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Abstract.  The free vibration of functionally graded material (FGM) beams on an elastic foundation and 
spring supports is investigated. Young's modulus, mass density and width of the beam are assumed to vary in 
thickness and axial directions respectively following the exponential law. The spring supports are also taken 
into account at both ends of the beam. An analytical formulation is suggested to obtain eigen solutions of the 
FGM beams. Numerical analyses, based on finite element method by using a beam finite element developed 
in this study, are performed in order to show the legitimacy of the analytical solutions. Some results for the 
natural frequencies of the FGM beams are given considering the effect of various structural parameters. It is 
also shown that the spring supports show the greatest effect on the natural frequencies of FGM beams. 
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1. Introduction 
 

Many new materials have been developed in recent years, including functionally graded 

materials (FGM). In 1984 the theory of functionally graded materials was firstly introduced in 

Japan during the space plane project. Generally, FGM is a material in which the volume fractions 

of two or more material components are created to vary continuously with position, in particular, 

along the thickness direction.  

The non-uniform cross-section beam is popularly used in various engineering fields. In the 

past, many studies have been performed for the free vibration of the non-uniform beams. The 

problem often leads to the solution of fourth-order partial differential equations; however closed-

form solutions cannot be found for a number of problems, therefore the use of numerical methods 

such as the finite element method (FEM), the finite difference method, etc. has been required. 

Closed-form solutions can be found only for certain special cases, such as those structures with an 

exponentially varying cross-section (Ece et al. 2007, Haasen et al. 2011, Lardner 1968, Suppiger 

and Taleb 1956). By solving the partial differential equations, solutions to free vibration are 

obtained via trigonometric and hyperbolic functions (Ece et al. 2007, Haasen et al. 2011, Suppiger 
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and Taleb 1956), hypergeometric functions (Caruntu 2008, Bessel functions Lardner 1968). These 

are analytical solutions which describe the vibration behavior of the beam under different 

boundary conditions and the determination of the effects of a continuously varying cross-section 

on the natural frequencies and mode shapes. In addition, a closed-form solution of the free 

vibration problem has been found for stepped beams (Gutierrez et al. 1991). Most previous studies 

have used numerical techniques to analyze the vibration of variable cross-section beams. For 

instance, employment of finite element method (Klein 1974, Gupta 1985, Ramalingerswara Rao 

and Ganesan 1995), Galerkin method (Pakar 2012), approximate method (Tong et al. 1995) has 

been reported in the literature. Several studies have been performed considering the effect of 

foundation in vibration problems (Zhou 1993, Lee and Lin 1995, Sen and Huel 1990). 

Furthermore, some authors studied the response of beams subjected to impulsive load 

(Ramalingerswara Rao and Ganesan 1995, Calm 2008), and moving load (Simsek and Cansiz 

2012, Wang 1997, Abu-Hilal and Mohsen 2000).  

In recent years, structures made of functionally graded material have drawn some interests by 

researchers. Haasen et al. (2011) investigated the free vibration of a functionally graded beam with 

exponentially varying cross-section using analytical methods. However, most of the investigations 

on the vibration of functionally graded beams are performed based on the finite element method 

(Alshorbagy et al. 2011, Ying et al. 2008, Chakraborty et al. 2003, Mohanty et al. 2011). Also this 

direction, Mohanty et al. (2012, 2013) have investigated the free vibration of uniform functionally 

graded sandwich beam using FEM based on first order Timoshenko beam theory. Employing other 

schemes, Ke et al. (2010) investigated nonlinear vibration of functionally graded beams, and 

Simsek and Cansiz (2012) studied dynamic responses of an elastically connected double-

functionally graded beam under moving harmonic load at constant speed.  

The foregoing review clearly shows that the majority of works are performed on the analysis of 

free and forced vibrations of beams made of various materials. However, the research works 

concerning the FGM beams on elastic foundations are still limited. In this study, we focus on the 

dynamic behavior of FGM beams on elastic foundation. In particular, additional effects of varying 

sectional properties, elastic end-springs and elastic foundation on the dynamic characteristics of 

FGM beams are explained by using the formulation suggested in this study. 

