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Abstract.  Shell foundations have been employed as an alternative for the conventional flat shallow 

foundations and have proven to provide economical advantage. They have shown considerably improved 

performance in terms of ultimate capacity and settlement characteristics. However, despite conical shell 

foundations are frequently used in industry, the theoretical solutions for bearing capacity of these footings 

are available for only triangular shell strip foundations. The benefits in design aspects can be achieved 

through theoretical solutions considering shell geometry. The engineering behavior of a conical shell 

foundation on mixed soils was investigated experimentally and theoretically in this study. The failure 

mechanism was obtained by conducting laboratory model tests. Based on that, the theoretical solution of 

bearing capacity was developed and validated with experimental results, in terms of the internal angle of the 

cone. In comparison to the circular flat foundation, the results show 15% increase of ultimate load and 51% 

decrease of settlement at an angle of intersection of 120°. Based on the results, the design chart of modified 

bearing capacity coefficients for conical shell foundation is proposed. 
 

Keywords:   shell foundation; ultimate bearing capacity; theoretical solution 

 
 
1. Introduction 
 

The use of shell structures in foundation engineering has drawn some interest, the reason being 

that shell foundations provide a higher bearing capacity, produce less settlement and are 

economical when compared to the conventional flat ones. Several studies have been performed 

together with experimental research for shell foundations with various geometries such as conical, 

hyper, concave and convex shells and cylindrical, triangular, folded plates (Kurian 2006, Szechy 

1965, Nicholls and Izadi 1968, Kurian and Jeyachandran 1972, Agarwal and Gupta 1983). 

Numerical simulation have also been carried out to investigate various effects of involved 

parameters such as shell geometry, soil types, depth of embedment and material properties of soils 

(Jain et al. 1977, Hanna and Abdel-Rahman 1994, Kurian et al. 2001). 

All the results indicate the general superiority of shell foundations, with respect to flat shallow 

foundations, based on the diverse interactions between soil and footings owing to their geometries.  
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(a) rupture surface test (half section) (b) load-settlement test (full section) 

Fig. 1 Experimental set up 

 

 

Since Terzaghi (1943) proposed a well-conceived theory for determination of ultimate bearing 

capacity of shallow rough rigid foundation, many modifications and improvements have been 

made. To evaluate bearing capacity of shell foundations the classical bearing capacity solution for 

flat shallow foundations was extended, particularly for the triangular strip foundation (Hanna and 

Abdel-Rahman 1990). Theoretical solution, however, should account for more various geometries 

of shell to appreciate the functional benefit in the design.  

 

 

2. Rupture surface from physical model tests 
 

In developing the theoretical formation in this study, the kinematic approach of limit analysis 

for a rough foundation was used to obtain solution to the bearing capacity. The main difficulty in 

this approach is related to the complexity of the mechanisms that can describe the process of 

failure reasonably well. Therefore the failure mechanism was experimentally investigated by 

model laboratory tests so that the upper bound solutions of the analysis can be applied based on 

the measured rupture surfaces. As the failure modes were obtained from physical model tests, it is 

assumed that the failure mechanism is exact. Thus the lower bound solution is not considered in 

this study. Tests were performed in two ways: first, tests for obtaining failure mode for half 

foundation section, and second, tests for obtaining load-settlement curves for full foundation 

section as shown in Fig. 1. 

In order to catch a real rupture surface, an experimental setup was organized to perform a 

testing program as shown in Fig. 1(a). A testing tank was made of acrylic panels and rigid steel 

frame, and its inner dimensions were 700×700×500 mm for length, width and depth, respectively. 

Size of the tank was large enough to prevent boundary effects.  

A half section of the acrylic tank was addressed in order to capture rupture surface of the soil in 

the vicinity of the footing. To prevent buckling or deformation during loading in the half section 

the loading cylinder was fixed to the wall (see Fig. 1(a)). Transparent and frictionless sheets with 

negligible stiffness were installed between the face of the soil tank and the soil mass.  

