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Abstract.  Two-layer coupled or composite beams with discrete shear connectors of finite dimensions are 
commonly encountered in pre-fabricated construction. This paper presents the development of simplified 
closed-form solutions for such type of coupled beams for practical applications. A new coupled beam 
element is proposed to represent the unconnected segments in the beam. General solutions are then 
developed by an inductive method based on the results from the finite element analysis. A modification is 
subsequently considered to account for the effect of local deformations. For typical cases where the local 
deformation is primarily concerned about its distribution over the depth of the coupled beam, empirical 
modification factors are developed based on parametric calculations using finite element models. The 
developed analytical method for the coupled beams in question is simple, sufficiently accurate, and suitable 
for quick calculation in engineering practice. 
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1. Introduction 

 

Pre-fabricated steel structures are increasingly used in modern building construction. In such 

structures, the occurrence of parallel beams situated one above another with a certain gap 

in-between are often encountered as a result of assembling pre-fabricated building units. Fig. 1 

shows a typical corner-supported module structure (Lawson 2007). Such modular structures are 

often designed to provide fully open sides and loads are transferred to the corner columns. The 

modules are transported and assembled onsite, such that adjacent modules are connected by weld or 

bolts near the top and the bottom of the corner columns, creating a situation with parallel-running 

beams separated by a sizeable gap.  

Coupling such two-layer beams to enable effective composite action is obviously beneficial in 

terms of structural efficiency, saving of structural materials, and increasing the clear internal space 

of the building. Clearly the best composite performance would be achieved by rigidly bonding the 

two beams continuously over the entire beam length. However, this is inefficient and labour  
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(a) A typical primary steel frame (b) Two parallel steel beams separated by a gap 

Fig. 1 Corner supported module and connection (after Lawson 2007) 

 

 

intensive for on-site assembling of the building. It would be more practical to connect the beams in a 

discrete manner using shear connectors of appropriate dimensions. This produces a special type of 

two-layer coupled beam with discrete shear connection regions of finite dimensions, both in length 

and depth.  

Conventional composite beams have been widely studied in the last few decades, arguably 

starting from the well-known Newmark model (Newmark 1951) which was formulated in 

accordance with the Euler beam theory. The model was then extended to Timoshenko beam with 

the consideration of the shear effect. The deformable shear connection between laminated layers 

was firstly considered as continuous, and subsequently discrete shear connections were also 

involved. Differing from these configurations, however, the present two-layer coupled beam 

problem involves a sizable gap between the two layers as well as shear connectors of a finite 

length, which cannot be simply treated as point connections as assumed in some existing two-layer 

beam models with discrete shear connection (Nguyen et al. 2011, Nguyen et al. 2010, Nie and Cai 

2003). In this respect, the present two-layer coupled beam is called herein as “coupled beam with 

discrete shear connection regions”, or CBDSCR.  

In this paper, an analytical method is developed for the evaluation of the composite effect and 

calculation of the stiffness and deflection in CBDSCR beams. The method is firstly formulated on 

the basis of simplified plane-section assumptions, leading to a simplified solution for the 

estimation of the stiffness, as well as the composite effect, of a CBDSCR. The above basic 

formulation involves only the rigidity (EI) of the two beam layers and thus is applicable for both 

single- and two-material scenarios. The margin and sources of potential errors are subsequently 

investigated with the aid of refined finite element models. A modification scheme is then 

introduced to account for the effect of local deformations around the connection regions; and for 

single-material coupled beams, detailed modification factors are proposed based on numerical 

parametric calculations using finite element models. The method proposed is simple and yet 

effective and thus is suitable for quick calculations in practice. Apart from the application in the 

module building construction, the method can also be applied in cases where stiffer and stronger 

beams may need to be created by coupling two smaller, standard section beams in an efficient 

manner. 
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2. Background theory  
 

Early study of composite beams with flexible shear connection dated back from the 

well-known Newmark’s model (Newmark 1951) for a concrete slab and steel beam composite. 

Two Euler-Bernoulli beams were used to represent the top slab and the bottom beam, respectively. 

The model was extended to using Timoshenko beam model, in which the shear deformation of the 

slab and the beam is taken into account simultaneously (Berczyński and Wróblewski 2005). 

