Buckling analysis of semi-rigid connected and partially embedded pile in elastic soil using differential transform method

Seval Catal*
Civil Engineering Department, Engineering Faculty, Dokuz Eylul University, 35160, Buca, Izmir, Turkey

(Received January 30, 2013, Revised June 14, 2014, Accepted August 4, 2014)

Abstract

The parts of semi-rigid connected and partially embedded piles in elastic soil, above the soil and embedded in the soil are called the first region and second region, respectively. The upper end of the pile in the first region is supported by linear-elastic rotational spring. The forth order differential equations of both region for critical buckling load of partially embedded and semi-rigid connected pile with shear deformation are established using small-displacement theory and Winkler hypothesis. These differential equations are solved by differential transform method (DTM) and analytical method and critical buckling loads of semirigid connected and partially embedded pile are obtained, results are given in tables and graphs are presented for investigating the effects of relative stiffness of the pile and flexibility of rotational spring.

Keywords: differential transform method, semi-rigid connected, partially embedded pile, non-trivial solution, buckling

1. Introduction

The piles partially embedded in the soil are widely used marine, harbor, bridge structures. Due to some manufacturing errors the structural behavior of the connection between beams or plates of these structures and the upper ends of the piles are neither rigid nor flexible. These types of connections are called semi-rigid connections and these connections are modeled mostly by linearelastic rotational spring. The soil is idealized mostly by Winkler hypothesize in the mathematical models of the piles partially embedded in the soil (Chen 1997). Elastic soil is idealized by Winkler foundation modulus in also this study and effect friction through the pile length is neglected. The analysis of the beams on elastic foundation and elastic buckling of columns, beams, plates and shells have been studied by many researchers in the past. Hetenyi (1995) has studied beams on Winkler foundations. Reddy and Valsangkar (1970) have obtained buckling loads for fully and partially embedded piles using vibration functions and Rayleight-Ritz method. Smith (1979) has obtained discrete element matrices for stability analysis of selender piles. West et al. (1997) have neglected shear effect and assumed the coefficient of horizontal subgrade reaction varies linearly with depth and investigated stability of end-bearing piles in elastic foundation. Heelis et al. (2004)

[^0]have calculated bucking load of Euler-Bernoulli pile embedded in Winkler foundation. Heelis et al. (1999) have investigated the stability of uniform-friction piles in homogeneous and nonhomogeneous elastic foundation using a power-series solution and neglecting shear effect. West and Mafi (1984) have determined buckling loads, natural frequencies of Euler-Bernoulli beam rested on elastic supports by using an initial-value numerical method. Chen (1998) has studied Euler-Bernoulli beam resting on elastic foundation using differential quadrature element method. Kumar et al. (2007) have calculated buckling capacity of an eccentrically loaded partially embedded reinforced concrete pile in sand using the conventional Davisson and Robinson method. Valsangkar and Pradhanang (1987) have studied the variations of natural circular frequency values of the piles partially embedded in the elastic soil according to relative stiffness, length and buckling load of the piles ignoring the shear effect. Sapountzakis and Kampitsis (2010) have developed a boundary element method for the nonlinear dynamic analysis of Timoshenko beamcolumns partially supported on tensionless Winkler foundation. Zhu et al. (2011) have studied analysis of nonlinear stability and post-buckling for Euler type beam-column structure located on a nonlinear elastic foundation using the Hamilton variational principle. Yan and Chen (2012) have studied dynamic analysis of semi-rigid connected and partially embedded piles in a two-parameter elastic foundation using reverberation-ray matrix. Vogt et al. (2009) have obtained buckling loads of selender piles in soft soil using analytical methods and experimental works. Catal and Alku (1996a) have obtained the second order stiffness matrix of Euler-Bernoulli beam on elastic foundation using analytical method. Catal and Alku (1996b) have calculated vertical displacements of Timoshenko beam on elastic foundation using finite difference equations and matrix-displacement method. Aydogan (1995) has obtained a stiffness matrix for a Timoshenko beam on elastic foundation using differential equation. Li (2001a) has obtained critical buckling load of multi-step cracked columns with shear deformation by using transfer matrix. Li (2001b) has governed differential equation for buckling of a multi-step non-uniform beam. Banarjee and Williams (1994) have investigated the effects of shear deformation on the critical buckling of columns. Yang and Ye (2002) have studied a dynamic elastic load buckling analysis for a pile subjected to an axial impact load using a perturbation technique. Wang et al. (2002) have investigated exact stability criteria and buckling loads of Timoshenko columns under intermediate using analytical method. Catal (2002) has obtained fourth order differential equations for free vibration of partially embedded pile in soil. Catal (2006) has studied the variations of natural circular frequency values of the semi-rigid connected piles partially embedded in the elastic soil according to relative stiffness, rigidity factor, length of the piles. Yesilce and Catal (2008) have studied natural circular frequency values of the semi-rigid connected Reddy-Bickford piles embedded in elastic soil using analytical method. Yesilce and Catal (2006) have calculated natural frequency of the piles embedded in the soil having different modulus of subgrade reaction.

The differential transform method (DTM) which was introduced by Zhou in 1986 for the solution of initial value problems in electric circuit analysis is based on Taylor series expansions (Zhou 1986). In recent works, DTM is applied to buckling problems and vibration analysis of continuous systems as beams, columns, piles and plates. DTM is applied to solve a second-order non-linear differential equation that describes the under damped and over damped motion of a system subject to external excitations by Jang and Chen (1997). Malik and Dang (1995) have obtained frequency equations and fundamental frequencies of a prismatic Bernoulli-Euler beam using DTM. Chen and Ho (1996), using differential transform technique proposed a method to solve eigenvalue problems for the free and transverse vibration problems of a rotating twisted Timoshenko beam. Ozdemir and Kaya (2006), flapwise bending vibration of a rotating tapared

Fig. 1 (a) The semi-rigid connected and partially embedded pile, (b) Internal forces of segment in the first region, (c) Internal forces of segment in the second region
cantilever Bernoulli-Euler beam is considered using DTM. Zou et al. (2010) have developed DTM for solving solitary waves by Camassa-Holm equation. Pusjuso and Thongmoon (2010) have presented the definition and operation of the one-dimensional differential transform. Catal and Alku (2006) have calculated buckling load of partially embedded pile in elastic soil using differential transform method (DTM). Yesilce and Catal (2011) have calculated natural frequency values of the semi-rigid connected Reddy-Bickford beams resting on elastic soil using the differential transform method (DTM). Catal (2006) has studied free vibration of the beam on elastic soil using the differential transform method (DTM). DTM is one of the solution methods of ordinary and partial differential equations. DTM has advantage of reducing the ordinary differential equation to the algebraic equation and reducing the partial differential equation to the algebraic equation system. In DTM, the orthogonal polynomials as Taylor series are used for solution of the differential equations and to apply mathematical operations to these polynomials are easier. (Catal and Catal 2006).

In this study, forth-order differential equations of elastic curves for critical buckling load of partially embedded and semi-rigid connected pile are developed, these equations are solved using differential transform method (DTM) and analytical method. Critical buckling loads for the first three modes of the pile are obtained according to relative stiffness, lengths of pile in the first region and second region, the fixity factor. Numerical results are presented and the differential transform solutions are compared with the analytical solutions.

2. Governing equations for buckling of the pile

A pile partially embedded in the soil and semi-rigid connected in Fig. 1(a). The pile parts above the soil and embedded in the soil are called the first region and second region, respectively. The upper end of the pile part in the first region is semi-rigid connected and supported using simple support. The semi-rigid connected is modeled by linear-elastic rotational spring. The internal forces and deformations of the pile having the length of dx_{1} and dx_{2} at the first and second regions are presented in Fig. 1(b) and Fig. 1(c), respectively.

In this paper the following assumptions are valid: soil behavior is acting in according with the Winkler hypothesis; effect of friction along the pile length is neglected; material behavior of the pile and the spring at the upper end of the pile part in the first region are linear-elastic.

The bending moment functions and fourth order differential equations of the elastic curve functions of the pile in the first and the second region are given in Eqs. (1)-(4) using the equilibrium equations of the lateral load and bending moment acting to segments of the pile (Catal and Catal 2006).

$$
\begin{gather*}
M_{1}\left(x_{1}\right)=-E I\left[1-\frac{N}{\bar{k} A G}\right] \frac{d^{2} y_{1}\left(x_{1}\right)}{d x_{1}^{2}} \quad\left(0 \leq x_{1} \leq L_{1}\right) \tag{1}\\
M_{2}\left(x_{2}\right)=-E I[1-\overline{\bar{k} A G}] \frac{d^{2} y_{2}\left(x_{2}\right)}{d x_{2}^{2}}+\frac{E I C_{s}}{\bar{k} A G} y_{2}\left(x_{2}\right) \quad\left(0 \leq x_{2} \leq L_{2}\right) \tag{2}\\
\frac{d^{4} y_{1}\left(x_{1}\right)}{d x_{1}^{4}}+\left[\frac{\bar{k} A G N}{(\bar{k} A G-N) E I}\right] \frac{d^{2} y_{1}\left(x_{1}\right)}{d x_{1}^{2}}=0 \quad\left(0 \leq x_{1} \leq L_{1}\right) \tag{3}\\
\frac{d^{4} y_{2}\left(x_{2}\right)}{d x_{2}^{4}}+\left[\frac{\bar{k} A G N-E I C_{s}}{(\bar{k} A G-N) E I}\right] \frac{d^{2} y_{2}\left(x_{2}\right)}{d x_{2}^{2}}-\left[\frac{\bar{k} A G}{(N-\bar{k} A G) E I}\right] y_{2}\left(x_{2}\right)=0 \quad\left(0 \leq x_{2} \leq L_{2}\right) \tag{4}
\end{gather*}
$$

Where, $C_{s}=C_{0} . b$ in which C_{0} is the modulus of subgrade reaction and b is width of the pile; $M_{1}\left(x_{1}\right), M_{2}\left(x_{2}\right), y_{1}\left(x_{1}\right), y_{2}\left(x_{2}\right)$ are bending moment and elastic curve functions for the first and second region, respectively; \bar{k} is the shape factor due to cross-section geometry of the pile; I, A, E, G, N are moment of inertia, cross-section area, modulus of elasticity, shear modulus of the pile and the constant axial compressive force, respectively.