The paper is outlined as follows: In Section 2, a formulation for the solution of free vibration of 

FGM beams is proposed in the context of analytical methods. Section 3 describes a procedure of 

using the finite element method for the computation of free vibration of FGM beams. In section 4, 

analytical and FEM solutions of natural frequencies are addressed for FGM beams with varying 

cross-sections, which not only rests on an elastic foundation but also with end-spring supports. The 

natural frequencies of FGM beams and their dependence on the through-thickness material and 

geometrical properties are investigated in detail. 

 

 

2. Analytical formulation 
   

2.1 FGM beam model 
 

Let us consider the functionally graded beam in Fig. 1. The parameters of the model FGM 

beam are as follows: L is the length of the beam, h is the thickness of the beam, and b denotes the 

width of the beam. For the material parameter of Young’s modulus E, the mass density ρ of the 

beam and the width of the beam b, the following exponential law is assumed with absolute values  
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Fig. 1 Model of FGM beams 

 

 

for z coordinate, which endows the symmetric characteristic to the beam with respect to mid-plane. 

 0 0 0( ) ( ) (;  ;  )
z z xE z E e z e b x b e

     
                      

(1) 

  In Fig. 1, K1, K2, and Kf denote the stiffness of the rotational spring supports at both ends and the 

elastic foundation. Eo, ρo 
are the values of the Young’s modulus and mass density at the mid-plane 

(z=0) of the beam. The parameter β in the exponent in Eq. (1) characterizes the material property 

variation along the thickness direction. The parameter ψ in Eq. (1), called the non-uniformity 

parameter, characterizes the variation of the width of the beam b(x) along the axis direction. 

 
2.2 Analytical formulation 
  

We will use the assumption of the Euler-Bernoulli beam theory, and the plane of beam is 

symmetric with respect to x-y plane, thus, the mid-plane displacement in the x direction is zero and 

the displacement is obtained by referring to Haasen et al. (2011) as follows 

 

( , , ) ( , )

( , , ) ( , )

w
u x z t u x t z

x

w x z t w x t


 


                             

(2) 

where u(x,t) and w(x,t)

 

are the displacement components in the mid-plane at time t along x and z 

directions, respectively. 

The bending moment M, with the stiffness coefficient of beam D11 and the flexural curvature κ, 

can be determined as the following equations 

     11( )M b x D    (3)
 

     

/ 2
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/ 2
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h

h

E z
D z dz
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
  (4) 

     

2

2

w

x




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The governing motion of equation for the beam can be written as follows 

2 2 2

11 2 2 2
0,f

w w
D b mb bK w

x x t

   
   

   
                      (6) 

which can be rearranged as Eq. (7) 

4 ' 3 '' 2 2

4 3 2 2

( ) ( )
2 0.

( ) ( )

fKw b x w b x w w
w

b x b x mx x x t
  
   

    
   

                 (7) 

Here, m is unit weight of the beam,
/ 2

/2

( )

h

h

m z dz


  , and ν denotes the Poisson’s ratio. The 

parameter ξ is 11D

m
  .  

In case of harmonic vibration, the root of Eq. (7) can be assumed as 

( , ) ( ) ,i tw x t x ew                                
 (8) 

where ω is the natural frequency of the FGM beam. 

For the family of cross-sections with exponentially varying width and constant height, Eq. (7) 

reduces to 

(4) (3) 2 (2) 22 0.w w w w                              (9) 

The solution of Eq. (9) can be obtained as follows 

 2
1 1 2 1 3 2 4 2( ) sin( ) cos( ) sinh( ) cosh( ) ,

x

x e C x C x C x C xw


   


               (10) 

where parameters are 

2
2 2

1 2

4 4
, , = .