However, considering the relatively small shear deformation of the concrete slab, a hybrid model 

(Ranzi and Zona 2007) was subsequently proposed such that the steel beam is represented by 

Timoshenko beam while Euler-Bernoulli beam is employed for the concrete slab. 

The “slip”, or in general the relative axial (longitudinal) displacement between the top and 

bottom beams due to the deformation of the shear connection plays an important role in 

determining the composite stiffness. The shear connection in Newmark’s model allows 

longitudinal deformation but prevents vertical separation between the beams. In the hybrid model 

used by Ranzi and Zona (2007), the relative slip is derived from a displacement field considering 

the axial displacement, rotation and shear deformation. The principle of virtual work is utilized to 

obtain the weak form of the balance conditions. The integral-type linear viscous-elastic 

constitutive model is used in the concrete slab, while the steel beam, reinforced bars and shear 

connectors are considered as linear elastic. The problem is then solved numerically by the finite 

element method due to the complexity of the governing system of differential equations. Such a 

solution approach is however difficult to apply for a quick estimation of the stiffness of the 

composite beam in a design analysis situation. Ranzi et al. (2006) extended the displacement field 

formulation slightly to involve the separation, i.e., relative transverse displacement between the 

beams. A bi-linear constitutive law was used to simulate the contact behaviour between the beams, 

with a large normal stiffness being used for penetration penalty.   

It is noted that the shear connection in the above laminated beam models is continuous, which 

may be applicable to welding or gluing (by ideal adhesive) throughout the length, or when the 

spacing between connectors, such as shear studs, nails, rivets, etc, is small. For composite beams 

with large spacing (sparse) connectors, a discrete connection model is necessary. Nguyen et al. 

(2011) simulated the sparse shear connector by concentrated spring elements along the axial 

direction, while transverse separation is prevented. The spring element is a 4-degree of freedom 

(DOF) element. The unconnected beam segments are modelled by a 10-DOF element, which 

allows interaction between the two layers, such that the normal force and friction can be taken into 

account. The plane cross-section assumption is applied on both layers, which however need not be 

normal to the neutral axis of the composite. The results show that the discrete connection model is 

more accurate comparing to continuous model if sparse connection is involved. 

A number of other studies have also been conducted in the past dealing with extended 

properties of composite beams, including time-dependant properties of the concrete slab in a 

discrete connection model (Nguyen et al. 2010, Al-deen et al. 2011), stiffness reduction due to 

cracking concrete slab in the hogging moment region (Nguyen et al. 2009), vertical uplifting from 

intermediate supports (Ranzi et al. 2010), multi-layered beams (Gianluca 2008), geometric and 

material nonlinearities (Liang et al. 2004), and refined connector behaviour between the beams 

(Liang et al. 2004, Razaqpur and Nofal 1989, Salari et al. 1998, Wright 1990). 

In spite of the availability of a variety of composite beam models, the essential features of the 

present CBDSCR beams cannot be properly represented using the existing models. The discrete 

shear connection regions with sizable dimensions both in the depth (gap) and the length can not be  
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Fig. 2 A typical CBDSCR 

 

 

simplified either as continuous shear connection or discrete connection with point connectors as 

studied before. The formulation of sophisticated FE models, as presented in some previous 

publications (Berczyński and Wróblewski 2005, Ranzi and Zona 2007), is not easy to implement 

for a practical design analysis. Therefore development of a sufficiently accurate but also 

easy-to-apply solution for the analysis of CBDSCR becomes necessary. 

 

 

3. Basic formulation of CBDSCR  
 

3.1 Basic assumptions 
 

The main features of a CBDSCR beam are schematically shown in Fig. 2. The gap between the 

two layers of the beam may vary, and the connection region is not continuous. Furthermore, the 

shear connectors can be of significant length. Consequently, the effect of the dimensions of the 

connection regions, as well as their stiffness, should be appropriately considered in the analysis of 

the beam. 