The shape factor of the pile is defined as below (Pöschl 1930)

$$
\begin{equation*}
\overline{\mathrm{k}}=\frac{\mathrm{A}}{\mathrm{I}} \int_{\mathrm{A}} \frac{\mathrm{~S}_{\mathrm{x}}^{2}}{\mathrm{~b}^{2}} \mathrm{dA} \tag{5}
\end{equation*}
$$

The shape factor of the pile shown in Fig. 2 is given in Eq. (6) using polar coordinates.

$$
\begin{equation*}
\overline{\mathrm{k}}=\frac{\mathrm{A}}{\mathrm{I}^{2}} \int_{0}^{2 \pi} \frac{\mathrm{~S}_{\mathrm{x}}^{2}}{\mathrm{~b}^{2}}\left(\mathrm{tR}_{0} \mathrm{~d} \theta\right. \tag{6}
\end{equation*}
$$

Where S_{x} is the first moment of cross-section of the pile, b is thick of pile, R_{0} is the average

Fig. 2 Cross-section of the pile
radius of the pile.
The cross-section area, the first moment of cross-section, the moment of inertia, and the thick of the pile in Fig. 2 are given Eq. (7) respectively.

$$
\left.\begin{array}{l}
\mathrm{A}=2 \pi \mathrm{R}_{0} \mathrm{t} \tag{7}\\
\mathrm{~S}_{\mathrm{x}}=2 \pi \mathrm{R}_{0}^{3} \mathrm{t} \sin (0,5 \theta) \\
\mathrm{I}=\pi \mathrm{R}_{0}^{3} \mathrm{t} \\
\mathrm{~b}=2 \mathrm{t}
\end{array}\right\}
$$

Substituting Eq. (7) into Eq. (6) respectively, gives

$$
\begin{equation*}
\overline{\mathrm{k}}=\frac{2 \pi \mathrm{R}_{0} \mathrm{t}}{\left(\pi \mathrm{R}_{0}^{3} \mathrm{t}\right)^{2}} \int_{0}^{2 \pi} \frac{\left(2 \mathrm{R}_{0}^{2} \mathrm{t}\right)^{2}}{(2 \mathrm{t})^{2}} \sin ^{2}(0,5 \theta) \mathrm{d} \theta=2 \tag{8}
\end{equation*}
$$

Writing the dimensionless parameters z_{1}, z_{2} instead of the position parameters x_{1}, x_{2} in Eqs. (3) and (4) gives the elastic curve differential equations of the pile at the first and the second region as

$$
\begin{align*}
& \frac{d^{4} \mathrm{y}_{1}\left(\mathrm{z}_{1}\right)}{\mathrm{dz}_{1}^{4}}+\mathrm{D}_{1} \frac{\mathrm{~d}^{2} \mathrm{y}_{1}\left(\mathrm{z}_{1}\right)}{\mathrm{dz}_{1}^{2}}=0 \quad\left(0 \leq \mathrm{z}_{1} \leq \frac{\mathrm{L}_{1}}{\mathrm{~L}}\right) \tag{9}\\
& \left.\frac{d^{4} y_{2}(\mathrm{z}}{2} 2_{2}\right)+\beta_{1} \frac{d^{2} y_{2}\left(z_{2}\right)}{d z_{2}^{2}}+\beta_{2} y_{2}\left(z_{2}\right)=0 \quad\left(0 \leq z_{2} \leq \frac{L_{2}}{L}\right) \tag{10}
\end{align*}
$$

where $\quad \beta_{1}=\frac{\left(\overline{\mathrm{k}} A G N-\mathrm{EIC}_{\mathrm{s}}\right) \mathrm{L}^{2}}{(\overline{\mathrm{k}} A G-\mathrm{N}) \mathrm{EI}} ; \quad \beta_{2}=\frac{\mathrm{L}^{4} \overline{\mathrm{k}}_{\mathrm{k}} \mathrm{AGC}_{\mathrm{s}}}{(\mathrm{N}-\overline{\mathrm{k}} A G) \mathrm{EI}} ; \quad \mathrm{D}_{1}=\frac{\overline{\mathrm{k}} A G N L^{2}}{(\overline{\mathrm{k}} A G-\mathrm{N}) \mathrm{EI}} ; \quad \alpha=\frac{\mathrm{C}_{\mathrm{s}} \mathrm{L}^{4}}{\mathrm{EI}}$ is the relative stiffness of the pile; L_{1} is the length of the pile above the soil; L_{2} is the length of the pile embedded in the soil; L is the total length of the pile; $z_{1}=x_{1} / L ; z_{2}=x_{2} / L$.

The rotational spring at the upper end of the pile in the first region are related with fixity factor that is defined as below (Monforton and Wu 1963)

$$
\begin{equation*}
\mathrm{f}=\frac{1}{1+\frac{3 \mathrm{EI}}{\mathrm{~L} \cdot \mathrm{C}_{\theta}}} \tag{11}
\end{equation*}
$$

Where, C_{θ} is stiffness of the rotational spring at the upper end of the pile in the first region.
Bending moment at the semi-rigid connected end is written as a linear function of rotational spring stiffness and rotation as follow

$$
\begin{equation*}
\mathrm{M}_{1}\left(\mathrm{z}_{1}=\mathrm{L}_{1} / \mathrm{L}\right)=\left.\frac{\mathrm{C}_{\theta}}{\mathrm{L}} \frac{\mathrm{dy}_{1}\left(\mathrm{z}_{1}\right)}{\mathrm{dz}_{1}}\right|_{\mathrm{z}_{1}=\mathrm{L}_{1} / \mathrm{L}} \tag{12}
\end{equation*}
$$

3. Differential transformation

The differential transformation technique, which was first proposed by Zhou in 1986, is one of the numerical methods for ordinary and partial differential equations that use the form of polynomials as the approximation to the exact solutions that are sufficiently differentiable. The function that will be solved and the calculation of following derivatives necessary in the solution become more difficult when the order increases. This is in contrast with the traditional high-order Taylor series method. Instead, the differential transform technique provides an iterative procedure to obtain higher-order series; therefore, it can be applied to the case high order (Catal and Catal 2006).

The differential transformation of the function $y(z)$ is defined as follows

$$
\begin{equation*}
\mathrm{Y}(\mathrm{k})=\frac{1}{\mathrm{k}!}\left[\frac{\mathrm{d}^{\mathrm{k}} \mathrm{y}(\mathrm{z})}{\mathrm{dz}^{\mathrm{k}}}\right]_{\mathrm{z}=\mathrm{z}_{0}} \tag{13}
\end{equation*}
$$

Where $y(z)$ is the original function and $Y(k)$ is transformed function which is called the T function. The differential inverse transformation of $Y(k)$ is defined as

$$
\begin{equation*}
\mathrm{y}(\mathrm{z})=\sum_{\mathrm{k}=0}^{\infty}\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\mathrm{k}} \mathrm{Y}(\mathrm{k}) \tag{14}
\end{equation*}
$$

from Eq. (13) and Eq. (14) we get

$$
\begin{equation*}
\mathrm{y}(\mathrm{k})=\sum_{\mathrm{k}=0}^{\infty} \frac{\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\mathrm{k}}}{\mathrm{k}!}\left[\frac{\mathrm{d}^{\mathrm{k}} \mathrm{y}(\mathrm{z})}{\mathrm{dz}}\right]_{\mathrm{z}=\mathrm{z}_{0}} \tag{15}
\end{equation*}
$$

Eq. (14) implies that the concept of the differential transformation is derived from Taylor's series expansion, but the method does not evaluate the derivatives symbolically. However, relative derivative are calculated by iterative procedure that are described by the transformed equations of the original functions.

The basic operations of transformed functions which are given Table 1 can easily be proved using Eqs. (13) and (14).

Table 1 Some basic mathematical operations of DTM

Original function $y(z)$	Transformed function $Y(k)$
$A y(z)$	$A Y(k)$
$y_{1}(z) \pm y_{2}(z)$	$Y_{1}(k) \pm Y_{2}(k)$
$d y(z) / d z$	$(k+1) Y(k+1)$
$d^{2} y(z) / d z^{2}$	$(k+1)(k+2) Y(k+2)$
$d^{3} y(z) / d z^{3}$	$(k+1)(k+2)(k+3) Y(k+3)$
$d^{4} y(z) / d z^{4}$	$(k+1)(k+2)(k+3)(k+4) Y(k+4)$

Fig. 3 Semi-rigid connected pile

The function is expressed by finite series and Eq. (14) can be written as $y(z)=\sum_{k=0}^{n}\left(z-z_{0}\right)^{k} Y(k)$. Eq. (10) implies that $y(z)=\sum_{k=n+1}^{\infty}\left(z-z_{0}\right)^{k} Y(k)$ is negligibly small. In fact, n is decided by the convergence of buckling load in this paper.

4. Solutions of the equations by differential transformation

The boundary conditions of the pile whose bottom end simply supported, upper end simply supported and semi-rigid connected shown in Fig. 3 are given in Eqs. (16)-(23).

$$
\begin{gather*}
\mathrm{y}_{1}\left(\mathrm{z}_{1}=\mathrm{L}_{1} / \mathrm{L}\right)=0 \tag{16}\\
\mathrm{y}_{2}\left(\mathrm{z}_{2}=0\right)=0 \tag{17}\\
\left.\frac{\mathrm{~d}^{2} \mathrm{y}_{2}\left(\mathrm{z}_{2}\right)}{\mathrm{dz}}\right|_{2} ^{2} \mathrm{z}_{2}=0 \tag{18}\\
+\beta_{1} \mathrm{y}_{2}\left(\mathrm{z}_{2}=0\right)=0
\end{gather*}
$$

$$
\begin{gather*}
\left.\frac{d^{2} y_{1}\left(z_{1}\right)}{d z_{1}^{2}}\right|_{z_{1}=\frac{L_{1}}{L}}+D_{1} y_{1}\left(z_{1}=L_{1} / L\right)=-\left.\frac{D_{1} C_{\theta}}{N L} \frac{d y_{1}\left(z_{1}\right)}{d z_{1}}\right|_{z_{1}=\frac{L_{1}}{L}} \tag{19}\\
y_{1}\left(z_{1}=0\right)=y_{2}\left(z_{2}=L_{2} / L\right) \tag{20}\\
\left.\frac{d y_{1}\left(z_{1}\right)}{d z_{1}}\right|_{z_{1}=0}=\left.\left.\frac{d y y_{2}\left(z_{2}\right)}{d z_{2}}\right|_{z_{2}=\frac{L_{2}}{L}} \frac{d^{3} y_{2}\left(z_{2}\right)}{d z_{2}^{3}}\right|_{z_{2}=\frac{L_{2}}{L}}+\left.\beta_{1} \frac{d y_{2}\left(z_{2}\right)}{d z_{2}}\right|_{z_{2}=\frac{L_{2}}{L}}=\left.\frac{d^{3} y_{1}\left(z_{1}\right)}{d z_{1}^{3}}\right|_{z_{1}=0}+\left.D_{1} \frac{d y_{1}\left(z_{1}\right)}{d z_{1}}\right|_{z_{1}=0} \tag{21}\\
\left.\frac{d^{2} y_{2}\left(z_{2}\right)}{d z_{2}^{2}}\right|_{z_{2}=\frac{L_{2}}{L}}+\beta_{1} y_{2}\left(z_{2}=L_{2} / L\right)=\left.\frac{d^{2} y_{1}\left(z_{1}\right)}{d z_{1}^{2}}\right|_{z_{1}=0}+D_{1} y_{1}\left(z_{1}=0\right) \tag{22}
\end{gather*}
$$

By applying the DTM to Eqs. (3), (4), (16), (17) and using the relationship Table 1 following equations are obtained.

$$
\begin{gather*}
Y_{2}(\mathrm{k}+4)=-\beta_{1} \frac{\mathrm{Y}_{2}(\mathrm{k}+2)}{(\mathrm{k}+3)(\mathrm{k}+4)}-\beta_{2} \frac{\mathrm{Y}_{2}(\mathrm{k})}{(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)(\mathrm{k}+4)} \tag{24}\\
\mathrm{Y}_{1}(\mathrm{k}+4)=-D_{1} \frac{\mathrm{Y}_{1}(\mathrm{k}+2)}{(\mathrm{k}+3)(\mathrm{k}+4)} \tag{25}\\
\mathrm{Y}_{2}(0)=0 \tag{26}\\
\mathrm{Y}_{2}(2)=0 \tag{27}
\end{gather*}
$$

The recurrence relations of the first region for $k=0(1) n$ are obtained from Eq. (24) using Eqs. (26) and (27) as follows

$$
\begin{gather*}
\mathrm{Y}_{2}(2 \mathrm{k})=0 \\
\mathrm{Y}_{2}(5)=\frac{1}{5!}\left\{-\beta_{1} 3!\mathrm{Y}_{2}(3)-\beta_{2} \mathrm{Y}_{2}(1)\right\} \\
\mathrm{Y}_{2}(7)=\frac{1}{7!}\left\{\left(\beta_{1}^{2}-\beta_{2}\right) 3!\mathrm{Y}_{2}(3)+\beta_{1} \beta_{2} \mathrm{Y}_{2}(1)\right\} \\
\mathrm{Y}_{2}(9)=\frac{1}{9!}\left\{\left(-\beta_{1}^{3}+2 \beta_{1} \beta_{2}\right) 3!\mathrm{Y}_{2}(3)+\left(-\beta_{1}^{2} \beta_{2}+\beta_{2}^{2}\right) \mathrm{Y}_{2}(1)\right\} \tag{28}\\
\mathrm{Y}_{2}(11)=\frac{1}{11!}\left\{\left(\beta_{1}^{4}-3 \beta_{1}^{2} \beta_{2}+\beta_{2}^{2}\right) 3!\mathrm{Y}_{2}(3)+\left(\beta_{1}^{3} \beta_{2}-2 \beta_{1} \beta_{2}^{2}\right) \mathrm{Y}_{2}(1)\right\} \\
\mathrm{Y}_{2}(13)=\frac{1}{13!}\left\{\left(-\beta_{1}^{5}+4 \beta_{1}^{3} \beta_{2}-3 \beta_{1} \beta_{2}^{2}\right) 3!\mathrm{Y}_{2}(3)+\left(-\beta_{1}^{4} \beta_{2}+3 \beta_{1}^{2} \beta_{2}^{2}-\beta_{2}^{3}\right) \mathrm{Y}_{2}(1)\right\} \\
:
\end{gather*}
$$