2 2

fK

m


   
  




 

                     (11) 

The boundary conditions relative to displacement, bending moment and rotation angle at the 

right and left ends of the beam are as follows: 

At x=0, at any time t 

10
0

(0, ) 0

x
x

w t

w
M K

x






  

                             (12) 

At x=L, at any time t 

2

 ( , ) 0 

x L
x L

w L t

w
M K

x






 

                             (13) 

Substitution of Eq. (10) into Eqs. (8), (12), (13), and then collecting the resulting terms in terms 
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of variables C1, C2, C3, C4, we obtain the following matrix equation 

 

1

21 22 23 24 2

31 32 33 34 3

41 42 43 44 4

0 1 0 1 0

0

0

0

C

A A A A C

A A A A C

A A A A C

     
     
     
     
     

   

                       (14) 

The matrix elements Aij are given in detail in the Appendix. For Eq. (14) to be valid, i.e., to 

have nontrivial solution, the following needs to be satisfied 

  det 0A 
                                  

(15) 

where: 

21 22 23 24

31 32 33 34

41 42 43 44

0 1 0 1

A A A A
A

A A A A

A A A A

 
 
 
 
 
 

 

Solving Eq. (15) by using the trial and error method, we can get μ. By the substitution of μ into Eq. 

(11), we obtain the natural frequency . 

 
 
3. Finite element formulation 
 

In order to validate the analytical formulation and solution in the foregoing section, we also 

derive the finite element specific to the given problem. The transverse displacement function may 

be assumed as a cubic polynomial in x, and the shape functions for the four-degree of freedoms 

beam element are assumed as the Hermite interpolation function (Fig. 2). 

The linearly varying width be 
and mass per unit length me 

of the element are 

2 1
1e

e

b b
b b x

L


                                 (16) 

 

 

 

Fig. 2 Beam finite element 
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2 1
1e e

e

b b
m mb m b x

L

 
   

 
.                         (17) 

The displacement vector of the element, as noted in Fig. 2, is 

   1 2 3 4

T

e
q q q q q                           (18) 

then the displacement field is interpolated as 

                                 e e
w N q                                (19) 

where N 
 

denotes the Hermite shape function vector: 1 2 3 4 .N N N N N  

  In this case, the stiffness of the beam beD11 
is similar to the flexural rigidity EI of the 

homogenous beam, so the strain energy expression Ue 
for bending is given as follows 

2
2

11

2

0
2

eL

e e
e

b D w
U dx

x

 
  

 


                           

(20) 

The kinematic energy Te 
for flexural vibration is  

2

0
2

eL

e e
e

m w
T dx 

                              

(21) 

and the potential energy Tf of the elastic foundation is  

2

0
2

eL

e
fe e f

w
T b K dx  .                            (22) 

Substituting Eq. (19) into Eqs. (20)-(22), the following can be obtained 

   
1

2

T

e ee e
U q K q                        (23) 

   
1

2

T

e ee e
T q M q                             (24)  

   
1

2

T

fe fee e
T q K q .                            (25)  

where 

   

11

0

0

0

e

e

e

L
T

e e

L
T

e e

L
T

fe f e

K b D N N dx

M m b N N dx

K K b N N dx

 










                          

 (26) 
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The potential energy Ts 
due to spring constants is determined as follows 

          

   
2 2

1 21 1 3
,

2 2

N

s

K q K q
T                              (27) 

where q1(1)
 
is the rotation at node one of the first element, q3(N) denotes the rotation at node two of 

the last element.  

The governing differential equations of motion can be derived using Hamilton’s principle 

2

1
1 1 1

0

t N N N

e fe s e

t

U T T T dt
 

    
 
   ,                      (28) 

where N denotes the number of finite elements. 

Therefore substituting Eqs. (23)-(27) into Eq. (28), the following can be obtained: 

0Mw Kw                                   (29) 

where M, K are mass matrix and  stiffness matrix, respectively. The displacement vector w  
can 

be written as following in terms of nodal displacement q 

 

 

 

1

2 ,
...

