0.735 0.830 0.672 

6 23-30 0.667 1.123 0.838 

7 31- 34 0.168 0.426 0.184 

8 35, 36 0.168 0.142 0.363 

9 37-40 2.364 0.751 1.177 

10 41-48 1.234 0.719 0.599 

11 49-52 0.104 0.278 0.112 

12 53, 54 1.337 0.167 0.906 

13 55-58 1.376 1.344 1.691 

14 59-66 0.942 0.844 0.872 

15 67-70 0.186 0.165 0.378 

16 71,72 0.1 0.239 0.146 

 Weight 676.6 617.22 556.9 

 
Table 9 Reliability constraints at optimal design evaluated by MCS for spatial truss 

RBO methods 
MCS

1  MCS

2  
MCS

3  MCS

4  
MCS

5  MCS

6  MCS

7  MCS

8  

Proposed Method (GA-V3) 2.95 2.95 3.78 infinite 4.33 4.2618 infinite 3.80 

GA-V2 2.85 2.81 3.37 3.64 infinite 3.64 infinite 3.42 

GA-V1 2.98 2.97 4.3 infinite infinite infinite infinite 4.35 
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Fig. 11 Convergence history for spatial truss 

 
Table 10 The number of function evaluations (NFE) for a single reliability analysis 

truss 
Number of random 

variables 

NFE  for reliability analysis using 

Sensitivity method 
Reduction in the 

NFE 
FDM DDM 

10-bar truss 10 44 4 40 (91 percent) 

72-bar truss 20 116 36 80 (69 percent) 

 
 
DDM and FDM are 36 and 116, respectively. This reveals that the number of function evaluations 

for a single reliability analysis is reduced by 80 (69 percent) using DDM. 

 
 
6. Discussion 
      

GA like other meta-heuristic algorithms requires many finite element reliability analyses to 

deal with RBDO problems. Moreover, finite element reliability analysis needs to perform repeated 

structural analyses to compute the gradients of structural responses. As it is shown in this research, 

using DDM to compute the gradients decreases the number of limit-state function evaluations 

significantly, and consequently there is no need to repeated structural analysis for perturbed values 

of random parameters. This leads to a significant decrease in computational time.  

Since the proposed method employs the penalty function method to handle the constraints, the 

penalty coefficient has a major effect on the convergence of the solution. The coefficient has been 

selected by numerical experiments and a trial and error process. According to the numerical 

experiments performed, selecting a small value for this coefficient leads to the infeasible solution. 

This is because, in this case, the penalty term is negligible with respect to objective function and 

eventually has a small contribution in optimizing the fitness function. Moreover, small values of 

the penalty coefficient cause the proposed GAs to spend a large amount of the search time 

exploring infeasible regions in the search space. On the other hand, if the penalty coefficient is too 

high, the solution obtained will be feasible but non-optimal. It is due to the fact that the GA will be 
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pushed into a feasible region quickly and will converge prematurely to a feasible solution which is 

not near-global optimal solution. In other words, an overly high penalty coefficient discourages the 

GA from being explorative in the search space. 

A significant drawback of any GA-based approach is the computational cost. However, the 

exceptional ability of the proposed method (GA-V3) to be implemented together with parallel 

computing techniques opens the possibility of solving time-consuming RBDO problems in 

significantly reduced time. This is due to independence of each individual in the population. 

Since the reliability assessment within the proposed method is performed in a black-box 

fashion, any available method can be used for reliability assessment. However, the method of 

reliability analysis within the optimization framework should be selected according to its 

efficiency. For example, if Monte Carlo method is used for reliability assessment, the 

computational time for performing RBDO will be unacceptable. On the other hand, reliability 

assessment within the optimization procedure can be performed by other efficient reliability 

methods such as SORM and importance sampling. 

 

 

7. Conclusions 
 

This paper successfully addresses a particular type of reliability-based design optimization 

problem involving minimization of the cost of structural design subject to reliability and 

deterministic constraints. To perform RBDO, this research has proposed three hybrid variants of 

GA (namely GA-V1, GA-V2 and GA-V3) as optimization tools for minimizing the cost of the 

design. In these methods, GA performs (finite element) reliability analysis using iHL-RF for 

evaluation of reliability constraints. Response sensitivity required for finite element reliability 

analysis is performed using DDM rather than FDM. To handle the constraint, the proposed GAs 

are integrated with the penalty function method.  

The proposed GA variants are examined within four numerical examples. Results show the 

superiority and efficiency of GA-V3 in comparison with other methods. Comparison also shows 

that utilizing DDM within the finite element reliability analysis leads to a significant decrease in 

computational time and improves the efficiency of optimization procedure. 
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