Three basic assumptions are made firstly in order to develop a basic theoretical model: 

(1) No relative slip and separation occurs within the connection regions – this assumption will 

be compensated by an empirical correction factor to account for the influences of the shear 

deformation in the connectors as well as local deformation in the vicinity of these regions, which 

will be presented in the next section; 

(2) The top and bottom beams and the connection regions can be described by three Euler 

beams, respectively; 

(3) The top and bottom beams and the connection regions have the same rotation and deflection 

at their junctions. The cross-section of the junction between a connection region and an 

unconnected beam segment remains plane during bending. Thus, the compatibility relationship, as 

shown in Fig. 3, may be written as 

CBT vvv                                 (1a) 

CBT rrr                                 (1b) 

TCCT drww                               (1c) 
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Fig. 3 Compatibility relations at the junction 

 

 

BCCB drww                                (1d) 

where w is the axial displacement of the neutral axial of the beam, v is the transverse deflection, d 

is the distance between the neutral axis of the composite section to that of the top/bottom beam, 

and subscript T, C, B denotes the top, connection and bottom beam, respectively. 

As shown in Fig. 2, the reference axis for the coupled beam element is at the neutral axis of the 

unconnected segment and this is also used for the connected region. It should be noted that in 

reality the neutral axes of the connected and unconnected regions are not actually co-linear. This 

may cause a difference in the axial deformation between the connected and unconnected regions at 

the junction, but since the rotation and deflection have been assumed to maintain the same at the 

junction, the derived flexural stiffness (rigidity) of the coupled beam would not be affected 

significantly by the simplification in the reference axis. The influence becomes further negligible 

by the fact that the depth of the shear connectors is usually much smaller than the depths of the top 

and bottom beams in practice, therefore the two neutral axes are effectively quite close to each 

other. 

 

3.2 Stiffness matrix of unconnected beam segments 
 
According to the compatibility relations described in Eq. (1), the unconnected two-layer beam 

segments (see Fig. 2(b)) can be simplified into a coupled element whose stiffness can be derived 

from the basic beam element formulation, as follows.  

The general constitutive equation of the original two-beam segments may be written as 

FKδ                                    (2) 

in which the displacement vector has 12 elements, including 3 DOFs (transverse displacement, 

axial displacement and rotation) at each of the four ends of the top and bottom beam 

 T

BBBBBBTTTTTT rvwrvwrvwrvw 222111222111δ         (3) 

The stiffness matrix of the coupled element is represented by the assembly of the element 

stiffness matrix of the two beams 











B

T

K0

0K
K                               (4) 
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The subscript e stands for T or B for the top and bottom beam, respectively. The constraint 

equations from the compatibility relationship in Eq. (1) are expressed by 

111 CTCT rdww                                (6a) 

11 CT vv                                    (6b) 

11 CT rr                                    (6c) 

222 CTCT rdww                                (6d) 

22 CT vv                                   (6e) 

22 CT rr                                    (6f) 

111 CBCB rdww                                (6g) 

11 CB vv                                   (6h) 

11 CB rr                                    (6i) 

222 CBCB rdww                                (6j) 

22 CB vv                                   (6k) 

22 CB rr                                    (6l) 

With these coupling equations, the 12-DOF displacement vector reduces to a 6-DOF vector, as 

illustrated in Fig. 4 

 T

CCCCCC rvwrvw 222111*
δ                       (7) 

The corresponding constitutive relations for the 6-DOF element is 

***
FδK                                  (8a) 

*
cδTδ                                   (8b) 

FTF c
* T
                                 (8c) 
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Fig. 4 A new combined element for a two-layer unconnected beam segment 

 

 

cc
*

KTTK
T

                              (8d) 

in which Tc is the transform matrix determined by the coupling equations 
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For generality the Young’s modulus of the top and bottom beams is assumed to be ET and EB, 

respectively, thus allowing for applications where different materials are used. Subsequently, the 

stiffness matrix of the combined element is reduced to a 6-DOF stiffness matrix as 
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Since dT and dB is the distance between the neutral axis of the top and bottom beam, 

respectively, to the neutral axis of the composite section, it has the following relation 

TTTBBB dAEdAE                               (11) 

Therefore, K
*
 in Eq. (10) is simplified into 
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Elements in K
*
 indicate that the coupled beam element can be considered as the summation of 

the stiffness of the two individual beams plus an additional (composite) stiffness term 

∆(EI)/L=(ETATdT
2
+EBABdB

2
)/L, with (EI) denoting an equivalent flexural rigidity. K

*
 can be further 

written as 
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Any distributed load applied over an unconnected segment is converted to point loads applied 

at the ends of the coupled beam element, as per the standard procedure for a conventional beam 

element.  