N

q

q
w

q

 
 
 

  
 
 
                                  

 (30) 

where {q}1, {q}2,…{q}N
 
are the displacement vectors of elements 1,2,…,N. 

  For simple harmonic vibrations, we assume that the displacements vector is the same as Eq. (8). 

Therefore, substituting Eq. (8) into Eq. (29), we can obtain the following 

 
(31) 

where  = f sK KK K   and K , fK and Ks 
are the flexural stiffness matrix, the stiffness matrix of 

elastic foundation, stiffness matrix of spring support, respectively, which are given in detail in the 

Appendix. For Eq. (31) to be valid, i.e., to have nontrivial solution, the following needs to be 

satisfied 

 
(32) 

 
 
4. Numerical example 
 

The geometric dimensions of the example FGM beam are: h=0.1 m, L=1.0 m, and b0=0.1 m. It 

is assumed that the material properties are E0=70 GPa, 0=2,780 kg/m
3
, and =0.33. We also 

assume for the finite element analysis that the FGM beam is divided into several equal-length 

finite elements. E0 denotes the Young’s modulus at the mid-surface of the beam and E1 at the top 

and bottom surfaces. The beam is homogeneously isotropic in the special case of E1/E0=1, i.e.,  

 2 0,K M w 

 2det 0K M 
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Table 1 First three dimensionless natural frequencies of a uniform FGM beam ( 0, 0, 0)
fK KiR R     

E1/E0 Mode number Present Haasen et al. (2011) 

1.0 

1 9.869 9.869 

2 39.478 39.478 

3 88.826 88.826 

 

 

when =0 in Eq. (1). In order to demonstrate the results more intuitively, dimensionless variables 

are defined as follows 

 

(33) 

where
1 2
, ,

fK K KR R R are the coefficients of rotational and foundation spring, respectively, and   is 

a dimensionless natural frequency, where ξ0 
is the value of ξ for the case of isotropic homogenous 

beam (E1/E0). 

  Table 1 provides the first three dimensionless natural frequencies of a uniform FGM beam 

without any spring support when the modulus ratio E1/E0=1.0. The results obtained in this study 

are exactly the same as given by Hassen et al. (2011), showing the adequacy of the proposed 

formulation.  

Table 2 presents the first three dimensionless natural frequencies of FGM beams evaluated 

based on analytical solution. If we use finite element mesh having more than 30 finite elements, 

the FE solution also gives the same results with those of analytical solutions only with ignorable 

amount of errors. The variable parameters in analyses are the non-uniform parameter (ψ), the  

coefficient of foundation ( )
fKR , the coefficients of rotational spring support ( )

iKR
 
and the ratio  

of Young’s modulus (E1/E0). The non-uniform parameter ψ is investigated for five cases of -2, -1, 

0, 1 and 2. For each value of the non-uniform parameter, three different cases of Young's modulus 

ratio, i.e., 0.2, 1.0 and 5.0, are taken into consideration. Here, the stiffness of rotational spring  

support 
2

( )KR is assumed to be 1.0 in all the cases. In the case of the coefficient of foundation 

spring ( )
fKR , three values of 0.0, 1.0 and 10.0 are employed. From Table 2 it is obvious that  

when the non-uniform parameter (ψ) increases from -2 to 2, the natural frequency decreases 

independent of the other parameters. On the contrary, the natural frequency increases as the ratio  

of the coefficients of rotational spring support
 
increases from 

1 2
0.2K KR R to 

1 2
10.0K KR R . 

Figs. 3 and 4 show the natural frequency versus mode number with the ratio of Young's 

modulus (E1/E0) 
of 1 and 5, respectively. Three cases of non-uniform parameter equal to -2, 0 and 

2 are shown. There are six curves in each case with various combinations of coefficient of  

foundation ( )
fKR

 
and the coefficients of rotational spring support 

1 2
( , )K KR R . All the cases show 

that the lowest curves correspond to the cases of 
1 2

0, 0
fK K KR R R   , while the upper most 

curves correspond to the cases of 
1 2

1.0, 1.0
fK K KR R R   . This result can easily be understood  

because the natural frequency is proportional to the stiffness of foundation and the coefficients of 

rotational spring support. 