The soil used in the present experimental investigation was a mixture of high silica sand and 

Kaolinite. Practically, sand is assumed as cohesionless and clay as frictionless. However, natural 

in-situ soils where shallow foundations are constructed, tend to have both characteristics. 
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Therefore, 90 % silica sand and 10 % Kaolinite were mixed and used to reflect an intermediate soil 

material. Particle size distribution and direct shear box tests were performed. Fig. 2 shows the 

particle size distribution of the tested sand and compares it with that of 100 % high silica sand. It 

indicates that because fine particles are added, the cohesive characteristics will be present in the 

material.  

A soil placing technique was developed. It involved, mixing the soil and water and placing the 

mixture in layers of 2 cm thickness. It was followed by compaction, and pouring a thin colored 

shallow sand layer, which enables to identify the rupture surface. The technique was calibrated and 

the reproducibility of the material conditions was ensured by measuring that a unit weight of 14.98 

kN/m
3
 was produced. The corresponding frictional angle and cohesion were 26.47° and 16.15  

 

 

 

Fig. 2 Grain size distribution and material properties 

 

 
(a) flat circular footing (180° conical shell) 

   
(b) 150° conical shell (c) 120° conical shell (d) 90° conical shell 

Fig. 3 Models of conical shell footing 
 

509



 

 

 

 

 

 

J.E. Colmenares, So-Ra Kang, Young-Jin Shin and Jong-Ho Shin 

 
 

(a) pointing grids and deformation (b) drawing rupture surface 

Fig. 4 Determination of rupture surface 

 

 

Fig. 5 Zoning of a rupture surface 

 

 

kN/m
2
, respectively. Fig. 2 summarizes the mechanical properties of the soil used. Pouring and 

compaction processes were repeated until the expected foundation level was reached. Voids in the 

cone shell were filled with the soils having the same void ratio. 

Four conical shapes of footing were used as shown in Fig. 3. All models had the same diameter 

B of 100 mm, length L of 55 mm, and the angle of intersection ζ′ varies from 90° to 180°. After 

the test was set up, a vertical load was applied under a displacement controlled rate of 

1~2mm/min. The test was carried out up to failure and the deformation of surrounding soil was 

observed and photographed.  

Fig. 4 shows how the deformation results come up with a rupture surface. Coming along the 

colored layers in the soil, the vectors of deformed shape are drawn by the grid analysis and the 

rupture surface is identified. Several loading tests were performed before the testing in order to 

check the repeatability of the results. Rupture surfaces were identified by investigating relative 

movements of thin colored layers after large displacements.  

As shown in Fig. 5 theoretically the rupture surface for half section with the footing radius B′ 

can be assumed to comprise of 3 zones: a triangular zone, a radial shear zone, and a Rankine’s 

passive zone indicating the angles of rupture surface ξ, ζ, and ε, respectively. The rupture surface 

stretched to H′ vertically and L′ horizontally.  

There is no method to fully validate the failure mechanisms. Circular flat foundations of which 

failure mechanism is known can be considered as the special case of shell foundation. For circular  
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(a) 180° conical shell (b) 150° conical shell 

  

(c) 120° conical shell (d) 90° conical shell 

Fig. 6 Rupture surfaces of conical shell foundation 

 

 

flat foundation, Terzaghi (1943) proposed. δ=π/4+ϕ/4, ζ=π/2, and ε=π/4−ϕ/4
 
for ϕ=26°. 

Several attempts to reproduce the measures with the angles obtained from the equation were 

made by using the trial and error approach. The techniques validated from the circular models 

were applied to identify the rupture surface for other shells. 

Fig. 6 shows the angle of rupture surface for various conical geometries. The angles ξ, ζ, and ε
 

were plotted with the angle of intersection ζ′, the angle ξ is relatively more sensitive to the change 

of angle of intersection than other angles. The angles ζ barely change, and ε seems to converge to 

a constant for the conical angle larger than 120
o
. Thus, it is assumed that both ζ and ε are constant 

for simplicity. The angle ξ increases when the angle of intersection decreases, ζ′, Hence, the 

relationship can be presented in Eq. (10), with respect to angle of intersection, can be obtained 

from Fig. 7. 

