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Abstract.  There have been many packages that can be employed to analyze plane frames. However, 
because most structural analysis packages suffer from closeness of system, it is very difficult to integrate it 
with an optimization package. To overcome the difficulty, we proposed a possible alternative, DAMDO, 
which integrate Design, Analysis, Modeling, Definition, and Optimization phases into an integrative 
environment. The DAMDO methodology employs neural networks to integrate structural analysis package 
and optimization package so as not to need directly to integrate these two packages. The key problem of the 
DAMDO approach is how to generate a set of reasonable random designs in the first phase. According to the 
characteristics of optimized plane frames, we proposed the ratio variable approach to generate them. The 
empirical results show that the ratio variable approach can greatly improve the accuracy of the neural 
networks, and the plane frame optimization problems can be solved by the DAMDO methodology. 
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1. Introduction 
 

The purpose of the applications of optimization theory on structural design is mostly to reduce 

the consumption of engineering materials so as to reduce project cost (Möller et al. 2009, Yeh 

1999). One common difficulty of structural optimization design is the huge amount of structural 

analysis required in the optimization process. Many methodologies have been proposed to reduce 

the computational burden of the structural analysis. Some of them employed the design conditions 

as the input variables, and the optimal designs solved by other structural optimization packages as 

the output variables (Yeh and Chen 2012, Gholizadeh et al. 2012, Meon et al. 2012). The essential 

difficulty of the approach is that it must have a traditional structural optimization package to 

produce the optimal designs to collect the required data sets, which may be impractical in the real 

world.   

On the other hand, some of them employed advanced hybrid techniques to solve structural 

optimization design with the two-phase methodology (Kodiyalam and Gurumoorthy 1997, 

Papadrakakis et al. 1998, Iranmanesh and Kaveh 1999, Perera et al. 2010, Lagaros et al. 2005, 
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Cheng and Li 2009, Patel and Choi 2012, Gholizadeh and Salajegheh 2009, 2010a, b, Gholizadeh 

and Samavati 2011). In the first phase, they employed some advanced techniques, such as neural 

networks, fuzzy systems, and wavelet transforms, to create some predictive models of response 

variables of structures to be as an alternative for structural analysis package to reduce the 

computational burden of the structural analysis. In the second phase, they employed some 

advanced techniques, such as evolutionary algorithms and particle swarm optimization, to solve 

the optimization problem. However, they are such ad hoc approaches that they are not easy to 

understand. 

Another common difficulty of structural optimization design is the software integration 

problem. Since structural analysis is the only function considered in the development of most of 

structural analysis software, they lack the structural optimization design function. Therefore, to 

solve structural optimization problems, it is necessary to combine a structural analysis software 

and an optimization software into an integrative system. Since most structural analysis packages 

suffer from closeness of system, it is very difficult to combine it with the optimization software. 

To overcome these two difficulties, we proposed a possible alternative, DAMDO, which 

combines Design, Analysis, Modeling, Definition, and Optimization phases into an integrative 

environment. The key concept of DANDO is, through the Design, Analysis, and Modeling phases, 

to create some neural network models of response variables of structures to be as an alternative for 

structural analysis package (Fig. 1). Because these models are a set of regular functions, it is easy 

to define the users’ specific optimization problems in Definition phase, and then the optimization 

problems can be solved with an optimization package in Optimization phase. 

In this approach, since the structural analysis package is employed in the Step 2 (Analysis), and 

the optimization package is run in the Step 5 (Optimization), it is not necessary to directly 

 

 

 
 

Fig. 1 Concept of direct integration and indirectly integration (DAMDO) of the structural analysis 

package and the optimization package 
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Optimal design of plane frame structures using artificial neural networks and ratio variables 

combine the structural analysis package with the optimization package into an integrative system. 

Therefore, this approach is promising in many engineering optimization domains which need to 

combine an analysis package and an optimization one to obtain the optimum solutions. 

To assess the feasibility of the approach, the plane frame structure optimization design was 

employed. The key problem of the DAMDO approach is how to generate a set of reasonable 

random designs in the first phase (Design Phase). According to the characteristics of optimized 

plane frames, we proposed the ratio variable approach to generate a set of reasonable random 

designs in the first phase. In this approach, instead of directly using the width and depth of beam 

and column as the design variables, we used four types of ratio variables as the design variables.  