The recurrence relations of the second region for $k=0(1) n$ are obtained from Eq. (25) as

$$
\left.\begin{array}{lc}
Y_{1}(4)=\frac{1}{4!}\left\{-D_{1} 2!Y_{1}(2)\right\} & Y_{1}(9)=\frac{1}{9!}\left\{\left(-D_{1}^{3}\right) 3!Y_{1}(3)\right\} \\
Y_{1}(5)=\frac{1}{5!}\left\{-D_{1} 3!Y_{1}(3)\right\} & Y_{1}(10)=\frac{1}{10!}\left\{\left(D_{1}^{4}\right) 2!Y_{1}(2)\right\} \\
Y_{1}(6)=\frac{1}{6!}\left\{\left(D_{1}^{2}\right) 2!Y_{1}(2)\right\} & Y_{1}(11)=\frac{1}{11!}\left\{\left(D_{1}^{4}\right) 3!Y_{1}(3)\right\} \tag{29}\\
Y_{1}(7)=\frac{1}{7!}\left\{\left(D_{1}^{2}\right) 3!Y_{1}(3)\right\} & Y_{1}(12)=\frac{1}{12!}\left\{\left(-D_{1}^{5}\right) 2!Y_{1}(2)\right\} \\
Y_{1}(8)=\frac{1}{8!}\left\{\left(-D_{1}^{3}\right) 2!Y_{1}(2)\right\} & Y_{1}(13)=\frac{1}{13!}\left\{\left(-D_{1}^{5}\right) 3!Y_{1}(3)\right\} \cdots
\end{array}\right\}
$$

By applying the DTM to Eqs. (18), (19), (20), (21), (22), (23) and using the recurrence relations (28), (29) following equations are obtained

$$
\begin{gather*}
b_{11} Y_{1}(0)+b_{12} Y_{1}(1)+b_{13} 2!Y_{1}(2)+b_{14} 3!Y_{1}(3)=0 \tag{30}\\
b_{21} Y_{1}(0)+b_{22} Y_{1}(1)+b_{23} 2!Y_{1}(2)+b_{24} 3!Y_{1}(3)=0 \tag{31}\\
b_{35} Y_{2}(1)+b_{36} 3!Y_{2}(3)=Y_{1}(0) \tag{32}\\
b_{45} Y_{2}(1)+b_{46} 3!Y_{2}(3)=Y_{1}(1) \tag{33}\\
b_{55} Y_{2}(1)+b_{56} 3!Y_{2}(3)=3!Y_{1}(3)+D_{1} Y_{1}(1) \tag{34}\\
b_{65} Y_{2}(1)+b_{66} 3!Y_{2}(3)=2!Y_{1}(2)+D_{1} Y_{1}(0) \tag{35}
\end{gather*}
$$

where

$$
\begin{aligned}
& \mathrm{b}_{11}=1 ; \mathrm{b}_{12}=\frac{\mathrm{L}_{1}}{\mathrm{~L}} ; \mathrm{b}_{13}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \frac{\mathrm{D}_{1}^{\mathrm{k}}}{(2 \mathrm{k}+2)!}\left(\frac{\mathrm{L}_{1}}{\mathrm{~L}}\right)^{2 \mathrm{k}+2}(-1)^{\mathrm{k}} ; \mathrm{b}_{14}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \frac{\mathrm{D}_{1}^{\mathrm{k}}}{(2 \mathrm{k}+3)!}\left(\frac{\mathrm{L}_{1}}{\mathrm{~L}}\right)^{2 \mathrm{k}+3}(-1)^{\mathrm{k}} \\
& \mathrm{~b}_{21}=\mathrm{D}_{1} ; \mathrm{b}_{22}=\left(\frac{\mathrm{L} 1}{\mathrm{~L}}\right) \mathrm{D}_{1} ; \mathrm{b}_{23}=1+\mathrm{C}_{\theta}\left(\frac{\mathrm{L}_{1}}{\mathrm{~L}}\right)\left[\sum_{\mathrm{k}=0}^{\mathrm{n}} \frac{\mathrm{D}_{1}^{\mathrm{k}}(-1)^{\mathrm{k}}}{(2 \mathrm{k}+1)!}\left(\frac{\mathrm{L}_{1}}{\mathrm{~L}}\right)^{2 \mathrm{k}}\right] ; \\
& \mathrm{b}_{24}=\frac{\mathrm{L}_{1}}{\mathrm{~L}}+\mathrm{C}_{\theta}\left[\sum_{\mathrm{k}=0}^{\mathrm{n}} \frac{\mathrm{D}_{1}^{\mathrm{k}}(-1)^{\mathrm{k}}}{(2 \mathrm{k}+2)!}\left(\frac{\mathrm{L}_{1}}{\mathrm{~L}}\right)^{2 \mathrm{k}+2}\right] \\
& \mathrm{b}_{35}=\frac{\mathrm{L}_{2}}{\mathrm{~L}}-\left(\frac{\mathrm{L}_{2}}{\mathrm{~L}}\right)^{5} \frac{\beta_{2}}{5!}+\sum_{\mathrm{k}=3}^{\mathrm{n}}\left(\frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right)^{2 \mathrm{k}+1} \frac{(-1)^{\mathrm{k}}}{(2 \mathrm{k}+1)!}\left\{\sum_{\mathrm{m}=1}^{\mathrm{k} \geq 2 \mathrm{~m}}\binom{\mathrm{k}-\mathrm{m}-1}{\mathrm{~m}-1} \beta_{1}^{\mathrm{k}-2 \mathrm{~m}} \beta_{2}^{\mathrm{m}}(-1)^{\mathrm{m}}\right\} \\
& \mathrm{b}_{36}=\left(\frac{\mathrm{L}_{2}}{\mathrm{~L}}\right)^{3} \frac{1}{3!}+\sum_{\mathrm{k}=2}^{\mathrm{n}}\left(\frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right)^{2 \mathrm{k}+1} \frac{(-1)^{\mathrm{k}}}{(2 \mathrm{k}+1)!}\left\{\left\{\begin{array}{c}
\mathrm{k} \geq 2 \mathrm{~m}-1 \\
\sum_{\mathrm{m}=1}^{\mathrm{k}}-\mathrm{m} \\
\mathrm{~m}-1
\end{array}\right) \beta_{1}^{\mathrm{k}-2 \mathrm{~m}+1} \beta_{2}^{\mathrm{m}-1}(-1)^{\mathrm{m}}\right\}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{b}_{46}=\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right)^{2 \mathrm{k}} \frac{(-1)^{\mathrm{k}}}{(2 \mathrm{k})!}\left\{\sum_{\mathrm{m}=1}^{\mathrm{k} \geq 2 \mathrm{~m}-1}\binom{\mathrm{k}-\mathrm{m}}{\mathrm{~m}-1} \beta_{1}^{\mathrm{k}-2 \mathrm{~m}+1} \beta_{2}^{\mathrm{m}-1}(-1)^{\mathrm{m}}\right\} \\
\mathrm{b}_{55}=\beta_{1}-\left(\frac{\mathrm{L}_{2}}{\mathrm{~L}}\right)^{2} \frac{\beta 2}{2!}+\sum_{\mathrm{k}=3}^{\mathrm{n}}\left(\frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right)^{2 \mathrm{k}} \frac{(-1)^{\mathrm{k}}}{(2 \mathrm{k})!}\left\{\sum_{\mathrm{m}=1}^{\mathrm{k} \geq 2 \mathrm{~m}+1}\binom{\mathrm{k}-\mathrm{m}-2}{\mathrm{~m}-1} \beta_{1}^{\mathrm{k}-2 \mathrm{~m}-1} \beta_{2}^{\mathrm{m}+1}(-1)^{\mathrm{m}}\right\} \\
\mathrm{b}_{56}=1+\sum_{\mathrm{k}=2}^{\mathrm{n}}\left(\frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right)^{2 \mathrm{k}} \frac{(-1)^{\mathrm{k}}}{(2 \mathrm{k})!}\left\{\sum_{\mathrm{m}=1}^{\mathrm{k} \geq 2 \mathrm{~m}}\binom{\mathrm{k}-\mathrm{m}-1}{\mathrm{~m}-1} \beta_{1}^{\left.\mathrm{k}-2 \mathrm{~m}_{\beta_{2}^{m}}^{\mathrm{m}}(-1)^{\mathrm{m}}\right\}}\right. \\
\left.\mathrm{b}_{65}=\left(\frac{\mathrm{L}_{2}}{\mathrm{~L}}\right) \beta_{1}-\left(\frac{\mathrm{L}_{2}}{\mathrm{~L}}\right)^{3} \frac{\beta_{2}}{3!}+\sum_{\mathrm{k}=3}^{\mathrm{n}}\left(\frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right)^{2 \mathrm{k}+1} \frac{(-1)^{\mathrm{k}}}{(2 \mathrm{k}+1)!}\left\{\begin{array}{c}
\sum_{\mathrm{m}=1}^{\mathrm{k} \geq 2 \mathrm{~m}+1}(\mathrm{k}-\mathrm{m}-2 \\
\mathrm{m}-1
\end{array}\right) \beta_{1}^{\mathrm{k}-2 \mathrm{~m}-1} \beta_{2}^{\mathrm{m}+1}(-1)^{\mathrm{m}}\right\} \\
\mathrm{b}_{66}=\left(\frac{\mathrm{L}_{2}}{\mathrm{~L}}\right)+\sum_{\mathrm{k}=2}^{\mathrm{n}}\left(\frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right)^{2 \mathrm{k}+1} \frac{(-1)^{\mathrm{k}}}{(2 \mathrm{k}+1)!}\left\{\sum_{\mathrm{m}=1}^{\mathrm{k} \geq 2 \mathrm{~m}(\mathrm{k}-\mathrm{m}-1} \begin{array}{c}
\mathrm{m}-1
\end{array}\right) \beta_{1}^{\left.\mathrm{k}-2 \mathrm{~m}_{\beta_{2}^{m}}^{\mathrm{m}}(-1)^{\mathrm{m}}\right\}}
\end{gathered}
$$

Substituting Eqs. (32) and (33) into Eqs. (34) and (35), respectively, gives

$$
\begin{align*}
& 3!Y_{1}(3)=\left(b_{55}-D_{1} b_{45}\right) Y_{2}(1)+\left(b_{56}-D_{1} b_{46}\right) 3!Y_{2}(3) \tag{36}\\
& 2!Y_{1}(2)=\left(b_{65}-D_{1} b_{35}\right) Y_{2}(1)+\left(b_{66}-D_{1} b_{36}\right) 3!Y_{2}(3) \tag{37}
\end{align*}
$$

Substituting Eqs. (32), (33), (36) and (37) into Eqs. (30) and (31), respectively, gives

$$
\left[\begin{array}{ll}
\mathrm{B}_{11} & \mathrm{~B}_{12} \tag{38}\\
\mathrm{~B}_{21} & \mathrm{~B}_{22}
\end{array}\right]\left\{\begin{array}{c}
\mathrm{Y}_{2}(1) \\
3!\mathrm{Y}_{2}(3)
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

where

$$
\begin{aligned}
& B_{11}=b_{11} b_{35}+b_{12} b_{45}+b_{13}\left(b_{65}-D_{1} b_{35}\right)+b_{14}\left(b_{55}-D_{1} b_{45}\right) \\
& B_{12}=b_{11} b_{36}+b_{12} b_{46}+b_{13}\left(b_{66}-D_{1} b_{36}\right)+b_{14}\left(b_{56}-D_{1} b_{46}\right) \\
& B_{21}=b_{21} b_{35}+b_{22} b_{45}+b_{23}\left(b_{65}-D_{1} b_{35}\right)+b_{24}\left(b_{55}-D_{1} b_{45}\right) \\
& B_{22}=b_{21} b_{36}+b_{22} b_{46}+b_{23}\left(b_{66}-D_{1} b_{36}\right)+b_{24}\left(b_{56}-D_{1} b_{46}\right)
\end{aligned}
$$

Thus, the buckling equation of the semi-rigid connected pile in elastic soil is obtained using Eq. (26) as

$$
\begin{equation*}
\mathrm{f}^{(\mathrm{n})}=\mathrm{B}_{11} \mathrm{~B}_{22}-\mathrm{B}_{12} \mathrm{~B}_{21}=0 \tag{39}
\end{equation*}
$$

Solving (39) we get $N=N_{i}^{(n)}, i=1,2,3, \ldots$ where $N_{i}^{(n)}$ is the nth estimated N axial compressive load circular frequency corresponding to n, and n is indicated by

$$
\left|N_{i}^{(n)}-N_{i}^{(n-1)}\right| \leq \varepsilon
$$

where $N_{i}{ }^{(n-1)}$ is the ith estimated axial compressive load corresponding to $n-1$ and ε is a positive and small value.