Fig. 5 shows the relationship between the dimensionless natural frequency ( )i
 
and the 

coefficient of rotational spring support (
iKR ). The coefficient of foundation 

fKR  is equal to 1 for  

1 2

3

1 1 2

2 11 11 11 0

, ,  ,  ,   
f

f

K K K K

K hK K K
R R R

K D D D


 


    
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Table 2 First three dimensionless natural frequencies of non-uniform FGM beams 

ψ E1/E0 
fkR  

1kR =0.2
2kR  

1kR =
2kR  

1kR =10
2kR  

1  2  
3  

1  2  
3  

1  2  
3  

-2 

0.2 

0.0 

1.0 

10.0 

12.584 

28.155 

80.633 

39.541 

46.881 

88.921 

81.860 

85.647 

114.213 

15.453 

29.549 

81.131 

43.306 

50.098 

90.658 

86.207 

89.810 

117.367 

17.506 

30.673 

81.547 

47.685 

53.928 

92.829 

93.094 

96.441 

122.515 

1.0 

0.0 

1.0 

10.0 

15.800 

35.350 

101.240 

49.646 

58.862 

111.646 

102.281 

107.535 

143.401 

19.402 

37.100 

101.865 

54.374 

62.901 

113.827 

108.238 

112.763 

147.362 

21.980 

38.512 

102.387 

59.872 

67.710 

116.553 

116.886 

121.088 

153.825 

5.0 

0.0 

1.0 

10.0 

18.737 

41.921 

120.060 

58.875 

69.804 

132.399 

121.886 

127.525 

170.057 

23.009 

43.997 

120.800 

64.481 

74.593 

134.986 

128.358 

133.724 

174.754 

26.066 

45.670 

121.419 

71.001 

80.296 

138.219 

138.613 

143.596 

182.420 

-1 

0.2 

0.0 

1.0 

10.0 

12.399 

28.072 

80.605 

38.534 

46.035 

88.478 

79.851 

83.728 

112.781 

14.738 

29.182 

80.998 

41.823 

48.821 

89.958 

83.781 

87.486 

115.598 

16.583 

30.156 

81.354 

45.834 

52.299 

91.893 

90.189 

93.640 

120.323 

1.0 

0.0 

1.0 

10.0 

15.567 

35.247 

101.205 

48.383 

57.801 

111.090 

100.258 

105.127 

141.604 

18.504 

36.639 

101.698 

52.511 

61.298 

112.949 

105.193 

109.844 

145.140 

20.822 

37.862 

102.145 

57.549 

65.665 

115.377 

113.238 

117.571 

151.073 

5.0 

0.0 

1.0 

10.0 

18.462 

41.799 

120.017 

57.377 

68.545 

131.740 

118.895 

124.669 

167.927 

21.945 

43.450 

120.602 

62.272 

72.693 

133.944 

124.747 

130.262 

172.120 

24.692 

44.900 

121.132 

68.246 

77.871 

136.824 

134.288 

139.426 

179.155 

0 

0.2 

0.0 

1.0 

10.0 

11.903 

27.857 

80.530 

36.944 

44.713 

87.797 

77.144 

81.151 

110.881 

13.754 

28.697 

80.824 

39.791 

47.092 

89.032 

80.695 

84.534 

113.380 

15.3494 

29.495 

81.111 

43.4147 

50.191 

90.710 

86.6325 

90.219 

117.680 

1.0 

0.0 

1.0 

10.0 

14.945 

34.977 

101.111 

46.386 

56.140 

110.235 

96.859 

101.891 

139.218 

17.269 

36.031 

101.480 

49.960 

59.127 

111.786 

101.318 

106.138 

142.356 

19.272 

37.033 

101.840 

54.510 

63.019 

113.892 

108.773 

113.276 

147.755 

5.0 

0.0 

1.0 

10.0 

17.723 

41.478 

119.906 

55.009 

66.576 

130.726 

114.864 

120.831 

165.097 

20.479 

42.729 

120.344 

59.247 

70.118 

132.565 

120.152 

125.868 

168.819 

22.855 

43.917 

120.771 

64.643 

74.733 

135.063 

128.993 

134.332 

175.221 

1 

0.2 

0.0 

1.0 

10.0 

10.992 

27.480 

80.401 

35.209 

43.290 

87.081 

74.805 

78.931 

109.267 

12.424 

28.084 

80.609 