The paper is set up as follows: Section 2 presents the DAMDO methodology. Section 3 

presents the ratio variable approach. Then, we examined three case studies of plane frame 

structures to validate the methodology in Section 4. Finally, we conclude in Section 5. 

 

 

2. Methodology of DAMDO 
 
2.1 The DAMDO approach 
 

This study proposed an alternative, DAMDO, which combine Design, Analysis, Modeling, 

Definition, and Optimization phases into an integrative environment as follows. Its architecture is 

shown in Figs. 2-4.  

(1) Design: first randomly generate many possible structural design alternatives. Each design 

alternative consists of many design variables X. For example, a structural design alternative 

consists of a set of width and depth of cross-section of member. 

(2) Analysis: employ the structural analysis software to analyze all structural design 

alternatives to obtain their internal forces and displacements. They are the response variables Y. 

(3) Modeling: employ artificial neural networks to build model Y=f(X) to obtain the relationship 

functions between the design variables X and the response variables Y. 

 

 

 
Fig. 2 Concepts of design and analysis phase 
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Fig. 3 Concept of modeling phase 

 

 

Fig. 4 Concepts of definition and optimization phase 

 

 

(4) Definition: employ the design variables X and the response variables Y to define the 

objective function and constraint functions. 

(5) Optimization: employ the optimization software to solve the optimization problem 

consisting of the objective function and the constraint functions to produce the optimum design 

variables X*. 
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Optimal design of plane frame structures using artificial neural networks and ratio variables 

2.2 Artificial neural networks 
 

The above phase 1 to 3 in section 2.1 is to create some predictive models of response variables 

to be as an alternative for structural analysis package. Because these models are a set of regular 

functions, it is easy to define the user’s specific optimization problem in phase 4 with these 

predictive models, and then the optimization problem can be solved with optimization package in 

phase 5. 

The reason that artificial neural network is employed instead of the traditional regression 

analysis in phase 3 is in structures the relations between internal forces and displacements and 

sizes of cross-section of members are often nonlinear. The greatest advantage of artificial neural 

networks is their native nonlinear system characteristic, which make them be able to build very 

accurate nonlinear predictive models (Haykin 2007). 

The multi-layered perception (MLP) may be the most popular neural network paradigm 

(Haykin 2007). In this study, we employed the MLP to train the predictive systems of response 

variables of structures. Training means to feed the network with the training data, and to have it 

modify its weights, such that it can more correctly reproduce the response variables in the next 

iteration. The classical back-propagation general delta rule (Haykin 2007) was employed as the 

training rule. 

In training the MLP neural networks, the following parameters were used: learning cycle = 

20000 times; the range of initial weights = 0.3, learning rate = 1.0, learning rate reduction factor = 

0.95, learning rate lower limit = 0.1, momentum factor = 0.5, momentum factor reduction factor = 

0.95 and momentum factor lower limit = 0.1. 

 

2.3 The optimization and genetic algorithms 
 

In dealing with a constrained optimization problem, DAMDO adopt the exterior penalty 

function method to convert the constrained optimization problem into an unconstrained 

optimization problem. The principle of the method is adding the penalty function into to the 

objective function when some constraint functions are violated. The algorithm is as follows: 

(1) Convert the constrained optimization problem into an unconstrained optimization problem: 

Maximize the objective function 

     φ( ) = F( ) - κP( )x x x  
(1) 

Minimize the objective function: 

     φ( ) = F( ) + κP( )x x x  
(2) 

Where,  is the penalty factor; P(x) is the penalty function 

     



s

j

j xgMaxxP
1

2)))(,0(()(  (3) 

Where, gj(x) is a constraint function.  

(2) Solve the unconstrained optimization problem by unconstrained optimization techniques.  

(3) Increase the penalty factor by 

    κ=c∙κ (4) 

Where, c is the amplification factor, and c>1.  
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(4) Repeat step (2) ~ (3) until convergence is reached. 

Detailed algorithm of the exterior penalty function method can be found in the literature 

(Nocedal and Wright 1999). 

 

 

3. Ratio variable for optimal design of frame structures 
 

Although artificial neural networks can build rather accurate nonlinear predictive models, the 

smaller the dependent variable space that need predicting, the higher the predictive accuracy that 

can be achieved. However, the dependent variable space must involve the optimal solution. 