 

3.3 Solution of deflection using the coupled beam element 
 

With the above formulated coupled beam element for the unconnected beam segments, a 

CBDSCR beam can be modelled as a combination of the coupled elements (for unconnected 

segments) and the conventional beam elements (for the connection regions). Subsequently, it is 

possible to derive a closed-form solution for a CBDSCR beam under a standard loading condition. 

Details of the solutions will be given later in the Section 4. An example is shown in what follows.  

Consider a simply-supported CBDSCR with 5 evenly distributed connection regions dividing 

the beam into 4 segments (refer to Fig. 2). The length of each unconnected segment is thus 

(L−5l)/4, with L being the total length of the beam and l the length of a connection region. It is 

noted that the depth of the shear connectors is usually much smaller than the depths of the top and 

bottom beams, therefore the flexible rigidity of cross-section in the connection region may be 

approximated as ETATdT
2
+EBABdB

2
+ETIT+EBIB. After assembling the stiffness matrix of the overall 

beam with 5 conventional beam elements for the connection regions and 4 coupled beam elements 
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for the unconnected beam segments, an analytical solution can be obtained. The solution for the 

maximum deflection when the beam is subjected to a mid-span point load F is as follows 

   

  22

22
3

3

max
768

5
116

bBBTTTBBTTBBTT

bBBTTTBBTT

dAEdAEIEIEIEIE

dAEdAE
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IEIEFL
















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
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


           (13a) 

If the length of the connection region of the CBDSCR is negligible, the solution reduces to: 

    
  22

223

max
768

16

bBBTTTBBTTBBTT

bBBTTTBBTT

dAEdAEIEIEIEIE

dAEdAEIEIEFL




          (13b) 

 

 

4. Generalised stiffness of CBDSCR and parametric analysis 
 

4.1 Equivalent sectional rigidity and derivation 
 

The stiffness of a CBDSCR with a specific boundary condition, force and connection region 

configurations can be obtained theoretically using a similar procedure as described earlier in 

Section 3.2. Consider the solution in Eq. (13), the maximum deflection δmax of an equivalent 

uniform beam with an equivalent flexural rigidity (EI)eq subjected to a mid-span concentrated force 

is calculated as 

eqEI

FL

)(48

3

max                                (14) 

Substitute Eq. (13b), (EI)eq is obtained as 
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22
)( BBBTTTOC dAEdAEEIEIEI                    (15d) 

where (EI)O is the summation of the flexural rigidity of the top and the bottom beams, (EI)C is the 

bending rigidity of the ideal composite beam, ∆(EI) is the increase of the flexural rigidity of 

section due to the ideal composite effect. Thus 
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Eq. (15e) may be written in a general form as 
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O

eq EIEI
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EI )()(
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where  is the coefficient of the composite effect of the CBDSCR,  is a factor related to the 

boundary condition, loading condition and number of the segments of a CBDSCR.  

For the example CBDSCR with 4 evenly divided segments and a negligible connection region 

length, =1/16. Conducting a similar analysis on CBDSCRs with different boundary and loading 

conditions and number of segments, (EI)eq for a variety of CBDSCRs can be determined and the 

results in terms of the coefficient  are shown in Table 1. It can be observed that the factor  can 

be expressed as a function of the number of the unconnected beam segments, n, as follows: 

a) For simply- supported (SS) beams under a mid-span concentrated load (CL) 
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b) For simply-supported beams under a uniformly distributed load (UDL) 
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c) For fixed-support (FS) beams under a mid-span concentrated load 
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d) For fixed-support beams under a uniformly distributed load 
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Table 1  values for a CBDSCR with n evenly distributed unconnected segments, assuming a negligible 

connection region length 

Number of unconnected 

segments n 

β values in (EI)eq 

SS and CL FS and CL SS and UDL FS and UDL 

2 
4

1  1 
5

1  1 

3 
12

1  
3

1  
135

11  
27

11  

4 
16

1  
4

1  
20

1  
4

1  

5 
500

17  
125

17  
3125

97  
625

97  

6 
36

1  
9

1  
45

1  
9

1  

7 
1372

25  
343

25  
12005

193  
2401

193  

8 
64

1  
16

1  
80

1  
16

1  

9 
972

11  
243

1  
32805

321  
6561

321  

10 
100

1  
25

1  
125

1  
25

1  

SS: simple-support, FS: fixed-support, 

CL: concentrated loading at mid-span, UDL: uniformly distributed loading 

 