37.687 

45.329 

88.112 

78.035 

81.999 

111.503 

13.765 

28.702 

80.826 

40.977 

48.099 

89.569 

83.587 

87.299 

115.457 

1.0 

0.0 

1.0 

10.0 

13.802 

34.504 

100.948 

44.207 

54.354 

109.336 

93.922 

99.104 

137.192 

15.600 

35.261 

101.210 

47.319 

56.913 

110.630 

97.978 

102.954 

139.999 

17.283 

36.038 

101.483 

51.450 

60.392 

112.460 

104.949 

109.610 

144.963 

5.0 

0.0 

1.0 

10.0 

16.368 

40.917 

119.713 

52.425 

64.457 

129.660 

111.382 

117.526 

162.694 

18.499 

41.816 

120.023 

56.115 

67.492 

131.195 

116.191 

122.093 

166.023 

20.496 

42.736 

120.347 

61.014 

71.618 

133.364 

124.458 

129.985 

171.910 

2 

0.2 

0.0 

1.0 

10.0 

9.846 

27.042 

80.252 

34.021 

42.329 

86.607 

73.582 

77.773 

108.433 

10.960 

27.468 

80.396 

36.201 

44.101 

87.487 

76.530 

80.568 

110.455 

12.094 

27.939 

80.559 

39.235 

46.624 

88.785 

81.767 

85.559 

114.146 

1.0 

0.0 

1.0 

10.0 

12.362 

33.953 

100.761 

42.715 

53.147 

108.741 

92.387 

97.649 

136.145 

13.761 

34.487 

100.942 

45.453 

55.372 

109.845 

96.089 

101.159 

138.683 

15.185 

35.080 

101.146 

49.263 

58.539 

111.476 

102.664 

107.424 

143.318 

5.0 

0.0 

1.0 

10.0 

14.660 

40.264 

119.491 

50.656 

63.027 

128.955 

109.561 

115.801 

161.453 

16.319 

40.898 

119.706 

53.902 

65.664 

130.264 

113.950 

119.963 

164.463 

18.008 

41.601 

119.948 

58.420 

69.421 

132.198 

121.748 

127.393 

169.959 
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Fig. 3 Dimensionless natural frequencies of FGM beams (E1/E0=1) 

 

  

Fig. 4 Dimensionless natural frequencies of FGM beams (E1/E0=5) 
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Fig. 4 Continued 

 

  
 

 

 

 

Fig. 5 Natural frequencies with 
fKR =1 

 

 

all the cases in Fig. 5. The trend of variation of natural frequencies is observed to be similar to 

each other regardless of the mode number and of the pair of parameters (ψ, E1/E0). It is 

noteworthy, however, that when the coefficient of spring support is in the range of (0.001, 0.1), 

i.e., equivalent to hinge – hinge support, and in the range of (1000, 10000), i.e., equivalent to fixed  
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Fig. 6 Error depending on mesh refinement E1/E0=1, 1

21
 KK RR  

 

 

- fixed support, the natural frequencies are nearly equal to each other for the cases of ψ=0 and 

ψ=2. This indicates that the effect of rotational spring at the support on the natural frequency for 

both beams, having a varying width (ψ=2) and a constant width (ψ=0), is not that prominent 

especially when the stiffness of spring support is extremely high or low. However, when the values 

of coefficient of spring support are in the moderate range of (0.1, 1000), the results are relatively 

sensitive to ψ, i.e., the beam of constant width (ψ=0) shows higher value of natural frequency than 

the beam with varying width (ψ=2). With these results, we can assert that the stiffness for the 

hinge support or fixed support can be conjectured with respect to the stiffness of the FGM beams. 