Therefore, the key problem of the DAMDO approach is how to generate a set of reasonable 

random designs in the first phase (Design Phase). These designs must be able to form a compact 

space but the space must still involve the optimal design. 

In most optimized frame structures, there are some characteristics as follows. 

(1) There is a reasonable range of ratio of the moment of inertia of column of the upper floor to 

that of the lower floor. 

(2) There is a reasonable range of ratio of the moment of inertia of column to that of beam at 

the same floor. 

(3) There is a reasonable range of ratio of the depth of column to the width of column at the 

same floor. 

(4) There is a reasonable range of ratio of the depth of beam to the width of beam at the same 

floor. 

According to these characteristics of optimized frame structures, we proposed a ratio variable 

approach to generate a set of reasonable random designs in the first phase. In this approach, 

instead of directly using the width and depth of beam and column as the design variables, we used 

the following ratios as the design variables. 

(1) The ratio of the moment of inertia of column of the upper floor to that of the lower floor, 

ICi+1/ICi. 

(2) The ratio of the moment of inertia of column to that of beam at the same floor, ICi/IBi. 

(3) The ratio of the depth of beam to the width of beam at the same floor, hi/bi. 

(4) The ratio of the depth of column to the width of column at the same floor, di/wi.  

For example, if each floor of the three-span six-floor plane frame shown in Fig. 5 has its own 

design of size of beam and column, then there are 23 ratio variables as follows. 

(1) The ratios of the moment of inertia of column of the upper floor to that of the lower floor, 

IC2/IC1, IC3/IC2, IC4/IC3, IC5/IC4, IC6/IC5.  

(2) The ratios of the moment of inertia of column to that of beam at the same floor, IC1/IB1, 

IC2/IB2, IC3/IB3, IC4/IB4, IC5/IB5, IC6/IB6. 

(3) The ratios of the depth of beam to the width of beam at the same floor, h1/b1, h2/b2, h3/b3, 

h4/b4, h5/b5, h6/b6.  

(4) The ratios of the depth of column to the width of column at the same floor, d1/w1, d2/w2, 

d3/w3, d4/w4, d5/w5, d6/w6. 

Therefore, there are 5+6+6+6=23 ratio variables. We only need one non-ratio variable, the 

width of the column of the first floor, w1, to present a design alternative. In other words, we can 

obtain all the width and depth of beam and column of each floor by these 23 ratio variables and 

one non-ratio variable, the width of the column of the first floor. 

Through the ratio variable approach, it becomes easier to generate a set of reasonable random 
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designs in the first phase of DAMDO. 

 
 
4. Numerical examples 
 

4.1 Method 
 

To validate that the DAMDO approach can solve the optimization of plane frame structures, a 

three-span six-floor plane frame shown in Fig. 5 was examined. The static load is 3.5 ton/m, live 

load is 0.9 ton/m, and the seismic force of each floor is shown in Table 1. To simplify the 

structural analysis, the change of size of beams and columns does not affect the dead load and 

seismic load. The combinations of the loads are shown in Table 2. In addition, the material of the 

frame is assumed as a uniform material whose allowable tensile stress and compressive stress are 

the same. 

• Design variables 

The design variables are the ratio variables shown in Section 3 and the width of the column of 

the first floor. Objective function 

• Objective function 

The objective function is the total material volume of all beams and columns. 

• Constraint functions 

(1) Stress constraints 

The tensile stress and compressive stress in the sections of beam and column must smaller than 

the allowable stress of 280kg/cm
2
.  

(2) Displacement constraints 

The inter-story drift ratio must be smaller than 0.5%. 

(3) Initial design 

The initial design is shown in Table 3. The design was analyzed with the ETABS structural 

analysis package to obtain the internal forces of all beams and columns and the inter-story drift 

ratios of all floors. The results are shown in Table 4. Because the maximum stress of beam and the 

maximum stress of column are smaller than the allowable stress, and the maximum inter-story 

drift ratio is smaller than the allowable upper limit, the initial design is a feasible design. 

There are three case studies in this section. 

Case1: All floors have the same size design. That is, the 1~6 floors have the same size design. That 

is, the 1~6 floors have the same size design. 