 

Eq. (16) indicate that  reduces exponentially with the increase of n. The maximum difference 

in the  values between the two loading patterns is about 25% in simply supported beams, whereas 

the difference is less significant in the fixed-support beams. The variation of the composite 

coefficient  with n is dependent upon  as well as the specific sectional properties.  calculated 

from Eq. (15g) increases with the increase of n. 

If the length of the connection region is considered, (EI)eq in Table 1 is modified as shown in 

Table 2. Correspondingly, the composite coefficient  may be expressed similarly as Eq. (15g) 

with the introduction of a factor , as 

1

1






OEI

EI


                              (17a) 

where 
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1
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ln
        for concentrated load              (17b) 
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Table 2 Ieq of a CBDSCR with n evenly distributed unconnected segments, assuming non-negligible 

connection region length
*
 

Ieq 

SS and CL FS and CL SS and UDL FS and UDL 

1
3

1
4

3











L

l
I

I

I

O

C  

1
3

1

3











L

l

I
I

I

O

C
 

11
3

1
5

3




















L

l

L

l

I
I

I

O

C  

11
3

1

3




















L

l

L

l

I
I

I

O

C  

1
4

1
12

3











L

l

I
I

I

O

C  

1
4

1
3

3











L

l

I
I

I

O

C  

1
11

12
1

4
1

1351
11

3




















L

l

L

l

I
I

I

O

C
 

1
12

1
4

1
27

11
3




















L

l

L

l

I
I

I

O

C
 

1
5

1
16

3











L

l

I
I

I

O

C  

1
5

1
4

3











L

l

I
I

I

O

C  

11
5

1
20

3




















L

l

L

l

I
I

I

O

C  

11
5

1
4

3




















L

l

L

l

I
I

I

O

C
 

1
6

1
500

17
3











L

l

I
I

I

O

C  

1
6

1
500

17
3











L

l

I
I

I

O

C  

1
97

102
1

6
1

31251
97

3




















L

l

L

l

I
I

I

O

C
 

1
97

102
1

6
1

625
97

3




















L

l

L

l

I
I

I

O

C
 

*Note: For coupled beam with two different materials, all “I” terms in the table are changed to “(EI)”,  

e.g., Ieq to EIeq, IC to (EI)C, and the same formulas apply. 

 
Table 3 List of CBDSCRs used in comparison 

Beam l (mm) hT (mm) g (mm) n 
Bonding 

conditions 
Loading 

1 200 100 20 4 SS CL: 1000N at mid span 

2 200 100 20 4 SS UDL: 1000N/m 

3 200 100 20 4 FS CL: 1000N at mid span 

4 200 100 20 4 FS UDL: 1000N/m 

5 200 100 20 5 SS CL: 1000N at mid span 

6 200 100 20 6 SS CL: 1000N at mid span 

7 200 100 30 4 SS CL: 1000N at mid span 

8 200 100 50 4 SS CL: 1000N at mid span 

9 400 100 20 4 SS CL: 1000N at mid span 

10 600 100 20 4 SS CL: 1000N at mid span 

11 200 150 20 4 SS CL: 1000N at mid span 

12 200 200 20 4 SS CL: 1000N at mid span 

 

 

4.2 Verification with refined finite element model 
 

In order to verify the accuracy of the theoretical solution, a number of CBDSCR beams are 

constructed and calculated using both the theoretical solution and refined finite element models. 