5. Analytical solution of differential equations

The solution of differential equation of the elastic curve for the first region of the pile, Eq. (9), is obtained as (Ross 1984)

$$
\begin{equation*}
y_{1}\left(z_{1}\right)=C_{1}+C_{2} z_{1}+\cos \left(D_{2} z_{1}\right) C_{3}+\sin \left(D_{2} z_{1}\right) C_{4} \quad\left(0 \leq z_{1} \leq \frac{L_{1}}{L}\right) \tag{40}
\end{equation*}
$$

Where $\mathrm{D}_{2}=\left[\frac{\mathrm{NL}^{2}}{\mathrm{EI}}\left[\frac{\overline{\mathrm{k}} A G}{\overline{\mathrm{k}} A G-\mathrm{N}}\right]\right]^{0.5}$.
The solution of Eq. (6) is obtained due to the sign of γ, four possible conditions exist due to the signs of Δ_{1} and Δ_{2} when γ is positive (Catal and Catal 2006).
Where $\Delta_{1}=-\frac{\beta_{1}}{2}-\left(\beta_{2}\right)^{0.5} ; \Delta_{2}=-\frac{\beta_{1}}{2}+\left(\beta_{2}\right)^{0.5} ; \mathrm{D}_{3}=\left(\Delta_{1}\right)^{0.5} ; \mathrm{D}_{4}=\left(\Delta_{2}\right)^{0.5} ; \quad \gamma=\left(\frac{\beta_{1}}{2}\right)^{2}+\beta_{2}$
I. $\quad \gamma>0, \Delta_{1}>0$ and $\Delta_{2}>0$ $\mathrm{y}_{2}\left(\mathrm{z}_{2}\right)=\left[\mathrm{C}_{5} \cosh \left(\mathrm{D}_{3} \mathrm{z}_{2}\right)+\mathrm{C}_{6} \sinh \left(\mathrm{D}_{3} \mathrm{z}_{2}\right)+\mathrm{C}_{7} \cosh \left(\mathrm{D}_{4} \mathrm{z}_{2}\right)+\mathrm{C}_{8} \sinh \left(\mathrm{D}_{4} \mathrm{z}_{2}\right)\right]$

$$
\begin{equation*}
\left(0 \leq \mathrm{z}_{2} \leq \frac{\mathrm{L}_{2}}{\mathrm{~L}}\right) \tag{41}
\end{equation*}
$$

II. $\quad \gamma>0, \Delta_{1}>0$ and $\Delta_{2}<0$

$$
\begin{gather*}
\mathrm{y}_{2}\left(\mathrm{z}_{2}\right)=\left[\mathrm{C}_{5} \cosh \left(\mathrm{D}_{3} \mathrm{z}_{2}\right)+\mathrm{C}_{6} \sinh \left(\mathrm{D}_{3} \mathrm{z}_{2}\right)+\mathrm{C}_{7} \cos \left(\mathrm{D}_{4} \mathrm{z}_{2}\right)+\mathrm{C}_{8} \sin \left(\mathrm{D}_{4} \mathrm{z}_{2}\right)\right] \\
\left(0 \leq \mathrm{z}_{2} \leq \frac{\mathrm{L}_{2}}{\mathrm{~L}}\right) \tag{42}
\end{gather*}
$$

III. $\quad \gamma>0, \Delta_{1}<0$ and $\Delta_{2}>0$

$$
\begin{gather*}
y_{2}\left(z_{2}\right)=\left[C_{5} \cos \left(D_{3} z_{2}\right)+C_{6} \sin \left(D_{3} z_{2}\right)+C_{7} \cosh \left(D_{4} z_{2}\right)+C_{8} \sinh \left(D_{4} z_{2}\right)\right] \\
\left(0 \leq z_{2} \leq \frac{L_{2}}{L}\right) \tag{43}
\end{gather*}
$$

VI. $\quad \gamma>0, \Delta_{1}<0$ and $\Delta_{2}<0$

$$
\begin{gather*}
y_{2}\left(z_{2}\right)=\left[C_{5} \cos \left(D_{3} z_{2}\right)+C_{6} \sin \left(D_{3} z_{2}\right)+C_{7} \cos \left(D_{4} z_{2}\right)+C_{8} \sin \left(D_{4} z_{2}\right)\right] \\
\left(0 \leq z_{2} \leq \frac{L_{2}}{L}\right) \tag{44}
\end{gather*}
$$

V. $\quad \gamma<0$

$$
\begin{align*}
& \mathrm{y}_{2}\left(\mathrm{z}_{2}\right)=\left\{\mathrm{C}_{5}\left[\cosh \left(\mathrm{r} \alpha_{1} \mathrm{z}_{2}\right) \cos \left(\mathrm{r} \alpha_{2} \mathrm{z}_{2}\right)\right]+\mathrm{C}_{6}\left[\sinh \left(\mathrm{r} \alpha_{1} \mathrm{z}_{1}\right) \cos \left(\mathrm{r} \alpha_{2} \mathrm{z}_{2}\right)\right]+\right. \\
& \left.\quad \mathrm{C}_{7}\left[\cosh \left(\mathrm{r} \alpha_{1} \mathrm{z}_{2}\right) \sin \left(\mathrm{r} \alpha_{2} \mathrm{z}_{2}\right)\right]+\mathrm{C}_{8}\left[\sinh \left(\mathrm{r} \alpha_{1} \mathrm{z}_{2}\right) \sin \left(\mathrm{r} \alpha_{2} \mathrm{z}_{2}\right)\right]\right\} \quad\left(0 \leq \mathrm{z}_{2} \leq \frac{\mathrm{L}_{2}}{\mathrm{~L}}\right) \tag{45}
\end{align*}
$$

Where $\lambda=\operatorname{Arctg}\left[\frac{1}{\beta_{1}}\left(-2 \sqrt{-\left(\frac{\beta_{1}}{2}\right)^{2}-\beta_{2}}\right)\right] ; \alpha_{1}=\sin (\lambda / 2) ; \alpha_{2}=\cos (\lambda / 2) ; \mathrm{r}=\sqrt[4]{-\beta_{2}}$
$C_{1}, C_{2}, \ldots, C_{8}=$ constant of integration. Bending moment functions with respect to z for the first and the second regions of pile are obtained from Eqs. (9) and (10), respectively, as

$$
\begin{equation*}
\mathrm{M}_{1}\left(\mathrm{z}_{1}\right)=-\mathrm{NC}_{1}-\mathrm{NC}_{2} \mathrm{z}_{1} \quad\left(0 \leq \mathrm{z}_{1} \leq \frac{\mathrm{L}_{1}}{\mathrm{~L}}\right) \tag{46}
\end{equation*}
$$

$$
\begin{equation*}
M_{2}\left(z_{2}\right)=-\frac{E I}{L^{2}}\left[\frac{\bar{k} A G-N}{\bar{k} A G}\right] \frac{d^{2} y_{2}\left(z_{2}\right)}{d z_{2}^{2}}+\left[\frac{E I C_{s}}{\bar{k} A G}-N\right] y_{2}\left(z_{2}\right) \quad\left(0 \leq z_{2} \leq \frac{L_{2}}{L}\right) \tag{47}
\end{equation*}
$$

The summation of horizontal components $V_{1}\left(z_{1}\right)$ and $V_{2}\left(z_{2}\right)$ of axial (N) and shear forces $\left(T_{1}\left(z_{1}\right)\right.$, $\left.T_{2}\left(z_{2}\right)\right)$ at initial ends of differential parts at the first and the second regions of pile are written, respectively, as

$$
\begin{gather*}
V_{1}\left(z_{1}\right)=T_{1}\left(z_{1}\right)-\frac{N}{L} \frac{d y_{1}\left(z_{1}\right)}{d z_{1}}=\frac{1}{L}\left[\frac{d M_{1}\left(z_{1}\right)}{d z_{1}}-N \frac{d y_{1}\left(z_{1}\right)}{d z_{1}}\right] \quad\left(0 \leq z_{1} \leq \frac{L_{1}}{L}\right) \tag{48}\\
V_{2}\left(z_{2}\right)=T_{2}\left(z_{2}\right)-\frac{N}{L} \frac{d y_{2}\left(z_{2}\right)}{d z_{2}}=\frac{1}{L}\left[\frac{d M_{2}\left(z_{2}\right)}{d z_{2}}-N \frac{d y_{2}\left(z_{2}\right)}{d z_{2}}\right] \quad\left(0 \leq z_{2} \leq \frac{L_{2}}{L}\right) \tag{49}
\end{gather*}
$$

substituting Eqs. (42) and (43) into Eqs. (44) and (45), respectively, gives (Catal and Catal 2006).

$$
\begin{gather*}
\mathrm{V}_{1}\left(\mathrm{z}_{1}\right)=-\frac{\mathrm{EI}}{\mathrm{~L}^{3}}\left[\frac{\overline{\mathrm{k}} A G-N}{\bar{k} A G}\right] \frac{d^{3} \mathrm{y}_{1}\left(\mathrm{z}_{1}\right)}{\mathrm{dz}_{1}^{3}}-\frac{\mathrm{N}}{\mathrm{~L}} \frac{\mathrm{dy}_{1}\left(\mathrm{z}_{1}\right)}{\mathrm{dz}_{1}} \quad\left(0 \leq \mathrm{z}_{1} \leq \frac{L_{1}}{\mathrm{~L}}\right) \tag{50}\\
\mathrm{V}_{2}\left(\mathrm{z}_{2}\right)=-\frac{\mathrm{EI}}{\mathrm{~L}^{3}}\left[\frac{\overline{\mathrm{k}} A G-N}{\overline{\mathrm{k}} A G}\right] \frac{\mathrm{d}^{3} \mathrm{y}_{2}\left(\mathrm{z}_{2}\right)}{\mathrm{dz} z_{2}^{3}}+\frac{1}{\mathrm{~L}}\left[\frac{E I C_{s}}{\overline{\mathrm{k}} A G}-\mathrm{N}\right] \frac{\mathrm{dy}_{2}\left(\mathrm{z}_{2}\right)}{\mathrm{dz}} \quad\left(0 \leq \mathrm{z}_{2} \leq \frac{L_{2}}{\mathrm{~L}}\right) \tag{51}
\end{gather*}
$$

Constants of integration $\left(C_{1}, \ldots, C_{8}\right)$ must be obtained by using boundary conditions due to the support type of top and bottom ends in order to the calculate the buckling load of the pile.