The discrepancies between analytical and finite element (FE) solutions in the frequencies for 

the first three modes are shown in Figs. 6 and 7 depending on two pairs of parameters

1 21 0( /  and R  R )K KE E  . In all the cases, the differences between those two results in percentile 

tend to zero as the finite element mesh is refined. This means not only that the FE solutions are 

converging to exact solutions but also that the analytical solutions based on the proposed 

formulation is exact. The discrepancies between the analytical solution and the FE analyses with 

coarse mesh seem to be caused by the linear approximation on the geometry of the FGM beams in 

the FE model (see Fig. 2). 

The first three normalized mode shapes of the FGM beam having the same ratio of Young's 
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modulus (E1/E0=2) and the non-uniformity parameter for the width of the beam (ψ=1)
 
are  

presented in Fig. 8 with various values of 
1 2

R , RK K , and R Kf . As noted in the figure, the mode  

shapes are significantly affected by the stiffness of rotational springs at both ends. Furthermore, 

 

 

  
 

 

Fig. 7 Error depending on mesh refinement E1/E0=5, 1
21
 KK RR  

 

  

Fig. 8 Normalized mode shapes of the FGM beam when E1/E0=2, ψ=1 
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Fig. 8 Continued 

 

 

due to the non-uniformity parameter ψ, the mode shapes are not symmetric (or anti-symmetric) 

with respect to the center point of the beam even in the case when 
21 KK RR  .

 
 

 

5. Conclusions 
 

In this paper, an analytical solution for the evaluation of natural frequencies of functionally 

graded material (FGM) beams resting on an elastic foundation and rotational springs, at both ends 

of the beams, is suggested. The Euler-Bernoulli beam theory and the Winkler elastic foundation 

hypothesis are employed in modeling the FGM beam. In order to verify the adequacy of the 

proposed analytical scheme, a formulation for finite beam element analyses employing both the 

Hermite interpolation functions and Hamilton’s principle is also presented. The results of finite 

element analysis converge to the analytical solutions suggested in this study as the mesh is refined. 

This fact shows not only the adequacy of the proposed analytical scheme but also the efficacy of 

the proposed analytical scheme since we need many finite elements for convergence due to non-

uniformity of the beam under consideration. 

The rotational springs at both ends, representing the practical boundary conditions depending 

on the values of the spring stiffness, cause a variety of behaviors. In particular, the frequencies of 

the FGM beam are observed virtually not to be affected by the non-uniformity parameter when the 

stiffness of end spring is extremely low or high. As to the mode shapes of the FGM beam, we 

observed that they are affected significantly by not only the non-uniformity parameter but the 

rotational-springs at both ends as well.  
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Appendix 
 

Herimite shape functions of beam finite element: 

2 2 3 2 2 3

1 2 3 42 2 3 2 2 3
1 2 ;  1 3 2 ;  ;  3 2

x x x x x x x x
N x N N x N

L L L L L L L L

   
             

   
 

The term Aij
 
of matrix A in Eq. (14) 

       
1 1 1 1

- - - -
2 2 2 2

1 1 1 1

2 2
2 21 1

31 1 1 11 1 1

21 22 23 24
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 
   

 
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   

         

         

2
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2
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
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

         

         
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22 2 2 2
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Element flexural stiffness matrix in Eq. (26) 

       

     

   
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Element mass matrix in Eq. (26) 

       
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Element stiffness matrix of elastic foundation in Eq. (26) 
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