4 4

 
                                    (1) 

Where β=(180−ζ′)/7, ξc for the flat circular foundation, ξc=π/4+ϕ/4, ϕ is the internal friction angle 

of the ground, β is the increase of ξ respect to conical shape, and ζ′ is the angle of intersection of 

the conical shell foundation. 
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Fig. 7 Effects of the conical angle of the shell 

 

 

Fig. 8 Comparisons of rupture surfaces 

 

 

In the case of ζ′= 90°, punch shear failure was observed, thus angles for radial shear zone and 

Rankine`s passive zone (ζ and ε) did not exist. The influencing ranges of rupture surfaces were 

given by the depth and width of rupture divided by the radius of footing respectively (L′/B′ and 

H′/B′). As shown in Fig. 8, the influencing range increases with decrease in angle of intersection 

except for ζ′= 90° case. This indicates that the shell footings have a wider influencing range than 

the flat one. The area bounded by rupture surface is inversely proportional to the angle of 

intersection. 

 

 

3. Theoretical study on the ultimate bearing capacity 
 

In this study, the theoretical solution of conical shell foundation was developed based on the 

failure mechanisms obtained from physical model tests. The rupture surface reflects the effect of 

conical shape. The upper bound solution of limit theorem was used: The rate of work dissipation 

within the soil mass as it deforms is not less than the work rate of external loads. It is also assumed 

that the soil conforms to the Mohr-Coulomb yield criterion and the deformation is governed by the 

normality rule. Fig. 9 shows vertical cross-section of the failure mechanism. The soil beneath the 

shell foundation with diameter B (with radius B=2B′ is subjected to a compressive loading, quB, 

and forms the deformation regions consisting of the triangular zone, the radial shear zone and the 

Rankine’s passive zone. The triangular zone abc moves vertically with velocity followed by  
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(a) 

 
(b) 

Fig. 9 Generalized failure mechanism 

 

 

outward movement of radial shear zone and Rankine`s passive zone with velocities 𝑉0, 𝑉𝑟, and 𝑉𝑞 

as shown in Fig. 9. Line cd is a segment of log spiral, whose mathematical expression in polar 

coordinates, with respect to point a (in Fig. 9(a)), is given by Eq. (3) 

tan

0r r e                                   (3) 

where 𝑟0 is equal to distance ac , ψ is tangential angle at the plane of failure. 

The velocity field in the cross section between ac  and ad  is uniform, therefore the 

magnitude of the velocity can be calculated 

tan

0rV V e                                (4) 

Additionally the magnitude of velocities 𝑉0, 𝑉𝑝, and 𝑉𝑟 are expressed using sine principle as 

shown in Eq. (5). See also Fig. 9(b). 

0

sin( ) sin( ) sin( )
4 4 4 4 2

pr
VVV

    
   

 

     

                (5) 
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The lengths of ac , ad , de , and ae  can be derived as a function of the radius B′, angles ϕ, 

β, and ψ 
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                 (8) 

From the observed line ae  and the angle β from the rupture surface in the experiment and 

referring Eq. (8), the following relationship for ψ is empirically obtained for conical shells as  

4 1

11 16
                                  (9) 

In order to derive the theoretical solution, the dissipation rate and the work rate of the soil 

weight are integrated over the entire volume of the mechanism, whereas the work rate of the given 

boundary stress and the limit load are integrated over their respective boundaries. Calculation is 

carried out first for footing on weightless soil.  

The bearing capacity is presented as the sum of components dependent on the soil cohesion, 

surcharge and weight of soils: 

𝑞𝑢 = 𝑓(𝑐, 𝑞𝑜, 𝛾)                              (10) 

 
3.1 Weightless cohesion soil  
 

Suppose that the contribution from cohesion is exclusively considered for the case of 

𝑐   , 𝑞𝑜 =  ,      =  , the dissipation rates in the 3 zones can be expressed: 

① Internal energy dissipation including ac  

cosrac
IW c oaacV  2

0 0

sin( )
4 4 cos

cos( )cos( )
4 4 4 4

c V r

 


 
   

  

 



    
 

     (11) 

514



 

 

 

 

 

 

Ultimate bearing capacity of conical shell foundations 

  

Fig. 10 The infinitesimal increment in the shear zone acd 
 

 

where, c is cohesion and r0 is ac . 