Boundary conditions of the pile whose top end simply supported and semi-rigid connected, bottom end simply supported (Fig. 2) are given in relations (52).

$$
\left.\begin{array}{cc}
y_{1}\left(z_{1}=\frac{L_{1}}{L}\right)=0 & M_{1}\left(z_{1}=0\right)=M_{2}\left(z_{2}=\frac{L_{2}}{L}\right) \\
M_{1}\left(z_{1}=\frac{L_{1}}{L}\right)=\left.\frac{C_{\theta}}{L} \frac{d y_{1}\left(z_{1}\right)}{d z_{1}}\right|_{z_{1}=\frac{L_{1}}{L}} & V_{1}\left(z_{1}=0\right)=V_{2}\left(z_{2}=\frac{L_{2}}{L}\right) \tag{52}\\
y_{1}\left(z_{1}=0\right)=y_{2}\left(z_{2}=\frac{L_{2}}{L}\right) & y_{2}\left(z_{2}=0\right)=0 \\
\left.\frac{d y_{1}\left(z_{1}\right)}{d z_{1}}\right|_{z_{1}=0}=\left.\frac{d y_{2}\left(z_{2}\right)}{d z_{2}}\right|_{z_{2}=\frac{L_{2}}{L}} & M_{2}\left(z_{2}=0\right)=0
\end{array}\right\}
$$

A set of eight linear homogeneous equations is obtained from Eq.(48) due to boundary conditions of the pile. This equation set is written in matrix form as:

$$
\begin{equation*}
[\mathrm{S}]\{\mathrm{C}\}=\{0\} \tag{53}
\end{equation*}
$$

Where $[S]$ and $\{C\}$ indicate coefficient matrix and the unknown coefficients vector, respectively. Hence, the non-trivial solution of this problem is given by

$$
|S|=\left|\begin{array}{llllllll}
\mathrm{S}_{11} & \mathrm{~S}_{12} & \mathrm{~S}_{13} & \mathrm{~S}_{14} & \mathrm{~S}_{15} & \mathrm{~S}_{16} & \mathrm{~S}_{17} & \mathrm{~S}_{18} \tag{54}\\
\mathrm{~S}_{21} & \mathrm{~S}_{22} & \mathrm{~S}_{23} & \mathrm{~S}_{24} & \mathrm{~S}_{25} & \mathrm{~S}_{26} & \mathrm{~S}_{27} & \mathrm{~S}_{28} \\
\mathrm{~S}_{31} & \mathrm{~S}_{32} & \mathrm{~S}_{33} & \mathrm{~S}_{34} & \mathrm{~S}_{35} & \mathrm{~S}_{36} & \mathrm{~S}_{37} & \mathrm{~S}_{38} \\
\mathrm{~S}_{41} & \mathrm{~S}_{42} & \mathrm{~S}_{43} & \mathrm{~S}_{44} & \mathrm{~S}_{45} & \mathrm{~S}_{46} & \mathrm{~S}_{47} & \mathrm{~S}_{48} \\
\mathrm{~S}_{51} & \mathrm{~S}_{52} & \mathrm{~S}_{53} & \mathrm{~S}_{54} & \mathrm{~S}_{55} & \mathrm{~S}_{56} & \mathrm{~S}_{57} & \mathrm{~S}_{58} \\
\mathrm{~S}_{61} & \mathrm{~S}_{62} & \mathrm{~S}_{63} & \mathrm{~S}_{64} & \mathrm{~S}_{65} & \mathrm{~S}_{66} & \mathrm{~S}_{67} & \mathrm{~S}_{68} \\
\mathrm{~S}_{71} & \mathrm{~S}_{72} & \mathrm{~S}_{73} & \mathrm{~S}_{74} & \mathrm{~S}_{75} & \mathrm{~S}_{76} & \mathrm{~S}_{77} & \mathrm{~S}_{78} \\
\mathrm{~S}_{81} & \mathrm{~S}_{82} & \mathrm{~S}_{83} & \mathrm{~S}_{84} & \mathrm{~S}_{85} & \mathrm{~S}_{86} & \mathrm{~S}_{87} & \mathrm{~S}_{88}
\end{array}\right|
$$

Where,

$$
\begin{gathered}
S_{11}=1, S_{12}=\frac{L_{1}}{L}, S_{13}=\cos \left(D_{2} \frac{L_{1}}{L}\right), S_{14}=\sin \left(D_{2} \frac{L_{1}}{L}\right), S_{15}=0, S_{16}=0, S_{17}=0, S_{18}=0 \\
S_{21}=-N, S_{22}=-\frac{1}{L}\left[N_{1}+C_{\theta}\right], S_{23}=\frac{D_{2} C_{\theta}}{L} \sin \left(D_{2} \frac{L_{1}}{L}\right), S_{24}=-\frac{D_{2} C_{\theta}}{L} \cos \left(D_{2} \frac{L_{1}}{L}\right) \\
S_{25}=0, S_{26}=0, S_{27}=0, S_{28}=0, S_{31}=1, S_{32}=0 ; S_{33}=1, S_{34}=0, S_{41}=0, S_{42}=\frac{1}{L} \\
S_{43}=0, S_{44}=D_{2}, S_{51}=-N, S_{52}=0, S_{53}=0, S_{54}=0 ; S_{61}=0, S_{62}=-\frac{N}{L}, S_{63}=0, \\
S_{64}=0 ; \\
U_{1}=\frac{E I C_{s}}{\bar{k} A G}, U_{2}=\frac{E I}{L^{2}}\left(\frac{\bar{k} A G-N}{\bar{k} A G}\right), \quad U_{3}=\frac{E I}{L^{3}}\left(\frac{\bar{k} A G-N}{\bar{k} A G}\right), A_{1}=U_{1}-D_{3}^{2} U_{2} \\
A_{2}=U_{1}-D_{4}^{2} U_{2}, A_{3}=U_{1}+D_{4}^{2} U_{2}, A_{4}=U_{1}+D_{3}^{2} U_{2}, A_{5}=U_{1}-\left(D_{3}^{2}-D_{4}^{2}\right) U_{2}-N \\
A_{6}=2 D_{3} D_{4} U_{2}, B_{1}=D_{3}\left[\left(U_{1}-\frac{N_{2}}{L}\right)-D_{3}^{2} U_{3}\right], B_{2}=D_{4}\left[\left(U_{1}-\frac{N}{L}\right)-D_{4}^{2} U_{3}\right] \\
B_{3}=D_{4}\left[\left(-U_{1}+\frac{N_{2}}{L}\right)-D_{4}^{2} U_{3}\right], B_{4}=D_{3}\left[\left(-U_{1}+\frac{N_{2}}{L}\right)-D_{3}^{2} U_{3}\right], B_{5}=U_{1}-\frac{N}{L}-\left(D_{3}^{2}-D_{4}^{2}\right) U_{3}
\end{gathered}
$$

for $\gamma>0, \Delta_{1}>0$ and $\Delta_{2}>0$

$$
\begin{gathered}
S_{35}=-\cosh \left(D_{3} \frac{L_{2}}{L}\right), S_{36}=-\sinh \left(D_{3} \frac{L_{2}}{L}\right), S_{37}=-\cosh \left(D_{4} \frac{L_{2}}{L}\right), S_{38}=-\sinh \left(D 4 \frac{L_{2}}{L}\right) \\
S_{45}=-\frac{D_{3}}{L} \sinh \left(D_{3} \frac{L_{2}}{L}\right), S_{46}=-\frac{D_{3}}{L} \cosh \left(D_{3} \frac{L_{2}}{L}\right), S_{47}=-\frac{D_{4}}{L} \sinh \left(D_{4} \frac{L_{2}}{L}\right) \\
S_{48}=-\frac{D_{4}}{L} \cosh \left(D_{4} \frac{L_{2}}{L}\right), S_{55}=-A_{1} \cosh \left(D_{3} \frac{L_{2}}{L}\right), S_{56}=-A_{1} \sinh \left(D_{3} \frac{L_{2}}{L}\right) \\
S_{57}=-A_{2} \cosh \left(D_{4} \frac{L_{2}}{L}\right), S_{58}=-A_{2} \sinh \left(D_{4} \frac{L_{2}}{L}\right), S_{65}=-B_{1} \sinh \left(D_{3} \frac{L_{2}}{L}\right) \\
S_{66}=-B_{1} \cosh \left(D_{3} \frac{L_{2}}{L}\right), S_{67}=-B_{2} \sinh \left(D_{4} \frac{L_{2}}{L}\right), S_{68}=-B_{2} \cosh \left(D_{4} \frac{L_{2}}{L}\right), S_{75}=-1, S_{76}=0
\end{gathered}
$$

$$
S_{77}=-1, S_{78}=0, S_{85}=A_{1}, S_{86}=0, S_{87}=A_{2}, S_{88}=0
$$

for $\gamma>0, \Delta_{1}>0$ and $\Delta_{2}<0$

$$
\begin{gathered}
S_{35}=-\cosh \left(D_{3} \frac{L_{2}}{L}\right), S_{36}=-\sinh \left(D_{3} \frac{L_{2}}{L}\right), S_{37}=-\cos \left(D_{4} \frac{L_{2}}{L}\right), S_{38}=-\sin \left(D 4 \frac{L_{2}}{L}\right) \\
S_{45}=-\frac{D_{3}}{L} \sinh \left(D_{3} \frac{L_{2}}{L}\right), S_{46}=-\frac{D_{3}}{L} \cosh \left(D_{3} \frac{L_{2}}{L}\right), S_{47}=\frac{D_{4}}{L} \sin \left(D_{4} \frac{L_{2}}{L}\right) \\
S_{48}=-\frac{D_{4}}{L} \cos \left(D_{4} \frac{L_{2}}{L}\right), S_{55}=-A_{1} \cosh \left(D_{3} \frac{L_{2}}{L}\right), S_{56}=-A_{1} \sinh \left(D_{3} \frac{L_{2}}{L}\right) \\
S_{57}=-A_{3} \cos \left(D_{4} \frac{L_{2}}{L}\right), S_{58}=-A_{3} \sin \left(D_{4} \frac{L_{2}}{L}\right), S_{65}=-B_{1} \sinh \left(D_{3} \frac{L_{2}}{L}\right), \\
S_{66}=-B_{1} \cosh \left(D_{3} \frac{L_{2}}{L}\right) S_{67}=-B_{3} \sin \left(D_{4} \frac{L_{2}}{L}\right), S_{68}=B_{3} \cos \left(D_{4} \frac{L_{2}}{L}\right), S_{75}=1, S_{76}=0 \\
S_{77}=1, S_{78}=0, S_{85}=A_{1}, S_{86}=0, S_{87}=A_{3}, S_{88}=0
\end{gathered}
$$

for $\gamma>0, \Delta_{1}<0$ and $\Delta_{2}>0$

$$
\begin{gathered}
S_{35}=-\cos \left(D_{3} \frac{L_{2}}{L}\right), S_{36}=-\sin \left(D_{3} \frac{L_{2}}{L}\right), S_{37}=-\cosh \left(D_{4} \frac{L_{2}}{L}\right), S_{38}=-\sinh \left(D 4 \frac{L_{2}}{L}\right) \\
S_{45}=\frac{D_{3}}{L} \sin \left(D_{3} \frac{L_{2}}{L}\right), S_{46}=-\frac{D_{3}}{L} \cos \left(D_{3} \frac{L_{2}}{L}\right), S_{47}=-\frac{D_{4}}{L} \sinh \left(D_{4} \frac{L_{2}}{L}\right), \\
S_{48}=-\frac{D_{4}}{L} \cosh \left(D_{4} \frac{L_{2}}{L}\right), S_{55}=-A_{4} \cos \left(D_{3} \frac{L_{2}}{L}\right), S_{56}=-A_{4} \sinh \left(D_{3} \frac{L_{2}}{L}\right) \\
S_{57}=-A_{2} \cosh \left(D_{4} \frac{L_{2}}{L}\right), S_{58}=-A_{2} \sinh \left(D_{4} \frac{L_{2}}{L}\right), S_{65}=-B_{4} \sin \left(D_{3} \frac{L_{2}}{L}\right) \\
S_{66}=-B_{4} \cos \left(D_{3} \frac{L_{2}}{L}\right), S_{67}=-B_{2} \sinh \left(D_{4} \frac{L_{2}}{L}\right), S_{68}=-B_{2} \cosh \left(D_{4} \frac{L_{2}}{L}\right), S_{75}=1, S_{76}=0 \\
S_{77}=1, S_{78}=0, S_{85}=A_{4}, S_{86}=0, S_{87}=A_{2}, S_{88}=0
\end{gathered}
$$