Case2: Each three floors have the same size design. That is, the 1~3 floors have the same size  

 

 
Table 1 Seismic force of each floor 

Floor Seismic force (ton) 

Floor 6 65.66 

Floor 5 44.93 

Floor 4 36.37 

Floor 3 27.82 

Floor 2 19.26 

Floor 1 10.7 
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Table 2 Combinations of loads 

 Dead load Live load Seismic force 

COMBO1 1.4 0.0 0.0 

COMBO2 1.2 0.5 0.0 

COMBO3 1.2 0.5 1 

COMBO4 1.2 0.5 -1 

 
Table 3 Initial design of the plane frame 

Floor 
Beam Column 

b (cm) h (cm) w (cm) 

1~6 F 45 75.3 85 

 

 

Fig. 5 Three-span six-floor plane frame 

 
Table 4 Performance of the Initial design 

Performance of the design Value 

Maximum stress in beams (kg/cm2) Y1 280.0 

Maximum stress in columns (kg/cm2) Y2 254.6 

maximum inter-story drift ratio Y3 0.00426 

Total material volume (m
3
) (objective function) 119.90 

 

 

design and the 4~6 floors have the same size design. 

Case3: Each floor has its own size design. 
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Table 5 Range of design variables of the frame of Case 1 

Design variables Range 

The ratio of the moment of inertia of column to that of beam, IC/IB 2.0~5.0 

The width of the column of the first floor (cm) 50~100 

 
 

4.2 Case 1: all floors have the same size design. 
 

In this case study, all beams (or columns) of all floors have the same size. Furthermore 

(1) The ratio of the moment of inertia of column of the upper floor to that of the lower floor 

was fixed at 1.0. 

(2) The ratio between the depth of beam and the width of beam was fixed at 2.0. 

(3) The ratio between the depth of column and the width of column was fixed at 1.0. 

Therefore, there are only two design variables and their ranges are shown in Table 5. 

The optimal design procedure used in this case study is summarized as follows. 

Step 1: Design 

To collect data to build predictive model, 50 designs were randomly generated in the ranges of 

design variables. 

Step 2: Analysis 

Each design was analyzed by the ETABS structural analysis package to obtain the internal 

force of each member and inter-story drift ratio of each floor. 

Step 3: Modeling 

The 50 data composed of design variables and internal force of each member and inter-story 

drift ratio of each floor were be employed as the training data of the artificial neural networks to 

build predictive models which can mimic the function of the structural analysis package. Although 

there are many beams and columns in a frame structure, if the maximum value of stress of beams 

(or columns) is smaller than the allowable stress, then all the stress constraints of beam (or 

column) were satisfied. Similarly, if the maximum value of the inter-story drift ratio is smaller 

than the allowable ratio, then all the displacement constraints were satisfied. Therefore, there are 

only three output variables representing the maximum value of the stress of beam (Y1) and column 

(Y2) and the maximum value of the inter-story drift ratio (Y3) as follows. 

     
b
i

i
MaxY 1  (5) 

     
c
i

i
MaxY 2  (6) 

     i
i

MaxY 3  (7) 

Where, b
i  is the stress of the i-th beam; c

i is the stress of the i-th colum; and δi is the inter-

story drift ratio of the i-th floor. 

To overcome the over-learning trap, cross-validation methodology was adopted. A ten-fold 

cross validation was employed to evaluate the performance of neural networks. That is, all the data 

were randomly divided into ten sets. The neural network was trained ten times, and each time a set 

was held out as the testing data while the remaining nine sets were used as the training data. The 

integrative performance of the test data of the ten time was used to assess the accuracy of network 
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models. The root mean squared errors (RMSE) and coefficients of determination are employed to 

measure the accuracy of neural networks. The initial training cycles are set as 20000 cycles. After 

running the 20000 cycles, the optimum cycle with the minimum root mean squared error of test 

data can be determined. Then, the neural network would be re-trained by the optimum cycle to 

avoid the over-fitting trap. 

If all the coefficients of determination of output variable are above 0.9, then go to the next step 

4; otherwise, go to step 1 to randomly generate 50 designs to improve the accuracy of the 

predictive models. The reason why we employ the root mean squared error to stop the training, but 

we employ the coefficients of determination to stop increasing more designs to improve the 

accuracy of the predictive models is that there are many output units presented various response 

variables of structures on the output layer of the neural networks. Hence, because each response 

variables has its own scale, it is difficult to determine a unified threshold of RMSE to judge 

whether the accuracy of an output unit is adequate. While it is easy to determine a threshold of 

coefficients of determination, for example 0.9, to judge it. 