② Internal energy dissipation in the shear zone (acd) 

The dissipation rate in the radial shear zone accounts for varying log spiral and varying velocity 

in the zone by line integral 

( 2 ) tan
2

tan tan

0 0 0
0 0 0

1
{ }{ } { }

2 tan

e
c r Vd c r e V e d cr V


   

 
    



  


             (12) 

Fig. 10 shows the infinitesimal increment taken into account 
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        (14) 

where, dZ is infinitesimal rotation. 

It is integrated along the line hc  from 0 to 2π for 3 dimensional expansion. Note that the 

infinitesimal increment is different at each point therefore the average infinitesimal displacement 

is adapted in Eq. (15) 
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Fig. 11 The infinitesimal increment in the passive zone ade 

 

 

③ Internal energy dissipation in the passive zone (ade) 

Fig. 11 shows the infinitesimal increment of the Rankine’s passive zone. The dissipation rate in 

the passive zone can be calculated 

cos { " " }ade rIW cV oeo e od o d   
3 1

cos 2 "{ "}
2

cos( )
4 2

rcV ad oa ad 
 

 



 

( ) tan ( 2 ) tan
2 2 4 2 2

0 0 cos {3cos( ) 2cos( )}
4 2 4 4

cV r e e
   

        
  

     

        (16) 

④ External energy dissipation 

When it comes to the external work from cohesion  

2

1 ( )u pEW q oa V 2 2

0 0

cos
cos ( )

4 4
cos( )

4 4

uq V r
  

 
 

 

  

  

          (17)  

where, qu is ultimate bearing capacity.  

The bearing capacity is then calculated from an energy rate balance equation considering all the 

deformed zones 

1 acd adeae
EW IW IW IW                             (18) 

The coefficient of cohesion Ncc is obtained by rearranging the above equation as  

u ccq cN                                  (19) 

Where, 
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( ) tan
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3.2 Consideration of surcharge 
 

In the same manner, the contribution from surcharge is exclusively considered for the case of 

c=0, and q≠0. Assuming only the surcharge q0 exists on ae , the external work is obtained as 

follows 

2 2

2 0 ( ) qEW q oe oa V   

( ) tan ( ) tan
2 2 4 2 2 4 2

0 04 cos( ){cos( ) cos( )}
4 2 4 4 4 2

qq r e e V
     

        
 

     

       

( ) tan 2( ) tan
2 2 4 2 2 4 2

0 0 04 cos( )sin( ){cos( ) cos( ) }
4 2 4 2 4 4 4 2

r V q e e
     

          
 

     

      

(20) 

There is no internal dissipation in this case and the external work from bearing capacity is 

opposite to the work from the surcharge 

1 2 0EW EW                               (21) 

In this case, the coefficient of surcharge, Nqc is obtained: 

 0u qcq q N                                (22) 

Where, 

( ) tan 2( )
2 4 2 2 4 2
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4 4 4 2{1 } cos( )sin( )

4 2 4 2
cos( ) cos( )

4 4 4 4
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3.3 Consideration of soil weight  
 
The influence of the soil weight on the bearing capacity is presented as an additional term: 

1

2
u cq BN                                (23) 
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where, Nγc are the bearing capacity coefficient of self-weight of shell foundation. 

The bearing capacity coefficient Nγc (c=0, q=0, γ≠0) takes into account the self weight of 

ground under the footing including three soil clusters as follows: 

① External energy including ahoc 

From Fig. 8, the external work is obtained 
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where, 
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② External energy including acd 

From Fig. 10, the external energy at acd  can be expressed 

2
2 3 tan tan0 0
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Integrating along the line hc  from 0 to 2π for 3 dimensional expansion, 
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where,         
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③ External energy including ade 

According to Fig. 11, the external energy at ade can be expressed: 

2 2 2 2

1cos( ) "{( ' ' ) ( ' ' )}
3 4 2

adeEW dd oe c d oec d c d oa oac d V
  

        