for $\gamma>0, \Delta_{1}<0$ and $\Delta_{2}<0$

$$
\begin{gathered}
S_{35}=-\cos \left(D_{3} \frac{L_{2}}{L}\right), S_{36}=-\sin \left(D_{3} \frac{L_{2}}{L}\right), S_{37}=-\cos \left(D_{4} \frac{L_{2}}{L}\right), S_{38}=-\sin \left(D 4 \frac{L_{2}}{L}\right) \\
S_{45}=\frac{D_{3}}{L} \sin \left(D_{3} \frac{L_{2}}{L}\right), S_{46}=-\frac{D_{3}}{L} \cos \left(D_{3} \frac{L_{2}}{L}\right), S_{47}=-\frac{D_{4}}{L} \sin \left(D_{4} \frac{L_{2}}{L}\right), \\
S_{48}=-\frac{D_{4}}{L} \cos \left(D_{4} \frac{L_{2}}{L}\right), S_{55}=-A_{4} \cos \left(D_{3} \frac{L_{2}}{L}\right), S_{56}=-A_{4} \sin \left(D_{3} \frac{L_{2}}{L}\right), \\
S_{57}=-A_{3} \cos \left(D_{4} \frac{L_{2}}{L}\right), S_{58}=-A_{3} \sin \left(D_{4} \frac{L_{2}}{L}\right), S_{65}=-B_{4} \sin \left(D_{3} \frac{L_{2}}{L}\right), \\
S_{66}=-B_{4} \cos \left(D_{3} \frac{L_{2}}{L}\right), S_{67}=-B_{3} \sin \left(D_{4} \frac{L_{2}}{L}\right), S_{68}=-B_{3} \cos \left(D_{4} \frac{L_{2}}{L}\right), S_{75}=1, S_{76}=0, \\
S_{77}=1, S_{78}=0, S_{85}=A_{4}, S_{86}=0, S_{87}=A_{3}, S_{88}=0
\end{gathered}
$$

for $\gamma<0$

$$
\begin{aligned}
& S_{35}=\cosh \left(D_{3} \frac{L_{2}}{L}\right) \cos \left(D_{4} \frac{L_{2}}{L}\right), S_{36}=\sinh \left(D_{3} \frac{L_{2}}{L}\right) \cos \left(D_{4} \frac{L_{2}}{L}\right), \\
& S_{37}=\cosh \left(D_{3} \frac{L_{2}}{L}\right) \sin \left(D_{4} \frac{L_{2}}{L}\right) \\
& S_{38}=\sinh \left(D_{3} \frac{L_{2}}{L}\right) \sin \left(D_{4} \frac{L_{2}}{L}\right) \\
& \mathrm{S}_{45}=-\frac{\mathrm{D}_{3}}{\mathrm{~L}} \sinh \left(\mathrm{D}_{3} \frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right) \cos \left(\mathrm{D}_{4} \frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right)+\frac{\mathrm{D}_{4}}{\mathrm{~L}} \cosh \left(\mathrm{D}_{3} \frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right) \sin \left(\mathrm{D}_{4} \frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right) \\
& S_{46}=-\frac{D_{3}}{L} \cosh \left(D_{3} \frac{L_{2}}{L}\right) \cos \left(D_{4} \frac{L_{2}}{L}\right)+\frac{D_{4}}{L} \sinh \left(D_{3} \frac{L_{2}}{L}\right) \cos \left(D_{4} \frac{L_{2}}{L}\right) \\
& S_{47}=-\frac{D_{3}}{L} \sinh \left(D_{3} \frac{L_{2}}{L}\right) \sin \left(D_{4} \frac{L_{2}}{L}\right)-\frac{D_{4}}{L} \cosh \left(D_{3} \frac{L_{2}}{L}\right) \cos \left(D_{4} \frac{L_{2}}{L}\right) \\
& S_{48}=-\frac{D_{3}}{L} \cosh \left(D_{3} \frac{L_{2}}{L}\right) \sin \left(D_{4} \frac{L_{2}}{L}\right)-\frac{D_{4}}{L} \sinh \left(D_{3} \frac{L_{2}}{L}\right) \cos \left(D_{4} \frac{L_{2}}{L}\right) \\
& S_{55}=-A_{5} \cosh \left(D_{3} \frac{L_{2}}{L}\right) \cos \left(D_{4} \frac{L_{2}}{L}\right)-A_{6} \sinh \left(D_{3} \frac{L_{2}}{L}\right) \sin \left(D_{4} \frac{L_{2}}{L}\right) \\
& S_{56}=-A_{5} \sinh \left(D_{3} \frac{L_{2}}{L}\right) \cos \left(D_{4} \frac{L_{2}}{L}\right)-A_{6} \cosh \left(D_{3} \frac{L_{2}}{L}\right) \sin \left(D_{4} \frac{L_{2}}{L}\right) \\
& S_{57}=-A_{5} \cosh \left(D_{3} \frac{L_{2}}{L}\right) \sin \left(D_{4} \frac{L_{2}}{L}\right)+A_{6} \sinh \left(D_{3} \frac{L_{2}}{L}\right) \cos \left(D_{4} \frac{L_{2}}{L}\right) \\
& \mathrm{S}_{58}=-\mathrm{A}_{5} \sinh \left(\mathrm{D}_{3} \frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right) \sin \left(\mathrm{D}_{4} \frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right)+\mathrm{A}_{6} \cosh \left(\mathrm{D}_{3} \frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right) \cos \left(\mathrm{D}_{4} \frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right) \\
& S_{65}=-\left(B_{5} D_{3}+2 \mathrm{U}_{3} \mathrm{D}_{3} \mathrm{D}_{4}^{2}\right) \sinh \left(\mathrm{D}_{3} \frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right) \cos \left(\mathrm{D}_{4} \frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right) \\
& +\left(\mathrm{B}_{5} \mathrm{D}_{3}-2 \mathrm{U}_{3} \mathrm{D}_{3}^{2} \mathrm{D}_{4}\right) \cosh \left(\mathrm{D}_{3} \frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right) \sin \left(\mathrm{D}_{4} \frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right) \\
& S_{66}=-\left(B_{5} D_{3}+2 U_{3} D_{3} D_{4}^{2}\right) \cosh \left(D_{3} \frac{L_{2}}{L}\right) \cos \left(D_{4} \frac{L_{2}}{L}\right) \\
& +\left(\mathrm{B}_{5} \mathrm{D}_{3}-2 \mathrm{U}_{3} \mathrm{D}_{3}^{2} \mathrm{D}_{4}\right) \sinh \left(\mathrm{D}_{3} \frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right) \sin \left(\mathrm{D}_{4} \frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right) \\
& S_{67}=-\left(B_{5} D_{3}+2 U_{3} D_{3} D_{4}^{2}\right) \sinh \left(D_{3} \frac{L_{2}}{L}\right) \sin \left(D_{4} \frac{L_{2}}{L}\right) \\
& -\left(B_{5} D_{3}-2 U_{3} D_{3}^{2} D_{4}\right) \cosh \left(D_{3} \frac{L_{2}}{L}\right) \sin \left(D_{4} \frac{L_{2}}{L}\right) \\
& \mathrm{S}_{68}=-\left(\mathrm{B}_{5} \mathrm{D}_{3}+2 \mathrm{U}_{3} \mathrm{D}_{3} \mathrm{D}_{4}^{2}\right) \cosh \left(\mathrm{D}_{3} \frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right) \sin \left(\mathrm{D}_{4} \frac{\mathrm{~L}_{2}}{\mathrm{~L}}\right)
\end{aligned}
$$

$$
\begin{gathered}
-\left(B_{5} D_{3}-2 U_{3} D_{3}^{2} D_{4}\right) \sinh \left(D_{3} \frac{L_{2}}{L}\right) \cos \left(D_{4} \frac{L_{2}}{L}\right) \\
S_{75}=1, S_{76}=0, S_{77}=0, S_{78}=0, S_{85}=A_{5}, S_{86}=0, S_{87}=0, S_{88}=-A_{6}
\end{gathered}
$$

6. Numerical analysis

A thin-walled circular steel pile with outer diameter of $355,6 \mathrm{~mm}$ and thickness of 32 mm is considered for numerical analysis. The buckling loads of the semi-rigid connected pile partially embedded in soil having modulus of subgrade reaction of $15.000 \mathrm{kN} / \mathrm{m}^{2}$ are calculated for support conditions given in Fig. 3 by a computer program having an iteration algorithm and prepared by the writer.

The characteristics of the steel pile used numerical analysis are presented in the following:

$$
I=246,63 * 10^{-6} \mathrm{~m}^{4} ; A=17,1 * 10^{-3} \mathrm{~m}^{2} ; E I=51792,3 \mathrm{kN} / \mathrm{m}^{2} ; A G=1382670 \mathrm{kN} ; \bar{k}=2,0
$$

Buckling loads and relative stiffness values (α) of the thin-walled steel pile are calculated by taking pile lengths of the first and the second regions (L_{1} and L_{2}), stiffness of the rotational spring $\left(C_{\theta}\right)$ from Table 2 and by using DTM and analytical method for $L_{2} / L=0.25, L_{2} / L=0.50, L_{2} / L=0.75$, $f=0.25$ and $f=0.75$.

Euler critical buckling load of piles are calculated using $N_{E}=\pi^{2} E I /\left(L_{b}\right)^{2}$ by neglecting the effects of modulus of subgrade reaction, shear deformation and stiffness of rotational spring and by taking $L_{b}=L$ for both ends simply supported pile.
$N_{r}=N / N_{E}$ values are calculated according to $\alpha, L_{2} / L, f$ and series size (n) values using DTM and according to $\alpha, L_{2} / L$ and f values by using analytical method; and the values obtained are presented Table 2(a),(b).

Buckling loads (\bar{N}) and relative stiffness values of the pile are calculated by neglecting the effects of shear deformation by using analytical method for for $L_{2} / L=0.25, L_{2} / L=0.50, L_{2} / L=0.75$, $f=0.25$ and $f=0.75$. $\frac{\bar{N}}{N}$ values obtained are presented Table 3(a),(b).