Step 4: Definition 

We can employ the design variables X and the response variables Y to define the objective 

function and constraint functions of the frame as follows. 

     


n

i

iiLA
1

 Min  (8) 

Subjected to 

2801  b
i

i
MaxY                              (9) 

2802  c
i

i
MaxY                             (10) 

005.03  i
i

MaxY                            (11) 

Where, Ai is the sectional area of i-th member; Li is the length of i-th member.  

Step 5: Optimization 

We can employ the optimization software to solve the optimization problem consisting of the 

objective function and the constraint functions to produce the optimum design variables X*. 

Step 6: Validation 

The optimum design was analyzed by the ETABS structural analysis package to obtain the 

exact internal force of all members, and exact inter-story drift ratio of all floors. If all the design 

constraints are satisfied, then output the optimum design; otherwise, randomly generated 50 

designs of frame which are close to the current optimal design, and go to step 2. 

The coefficients of determination of train data and test data in the cross-validation evaluation 

process are in the range of 0.994~0.999 and 0.993~0.998, respectively, which validate that not 

only the model is accurate in train data but also in test data. The convergence histories of RMS 

error of train data and test data are shown in Fig. 6, and present that there are no over-learning 

during the 20000 learning cycles, and the convergence histories of RMS error of train data and test 

data almost overlap each other. Table 6 shows the optimum design obtained by the neural network. 

Table 7 shows the performance of the optimal design, which validate the design satisfy the stress 

constraints and displacement constraints. 
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Fig. 6 The convergence histories of RMS error of train data and test data of Case 1 

 
Table 6 Optimal design of Case 1 

Floor 
Beam Column 

b (cm) h (cm) b (cm) 

1~6 F 40.6 81.2 1~6 F 

 
Table 7 Performance of the optimal design of Case 1 

Performance of the design Value 

Maximum stress in beams (kg/cm
2
) Y1 264.6 

Maximum stress in columns (kg/cm
2
) Y2 245.5 

maximum inter-story drift ratio Y3 0.00381 

Total material volume (m
3
) (objective function) 119.49 

 
Table 8 Range of design variables of the frame of Case 2 

Design variables Range 

The ratio of the moment of inertia of column to that of beam at 1~3 F 2.0~5.0 

The ratio of the moment of inertia of column to that of beam at 4~6 F 2.0~5.0 

The width of the column of the first floor (cm) 50~100 

 
 

4.3 Case 2: each three floors have the same size design 
 

In this case study, each three floors have beams and columns with the same size. Furthermore 

(1) The ratios of the moment of inertia of column of the upper floor to that of the lower floor 

were fixed at 1.0. 

(2) The ratios of the depth of beam to the width of beam were fixed at 2.0. 

(3) The ratios of the depth of column to the width of column were fixed at 1.0. 

Therefore, there are only three design variables and their ranges are shown in Table 8. 

The optimal design procedure used in this case study is similar to that in Case 1. The 

coefficients of determination of train data and test data in the cross-validation evaluation process 

are in the range of 0.991~0.997 and 0.963~0.987, respectively, which validate that not only the 

model is accurate in train data but also in test data. The convergence histories of RMS error of  
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Fig. 7 The convergence histories of RMS error of train data and test data of Case 2 

 
Table 9 Optimal design of Case 2 

Floor 
Beam Column 

b (cm) h (cm) b (cm) 

4~6 F 40.6 81.2 85 

1~3 F 41 82 85 

 
Table 10 Performance of the optimal design of Case 2 

Performance of the design Value 

Maximum stress in beams (kg/cm2) Y1 273.2 

Maximum stress in columns (kg/cm2) Y2 247.1 

maximum inter-story drift ratio Y3 0.00395 

Total material volume (m
3
) (objective function) 115.01 

 
Table 11 Range of design variables of frame of Case 3 

Design variables Range 

The ratios of the moment of inertia of column of the upper floor to that of the lower floor, 

IC2/IC1, IC3/IC2, IC4/IC3, IC5/IC4, IC6/IC5. 
0.3~1.1 

The ratios of the moment of inertia of column to that of beam at the same floor, 

IC1/IB1, IC2/IB2, IC3/IB3, IC4/IB4, IC5/IB5, IC6/IB6. 
0.5~5.0 

The ratios between the depth of beam and the width of beam, 

h1/b1, h2/b2, h3/b3, h4/b4, h5/b5, h6/b6 
1.25~2.5 

The width of the column of the first floor (cm) 50~100 

 

 

train data and test data are shown in Fig. 7, and present that the over-learning happened on about 

8000 learning cycles. Table 9 shows the optimum design obtained by the neural network. Table 10 

shows the performance of the optimal design, which validate the design satisfy the stress 

constraints and displacement constraints. 