( ) tan
2 4 2

0cos { " 2 (2 3 ")} cos( )
3 4 2

dd ae oa ad V e
  

   


  

     

2( ) tan
2 4 2

0 0[2 sin( )cos( ){2 ( )}
3 4 2 4 2 4 4

r e r
  

       


  

      

( ) tan ( ) tan
2 4 2 2 4 2

0 03 }] cos( )
4 2

r e V e
     

          

   

3

0 0
3( )

2

r V
h

 
                              (27) 

where, 
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3 4 2 4 2 4 4 4 2
h e e

     
          

 
     

        

There is also no internal dissipation in this case. Thus, the summation of external work from 

bearing capacity is zero 

1 ( ) 0ahc acd adeEW EW EW EW                          (28) 

Therefore, the coefficient of self weight, Nγc is obtained as  
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By combining Eqs. (19), (22) and (23), the general ultimate bearing capacity equation for the 

conical shell is obtained as 

0

1

2
u cc qc cq cN q N BN                            (30) 

where,    ,  𝑞 , and     are the bearing capacity coefficients of cohesion, surcharge and self-

weight, respectively. Based on the theoretical solution, charts of bearing capacity coefficients, 

   ,  𝑞 , and     for conical shell foundation are made and shown in Fig. 12. The coefficients 

are subject to the frictional angle ϕ and the angle of intersection ζ′ of shell geometry. This chart 

can be used for preliminary design. Further filed study would be required for design practice. 

 
 
4. Experimental validation  
 

Load-settlement tests were carried out (Fig. 1(b)), and the results were compared with the 

theoretical solutions. Load-settlement relationships were recorded up to failure by a load cell and a 

linear variable displacement transducer (LVDT). The results are presented in Fig. 13.  
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(a) Ncc 

 
(b) Nqc 

 
(c) Nγc 

Fig. 12 Bearing capacity coefficients for conical shell foundations 

 

 

The ultimate load is defined as the point of maximum load obtained from the curve at which 

the load starts decreasing while the settlement continues to increase. The ultimate loads obtained 

from the tests are 2.0 kN for 180
o
 shell and 2.11 kN for 150

o
 shell respectively. Table.1 compares 

the test results with theoretical solutions. Always theoretical results gave slightly higher values, 

however the differences are small.  

When compared with flat circular case, angle of intersection 150° and 120° achieve 7% and  
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Table 1 Comparison experimental results with theoretical solutions 

Cone Angle Experimental Results(A) (kN) Theoretical Results(B) (kN) B/A 

180 2.00 2.03 1.015 

150 2.11 2.16 1.024 

120 2.36 2.33 0.987 

90 2.33 2.58 1.107 

 

 

Fig. 13 Load-settlement curves for the conical shell foundations 

 

 
15% increases of bearing capacity respectively. Angle of intersection 90° is not considered because 

a punching shear failure took place during the test. Settlement of the footings is inversely 

proportional to bearing capacity. It decreases up to 45 %, 51 % and 65 % compared with the 

settlement of flat circular case when the applied load is 2 kN (see Fig. 13). It can be observed from 

these curves that conical shell foundations have higher ultimate loads and lower settlements than 

the conventional flat one.  

 
 
5. Conclusions  

 

Theoretical and experimental investigations on the ultimate bearing capacity of conical shell 

foundations on 10% Kaolinite-mixed sand were conducted. Theoretically, the classical solution of 

bearing capacity of a flat circular foundation was extended to the conical shell foundation. Upper 

bound solution of limit analysis was adopted. The results showed that conical shell foundations, in 

general, achieved a higher bearing capacity and a better settlement resisting characteristic than the 

conventional flat counterpart. In case of the conical angle of 120° the results presented 15% 

increase in ultimate load and 51% decrease in settlement. The smaller the angle of intersection of 

the foundation, the higher the bearing capacity and the lower the measured settlement is. Tentative 

design charts for the modified bearing capacity coefficients for conical shell foundation were 

proposed in terms of internal friction angle of soil and the angle of intersection of the shell.  
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