Table 2 Values of L with respect to α, values of L_{1} and L_{2} with respect to L_{2} / L and values of C_{θ} with respect to f, L, E, I

$L(\mathrm{~m})$.	$\alpha_{=} C_{\mathrm{s}} L^{4} / E I$	$L_{2} / L=$	0.25	$L_{2} / L=$	0.50	$L_{2} / \mathrm{L}=$	0.75	$f=0.25$	$f=0.75$
		$L_{1}(\mathrm{~m})$	$L_{2}(\mathrm{~m})$	$L_{1}(\mathrm{~m})$	$L_{2}(\mathrm{~m})$	$L_{1}(\mathrm{~m})$	$L_{2}(\mathrm{~m})$	$C_{\theta} \mathrm{kNm} / \mathrm{rd}$	$C_{\theta} \mathrm{kNm} / \mathrm{rd}$
1.36	1	1.020	0.340	0.680	0.680	0.340	1.020	38083	342743
2.42	10	1.815	0.605	1.210	1.210	0.605	1.815	21402	102616
4.31	100	3.232	1.078	2.155	2.155	1.078	3.232	12017	108151
7.66	1000	5.745	1.915	3.830	3.830	1.915	5.745	6761	60853
13.63	10000	10.220	3.410	6.815	6.815	3.410	10.220	3800	34199
24.24	100000	18.180	6.060	12.120	12.120	6.060	18.180	2137	19230
43.10	1000000	32.320	10.770	21.550	21.550	10.770	32.320	1202	10815

Table 2(a) N_{r} values for the first, second, third modes of the pile and $f=0,25$

Method	d	0.25					
1.0	1st. Mode 2nd. Mode 3rd. Mode 1st. Mode 2nd. Mode 3rd. Mode 1st. Mode 2nd. Mode 3rd. Mode						
		0.83239641 .61322171 .99592880 .83680921 .60887001 .99614590 .84154661 .60879952 .1185852					
	6	0.83235321 .60735211 .99592880 .83678621 .60785261 .99614590 .84065121 .60879952 .1509392					
	8	0.83235321 .60745651 .99657850 .83678621 .60785061 .99619190 .84064961 .60879952 .1698455					
	10	0.83235321 .60745981 .99606210 .83678621 .60785061 .99623130 .84064961 .60888161 .9971236					
	12	0.83235321 .60745981 .99604600 .83678621 .60785061 .99623150 .84064961 .60888201 .9964410					
	14	0.83235321 .60745981 .99604590 .83678621 .60785061 .99623150 .84064961 .60888201 .9964350					
	16	0.83235321 .60745981 .99604590 .83678621 .60785061 .99623150 .84064961 .60888201 .9964350					
	20	0.83235321 .60745981 .99604590 .83678621 .60785061 .99623150 .84064961 .60888201 .9964350					
	24	0.83235321 .60745981 .99604590 .83678621 .60785061 .99623150 .84064961 .60888201 .9964350					
	32	0.83235321 .60745981 .99604590 .83678621 .60785061 .99623150 .84064961 .60888201 .9964350					
Analytic M	Method	0.83235321 .60755981 .99604590 .83678621 .60785061 .99623150 .84064961 .60888201 .9964350					
10.0 DTM		1.05033512 .91418264 .30629261 .09393072 .79720914 .30789651 .13504882 .80223534 .9155951					
	6	1.05030182 .78962134 .30629261 .09390722 .79365644 .30789651 .13389802 .80223534 .7360670					
	8	1.05030182 .78897054 .30629261 .09390722 .79364664 .30842531 .13389632 .80230864 .4712353					
	10	1.05030182 .78896944 .30652341 .09390722 .79364664 .30854271 .13389632 .80250574 .3121396					
	12	1.05030182 .78896944 .30655611 .09390722 .79364664 .30854331 .13389632 .80250624 .3105213					
	14	1.05030182 .78896944 .30655661 .09390722 .79364664 .30854331 .13389632 .80250624 .3105081					
	16	1.05030182 .78896944 .30655661 .09390722 .79364664 .30854331 .13389632 .80250624 .3105081					
	20	1.05030182 .78896944 .30655661 .09390722 .79364664 .30854331 .13389632 .80250624 .3105081					
	24	1.05030182 .78896944 .30655661 .09390722 .79364664 .30854331 .13389632 .80250624 .3105081					
	32	1.05030182 .78896944 .30655661 .09390722 .79364664 .30854331 .13389632 .80250624 .3105081					
Analytic		1.05030182 .78896944 .30655661 .0939072 2.79364664.3085433 1.1338963 2.8025062 4.3105081					
		Mode 2nd. Mode 3rd. Mode 1st. Mod	2nd. Mode	rd. Mo	1st. Mode	2nd. Mode	rd. Mode
100.0 DTM		1.22732944 .09089406 .80619341 .65013713 .74476456 .8258172 2.07092433.8066576 9.2046450					
		1.22729313 .67760566 .80619341 .65013533 .73855766 .8258172 2.07064813.8066576 7.7146879					
	81	1.22729313 .67568506 .80619341 .65013533 .73853946 .8265422 2.07064633.8073844 7.0736514					
	10	1.22729313 .67568506 .80678941 .65013533 .73853946 .82676752 .07064633 .80762066 .8497528					
	121.22729313 .67568506 .80693841 .65013533 .73853946 .8267675 2.07064633.8076206 6.8469346						
	M 141.22729313 .67568506 .80693841 .65013533 .73853946 .82676752 .07064633 .80762066 .8469128						
	161.22729313 .67568506 .80693841 .65013533 .73853946 .82676752 .07064633 .80762066 .8469128						
	201.22729313 .67568506 .80693841 .65013533 .73853946 .82676752 .07064633 .80762066 .8469128						
	241.22729313 .67568506 .80693841 .65013533 .73853946 .82676752 .07064633 .80762066 .8469128						
	321.22729313 .67568506 .80693841 .65013533 .73853946 .82676752 .07064633 .80762066 .8469128						
Analytic Method 1.2272931 3.6756850 6.80693841.65013533.7385394 6.8267675 2.07064633.8076206 6.8469128							
41.915679710 .44537858 .69856197 .78639587 .718281279 .33301345 .95960159 .374783410 .9504437							
1000.0 DTM	611.91566244 .70089358 .69856193 .70578247 .72163308 .90517855 .80687749 .888082010 .7705637						
	81.91565674 .69052258 .69856193 .70578817 .72088128 .9078013 5.80345689.106761610.6205893						
	101.91565674 .69046518 .70062243 .70578817 .72088128 .90793915 .80344539 .015104210 .6187871						
	121.91565674 .69046518 .70117333 .70578817 .72088128 .90793915 .80344539 .013749710 .6187642						
	M 141.91565674 .69046518 .70117333 .70578817 .72088128 .90793915 .80344539 .013738210 .6187642						
	161.91565674 .69046518 .70117333 .70578817 .72088128 .90793915 .80344539 .013738210 .6187642						

Table 2(a) Continued
201.91565674 .69046518 .70117333 .70578817 .72088128 .90793915 .80344539 .013738210 .6187642 241.91565674 .69046518 .70117333 .70578817 .72088128 .90793915 .80344539 .013738210 .6187642 321.91565674 .69046518 .70117333 .70578817 .72088128 .90793915 .80344539 .013738210 .6187642

Analytic Method 1.91565674.6904651 8.70117333.70578817.7208812 8.9079391 5.80344539.013738210.6187642
1st. 2 nd. Mode 3rd. Mode 1 st. Mode 2 nd. Mode 3rd. Mode 1 st. Mode 2 nd. Mode 3 rd. Mode
Mode 42.901101916 .431296914 .41021665 .614853021 .264310321 .344052332 .348090720 .944778232 .3480907 $\begin{array}{llllllllllll}6 & 2.8949235 & 7.7384764 & 14.4102166 & 5.3737651 & 13.1418284 & 20.6104681 & 26.2926154 & 20.9447782 & 26.2926154\end{array}$ $82.89490537 .565953814 .4102166 \quad 5.195049213 .154257920 .614052325 .777827920 .944778225 .7778279$ $\begin{array}{lllllllllllll}10 & 2.8949053 & 7.5647363 & 14.4102166 & 5.1949946 & 13.1526769 & 20.6205942 & 12.1243557 & 25.7749931 & 25.6258212\end{array}$ $122.89490537 .564736314 .4158135 \quad 5.194994613 .152676920 .621430112 .120939420 .966747825 .6258212$ 10000.0 DTM $142.89490537 .564736314 .4188482 \quad 5.194994613 .152676920 .621430112 .1209213120 .954245725 .6258212$ $\begin{array}{llllllllllll}16 & 2.8949053 & 7.5647363 & 14.4188663 & 5.1949946 & 13.1526769 & 20.6214301 & 12.1209213 & 20.9541367 & 25.6323630\end{array}$ $202.89490537 .564736314 .4188663 \quad 5.194994613 .152676920 .621430112 .120921320 .954136725 .6333443$ $242.89490537 .564736314 .4188663 \quad 5.194994613 .152676920 .621430112 .120921320 .954136725 .6333443$ $\begin{array}{lllllllllllllll}32 & 2.8949053 & 7.5647363 & 14.4188663 & 5.1949946 & 13.1526769 & 20.6214301 & 12.1209213 & 20.9541367 & 25.6333443\end{array}$
Analytic Method2.8949053 $7.564736314 .4188663 \quad 5.194994613 .152676920 .621430112 .120921320 .954136725 .6333443$ 43.35365658 .782061572 .555905789 .935192817 .575560389 .9351928269 .090258887 .8987627269 .0902588 $\begin{array}{lllllllllll}6 & 3.2930216 & 8.7820615 & 17.1962329 & 18.9567718 & 18.9434379 & 78.6472715 & 48.6279341 & 69.9768817 & 64.4282414\end{array}$ 83.29348148 .796544917 .196232917 .333537917 .918286635 .740227548 .626164262 .946132764 .4282414 103.29348148 .814821617 .22088926 .509660517 .699297033 .691227447 .993639557 .898762764 .4282414 $123.29348148 .814994017 .2221536 \quad 6.504545317 .600963733 .708641947 .712349957 .898762764 .4282414$ 100000.0DTM $143.29348148 .8149940 \quad 17.2196247 \quad 6.504602817 .600733833 .719102218 .814926451 .4524856 \quad 64.7355615$ $163.29348148 .814994017 .21956736 .504602817 .600733833 .719159618 .738083848 .0181358 \quad 64.6437183$ $203.29348148 .8149940 \quad 17.2195673 \quad 6.5046028 \quad 17.600733833 .719159618 .740670147 .932729764 .4914052$ $243.29348148 .8149940 \quad 17.2195673 \quad 6.5046028 \quad 17.600733833 .719159618 .740670147 .932729764 .4544495$ $\begin{array}{lllllllllll}32 & 3.2934814 & 8.8149940 & 17.2195673 & 6.5046028 & 17.6007338 & 33.7191596 & 18.7406701 & 47.9327297 & 64.4544495\end{array}$
Analytic Method 3.2934814 $8.814994017 .2195673 \quad 6.5046028 \quad 17.600733833 .719159618 .740670147 .9327297 \quad 64.4544495$
1 st. Mode 2nd. Mode 3 rd. Mode 1 st. Mode 2 nd. Mode 3 rd. Mode 1 st. Mode $\quad 2$ nd. Mode 3 3rd. Mode
46.941377510 .3859012206 .476999592 .182118436 .1132606138 .8346366640 .8970840122 .1302322640 .8970840 63.69418219 .6303845190 .007717418 .338631732 .3881891123 .161209054 .5790836119 .7395797480 .4233817 83.69418219 .6303845176 .430948415 .835869228 .3785724104 .955038053 .8655401118 .2336341473 .8085225 103.58661469 .714149119 .478885415 .533335420 .414458692 .182118452 .8739926116 .4618584427 .7372689 123.59315599 .714694219 .306012814 .190376420 .414458686 .125997251 .6709441113 .6400273386 .3373903 1000000.0DTM143.59297429.7146942 $19.1871798 \quad 7.495205020 .466179740 .047289350 .8222143101 .0595301210 .1586442$ 163.59297429 .714694219 .18572617 .393997020 .410942340 .214091749 .959856974 .4768997206 .8576651 203.59297429 .714694219 .18572617 .399266420 .412577640 .129963748 .061798466 .8664956206 .6944967 243.59297429 .714694219 .18572617 .399266420 .412577640 .129782024 .188889166 .5990304124 .4770944 $323.59297429 .714694219 .1857261 \quad 7.399266420 .412577640 .129782024 .160543666 .9591636126 .9607782$

[^1]Table 2(b) N_{r} values for the first, second, third modes of the pile and $f=0,75$

Table 2(b) Continued

Table 2(b) Continued
205.035869310 .877404921 .119034810 .004872222 .289558743 .159298452 .549836470 .5055344211 .6593205 $245.035869310 .8774049 \quad 21.119034810 .004872222 .289558743 .159298430 .261913070 .3793392134 .5357504$ 325.035869310 .877404921 .119034810 .004872222 .289558743 .159298430 .219031370 .5837539132 .4034781

Analytic Method 5.035869310 .877404921 .119034810 .004872222 .289558743 .159298430 .219031370 .5837539132 .4034781

Table 3(a) \bar{N} / N_{E} values for the first, second, third modes of the pile and $f=0,25$