 

4.4 Case 3: each floor has its own size design 
 

In this case study, each floor has its own size of beams and columns. Furthermore, the ratios  
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Fig. 8 The convergence histories of RMS error of train data and test data of Case 3 

 
Table 12 Optimal design of Case 3 

Floor 
Ratio design variables Beam Column 

ICi+1/ICi ICi/IBi hi/bi b (cm) h (cm) w (cm) 

6F 0.48 0.96 2.00 30 60 50 

5F 0.73 1.46 1.46 41 60 60 

4F 0.66 0.90 1.69 45 76 65 

3F 1.06 1.47 1.64 45 74 72 

2F 0.39 1.10 1.78 45 80 71 

1F ─ 3.46 1.67 45 75 90 

 

 

between the depth of column and the width of column were fixed at 1.0. Therefore, there are only 

18 design variables and their ranges are shown in Table 11. 

The optimal design procedure used in this case study is similar to that in Case 1. The 

coefficients of determination of train data and test data in the cross-validation evaluation process 

are in the range of 0.984~0.998 and 0.809~0.994, respectively, which validate that not only the 

model is accurate in train data but also in test data. The convergence histories of RMS error of 

train data and test data are shown in Fig. 8, and present that the over-learning happened on about 

12000 learning cycles. Table 12 and Fig. 6 show the optimum design obtained by the neural 

network. Table 13 shows the performance of the optimal design, which validate the design satisfy 

the stress constraints and displacement constraints. 

To validate the ratio variable approach can improve the accuracy of neural networks, we also 

employed the depth of beam (or column) and the width of beam (or column) as the design 

variables. The range of the depth and width of beam is 50~100 cm and 25~50 cm, respectively. 

The range of the width of column is 50~100 cm. We randomly generated 50 designs and built the 

neural networks. The coefficients of determination of train data in the cross-validation evaluation 

process are in the range of 0.8~0.9 and those of test data are in the range of 0.4~0.6, which validate 

that the accuracy of the predictive model is good in the train data, but rather poor in the test data. 

The comparisons proved that the ratio variable approach can greatly improve the accuracy of 

neural networks. 
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Fig. 9 Optimal design of Case 3 (the width of the column and beam in the diagram is based on the 

relative magnitude of the moment of inertia) 

 
Table 13 Performance of the optimal design of Case 3 

Performance of the design Value 

Maximum stress in beams (kg/cm
2
) Y1 280.0 

Maximum stress in columns (kg/cm
2
) Y2 224.0 

maximum inter-story drift ratio Y3 0.00489 

Total material volume (m
3
) (objective function) 92.83 

 

 
5. Conclusions 

 

To solve structural optimization problems, it is necessary to combine a structural analysis 

package and an optimization package. Since most structural analysis packages suffer from 

closeness of system, it is very difficult to combine it with an optimization package. To overcome 

the difficulty, we proposed a feasible alternative approach, DAMDO, which combines Design, 

Analysis, Modeling, Definition, and Optimization phases into an integrative environment. 

Optimization of three cases of plane frame structures was used to validate the DAMDO approach. 

According to the results of these case studies, we can conclude 

1. It is feasible to replace the traditional approach, which must directly integrate a structural 

analysis package and an optimization package, with the DAMDO approach, which employs neural 

networks to integrate the two packages so as not to need directly to integrate them. 

2. The ratio variable approach can greatly improve the accuracy of neural networks. 

The most important advantage of the DAMDO methodology is that it is promising in many 

engineering optimization domains where it is very difficult to directly combine the structural 

analysis package with the optimization package to obtain the optimum solutions. 

The most important disadvantage of the methodology is that when there are huge amount 

design variables in an engineering optimization application, it is still difficult to create accurate 
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neural network models of response variables of structures to be as an alternative for structural 

analysis package. Fortunately, subjected to the practical considerations of construction, there are 

only a reasonable amount design variables in most civil engineering optimization applications. 

Therefore, the shortcoming may be not a serious obstacle to employ the methodology in most real 

applications. 
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