α	$L_{2} / L=0.25$			$L_{2} / L=0.5$				$L_{2} / L=0.75$		
	1st.	2nd. Mode	3rd. Mode	1st.	2nd.	3rd. Mode 1st. Mode	2nd.	Mode	3rd. Mode	
	Mode	Mode	3r.							
1	1.1764	4.1947	9.1991	1.1807	4.1953	9.1993	1.1845	4.1962	9.1996	
10	1.1860	4.2005	9.2022	1.2291	4.2051	9.2049	1.2694	4.2134	9.2067	
100	1.2763	4.2533	9.2363	1.6978	4.3172	9.2566	2.1165	4.3870	9.2770	
1000	1.9468	4.9037	9.6329	3.8477	7.8514	9.8166	6.0148	9.8717	10.7165	
10000	2.9366	7.8211	15.20161	5.3207	13.6942	21.4281	12.5312	21.7770	25.9056	
1000000	3.4025	8.9199	17.6560	6.6210	18.0238	35.1280	19.2193	50.2092	66.2099	
10000000	3.7776	9.8800	19.4694	7.5588	20.6413	40.9920	24.700	68.8694	132.7988	

Table 3(b) \bar{N} / N_{E} values for the first, second, third modes of the pile and $f=0,75$

α	$L_{2} / L=0.25$			$L_{2} / L=0.5$			$L_{2} / L=0.75$		
	1st. Mode	2nd. Mode	3rd. Mode	1st. Mode	2nd. Mode	3rd. Mode	1st. Mode	2nd. Mode	3rd. Mode
1	1.5061	4.1149	9.3578	1.5108	4.1152	9.3578	1.6139	4.1170	9.3581
10	1.5481	4.7578	9.8520	1.5939	4.7606	9.8538	1.6296	4.7743	9.8557
100	1.8262	5.1574	10.3934	2.2909	5.1807	10.4079	2.6107	5.3493	10.4370
10000	2.7273	5.6292	10.7900	5.3445	7.8606	10.9185	6.9515	10.5696	11.7634
100000	4.1577	8.7515	16.9215	7.2687	14.8863	22.1259	15.8167	22.2131	25.9347
1000000	4.6899	10.0234	19.4032	9.0119	19.7710	37.7948	24.2770	52.6001	66.2099
10000000	5.2306	11.0424	21.5035	10.1753	22.6764	43.8992	30.8024	72.6471	138.3200

(a)

(b)

Fig. 4 Variation of $N r$ value with relative stiffness for $f=0.25$ (a) the first mode, (b) the second mode, (c) the third mode

(c)

Fig. 4 Continued

Fig. 5 Variation of $N r$ value with relative stiffness for $f=0.75$ (a) the first mode, (b) the second mode, (c) the third mode

Variation of $N_{r}=N / N_{E}$ and α according to $L_{2} / L=0.25, L_{2} / L=0.50, L_{2} / L=0.75, f=0.25, f=0.75$ and series size $n=32$ are shown in Fig. 4(a), (b), (c) and Fig. 5(a), (b), (c) for the pile.
Fig. 4 and Fig. 5 that give the variation between relative stiffness and N_{r} values of the pile partially embedded in the soil indicates that N_{r} values of the pile having relative stiffness between 100 and 1.000.000 increases as L_{2} / L values increase for all modes $f=0.25$ and $f=0.75 . N_{r}$ values of the pile having relative stiffness between 1 and 100 are same for $L_{2} / L=0.25, L_{2} / L=0.50, L_{2} / L=0.75, f=0.25$ and $f=0.75$.

7. Conclusions

The buckling loads for the first three modes of the both ends simply supported and upper end semi-rigid connected pile calculated by using DTM and analytical method according modulus of subgrade reactions and variation of L_{2} / L and f values.

In the analytical method, the boundary conditions of the pile are used for obtaining closed-form solution function of the buckling load and the calculation of following derivates necessary in these boundary conditions become more difficult when the order of derivates increases. However calculation of high-order derivates necessary in the analytical method are calculated easier while the DTM is being applied for critical buckling load of the pile, because Taylor series is used as solution function.

Buckling loads of pile values obtained for the first mode, $L_{2} / L=0.25, L_{2} / L=0.50, L_{2} / L=0.75$, $f=0.25$ and $f=0.75$ and relative stiffness between 1 and 100.000 using DTM for series size $n=6$ and $n>6$ are same. DTM results indicate that Nr values of the first mode are very fast converging for L_{2} / L value and $f=0.25$ and $f=0.75$ values, and that converging speed decrease as the number of modes increase.

It is seen from Table 2(a), (b) that all buckling loads obtained by using analytical method and DTM for $n=32$ overlap. Also, the results of DTM and analytical method for higher modes obtained by author for $n=32$ overlap.

The results in Table 3(a), (b) and Table 2(a), (b) indicate that the buckling loads of the pile are calculated by neglecting the effects of shear deformation are over than the buckling loads of the pile are calculated by taking shear deformations. It is seen form these tables that the shear deformation effect is more important especially in case of short piles.

The results of DTM and analytical method in Table 2(a), (b) indicate that the DTM can be applied for buckling problem of partially embedded and semi-rigid connected piles.

References

Aydoğan, M. (1995), "Stiffness-matrix formulation of beams with shear effect on elastic foundation", J. Struct. Eng., ASCE, 121, 1265-1270.
Banarje, J.R. and Williams, F.W. (1994), "The effect of shear deformation on the critical buckling of columns", J. Sound Vib., 174, 607-616.
Catal, H.H. and Alku, S. (1996a), "Calculation of the second order stiffness matrix of the beam on elastic foundation", Turkish J. Eng. Envir. Sci., TUBITAK, 20, 145-201.
Catal, H.H. and Alku, S. (1996b), "Comparison solutions of the continuoud footing subjected to bending moment, shear and axial force using finite difference equations and matrix-displacement methods", Proc. of 2nd National Computational Mechanic Congress, Trabzon, Turkey.

Catal, H.H. (2002), "Free vibration of partially supported piles with the effects of bending moment, axial and shear force", Eng. Struct., 24, 1615-1622.
Catal, H.H. (2006), "Free vibration of semi-rigid connected and partially embedded piles with the effects of the bending moment, axial and shear forces", Eng. Struct., 28(14), 1911-1918.
Catal, S. and Catal, H.H. (2006), "Buckling analysis of partially embedded pile in elastic soil using differential transform method", Struct. Eng. Mech., 24(2), 247-268.
Catal, S. (2006), "Analysis of free vibration of beam on elastic soil using differential transform method", Struct. Eng. Mech., 24(1), 51-62.
Chen, C.N. (1998), "Solution of beam on elastic foundation by DQEM", J. Eng. Mech., 124, 1381-1384.
Chen, C.K. and Ho, S.H. (1996), "Application of differential transformation to eigenvalue problem", J. Appl. Math. Comput., 79, 173-178.
Chen, Y. (1997), "Assessment on pile effective lengths and their effects on design I and II", Comput. Struct., 62, 265-286.
Heelis, M.E., Pavlovic, M.N. and West, R.P. (1999), "The stability of uniform-friction piles in homogeneous and non-homogeneous elastic foundations", Int. J. Solid. Struct., 36, 3277-3292.
Heelis, M.E., Pavlovic, M.N. and West, R.P. (2004), "The analytical prediction of the buckling loads of fully and partially embedded piles", Geotechnique, 54, 363-373.
Hetenyi, M. (1995), Beams on Elastic Foundations, The University of Michigan Press, Michigan.
Jang, M.J. and Chen, C.L. (1997), "Analysis of response of strongly non-linear damped system using a differential transformation technique", Appl. Math. Comput., 88, 137-151.
Kumar, P.S., Karuppaiah, K.B. and Parameswaran, P. (2007), "Buckling behavior of partially embedded reinforced concrete piles in sands", ARPN J. Eng. Appl. Sci., 2, 22-26.
Li, Q.S. (2001a), "Buckling of multi-step cracked columns with shear deformation", Eng. Struct., 23, 356364.

Li, Q.S. (2001b), "Buckling of multi-step non-uniform beams with elastically restrained boundary conditions", J. Construct. Steel Res., 57, 753-777.
Malik, M. and Dang, H.H. (1998), "Vibration analysis of continuous systems by differential transformation", Appl. Math. Comput., 97, 17-26.
Monforton, G.R. and Wu, T.S. (1963), "Matrix analysis of semi-rigidly connected frames", J. Struct. Div., ASCE, 89(ST6), 13-42.
Pöchl, Th. (1930), Lehrbuch der Technischen Mekanik, Springer, Berlin.
Pusjuso, S. and Thongmoon, M. (2010), "The numerical solutions of differential transform method and the Laplace transform method for a system of differential equations", Nonlin. Anal., Hybr. Syst., 4, 425-431.
Reddy, A.S. and Vasangkar, A.J. (1970), "Buckling of fully and partially embedded piles", J. Soil Mech. Found. Div., 96, 1951-1965.
Ross, S.L. (1984), Differential Equations, Third Edition, John Wiley \& Sons, New York.
Sapountzakis, E.J. and Kampitsis, A.E., (2010), "Nonlinear dynamic analysis of Timoshenko beam-columns partially supported on tensionless Winkler foundation", Comput. Struct., 88, 1206-1219.
Smith, I.M. (1979), "Discrete element analysis of pile instability", Int. J. Numer. Anal. Meth. Geomech., 3, 205-211.
Valsangkar, A.J. and Pradhanang, R.B. (1987), "Vibration of partially supported piles", J. Eng. Mech., 113, 1244-1247.
Vogt, N.,Vogt, S. and Kellner, C. (2009), "Buckling of selender piles in soft soils", Bautechnik, 86, 98-112.
Wang, C.M., Ng, K.H. and Kitipornchai, S. (2002), "Stability criteria for Timoshenko columns with intermediate and end concentrated axial loads", J. Construct. Steel Res., 58, 1177-1193.
West, H.H. and Mafiü, M. (1984), "Eigenvalues for beam-columns on elastic supports", J. Struct. Eng., 110, 1305-1319.
West, R.P., Heelis, M.E., Pavlovic, M.N. and Wylie, G.B. (1997), "Stability of end-bearing piles in a nonhomogeneous elastic foundation", Int. J. Numer. Anal. Meth. Geomech., 21, 845-861.
Yang, J. and Ye, J.Q. (2002), "Dynamic elastic local buckling of piles under impact loads", Struct. Eng. Mech., 13, 543-556.

Yan, W. and Chen, W.Q. (2012), "Dynamic analysis of semi-rigidly connected and partially embedded piles via the method of reverberation-ray matrix", Struct. Eng. Mech., 42, 269-289.
Yesilce, Y. and Catal, H.H. (2008), "Free vibration of semi-rigid connected Reddy-Bickford piles embedded in elastic soil", Sadhana, 33(6), 781-801.
Yesilce, Y. and Catal, H.H. (2006), "Free vibration of piles embedded in soil having different modulus of subgrade reactions", Appl. Math. Model., 32(5), 889-900.
Yesilce, Y. and Catal, H.H. (2011), "Solution of free vibration equations of semi-rigid connected ReddyBickford beams resting on elastic soil using the differential transform method", Arch. Appl. Mech., 81(2), 199-213.
Zhou, J.K. (1986), Differential transformation and its applications for electrical circuits, Huazhong University Press, Wuhan, China.
Zhu, Y., Hu, Y. and Cheng, C. (2011), "Analysis of nonlinear stability and post-buckling for Euler-type beam-column structures", Appl. Math. Mech., 32, 719-728.
Zou, L., Zong, Z., Wang, Z. and Tian, S. (2010), "Differential transform method for solving solitary wave discontinuity", Phys. Lett. A, 374, 3451-3454.

CC

[^0]: *Corresponding author, Assistant Professor, E-mail: seval.catal@deu.edu.tr

[^1]: Analytic Method $3.59297429 .714694219 .1857261 \quad 7.399266420 .412577640 .129782024 .160543666 .9591636126 .9607782$