The beams are assumed to be made of steel with a Young’s modulus of 210 GPa and a Poisson’s 

ratio of 0.3, and have the same overall length of 5.0m. The top and bottom beams are of 

rectangular cross-section with a uniform width of 0.1m, and the depth of the bottom beam is fixed 

at 100mm. Totally 12 CBDSCR beam scenarios are constructed for comparison, with variations in 

the loading patterns, boundary conditions, number of unconnected segments, height of the gap,  
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Analytical model for the composite effect of coupled beams with discrete shear connectors 

Table 4 Comparison of maximum deflections predicted using the proposed beam model with FE results 

Beam 
FE model 

δmax (mm) 

Eq. (15) (without connection length) Eq. (17) (with connection length) 

α δmax (mm) Error α δmax (mm) Error 

1 0.164 0.79 0.178 8.1% 0.88 0.159 -3.1% 

2 0.495 0.82 0.531 7.2% 0.90 0.483 -2.5% 

3 0.059 0.48 0.073 22.9% 0.64 0.054 -8.3% 

4 0.015 0.48 0.018 25.3% 0.65 0.013 -7.8% 

5 0.152 0.85 0.164 7.7% 0.93 0.150 -1.2% 

6 0.149 0.89 0.157 4.9% 0.96 0.146 -2.2% 

7 0.148 0.76 0.161 8.9% 0.86 0.142 -3.9% 

8 0.123 0.70 0.136 10.3% 0.82 0.116 -5.8% 

9 0.151 0.79 0.178 17.4% 0.94 0.148 -2.1% 

10 0.144 0.79 0.178 23.2% 0.98 0.142 -1.4% 

11 0.088 0.82 0.092 4.6% 0.90 0.084 -4.6% 

12 0.052 0.86 0.053 1.2% 0.92 0.049 -5.8% 

 

 

length of the connection region, and the height of the top beam, as summarised in Table 3. A 

refined finite element model is employed to model the CBDSCRs. Element PLANE42 in ANSYS 

is used to construct the FE model. The mesh of the FE model is made sufficiently fine such that at 

least 6 plane elements are used over the height of each component beam, which proved to be 

adequate after a mesh convergence check. 

Table 4 compares the mid-span deflections of the 12 CBDSCRs calculated by Eqs. (15) and 

(17) and the results obtained using the refined plane element models. As the length of each 

connection region in all the cases is substantial comparing to the total depth of the composite 

beam, ignoring the connection length (i.e., assuming point connections and using Eq. (15)) results 

in larger errors, and in some cases the error is up to about 26%. On the other hand, with the 

consideration of the connection length, i.e., using Eq. (17), the theoretical predictions match the 

FE results satisfactorily and the maximum error is less than 9%. 

 

4.3 Factors influencing the composite effect of CBDSCR 
 

It can be generally understood that the composite effect in a CBDSCR is affected by the 

following main factors, i) the differential bending stiffness between that of the full composite 

section and that of the uncoupled section, which effectively defines the overall demand on the 

connectors and is closely associated with the gap size between the top and bottom parts of the 

beam, ii) spacing or the number of the shear connectors, iii) the length of each connector, and iv) 

the shear stiffness of the connectors themselves. Herein we assume a sufficiently large stiffness in 

the connectors. The influences of the remaining factors can be evaluated based on the theoretical 

solution given in Eqs. (15) and (17). For simplicity, we shall first examine the situation where the 

top and bottom parts of the CBDSCR have identical section properties.  

 

a) The differential flexural rigidity Δ(EI)/(EI)O 
From Eqs. (15) and (17) it can be understood that the stiffness of a CBDSCR, and hence the 

composite coefficient, will decrease with the increase of the differential bending rigidity 

Δ(EI)/(EI)O. For the case of beam-1 described in Section 4.2, when the gap depth g increases from  
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Fig. 5 Effect of Δ(EI)/(EI)O on α 

 

 
(a) Simple-support CBDSCR (b) Fix-support CBDSCR 

Fig. 6 Effect of number of shear connectors 

 

 

0.01 m to 0.10 m, Δ(EI)/(EI)O increases from 3.6 to 12.5. Fig. 5 shows a persistent decrease of the 

theoretical α; the FEA results agree reasonably well with the theoretical solution with slightly 

increasing discrepancy as Δ(EI)/(EI)O increases. The discrepancy will be discussed in the next 

section. 

 

b) Number of unconnected segments n 
Increasing the number of the shear connectors results in an increase of the number of 

unconnected segments, denoted by n, and is expected to enhance the overall composite effect, and 

hence increasing the composite ratio α of a CBDSCR. Fig. 6 shows the variation of α with n in 

both simply-support and fixed-support conditions. The theoretical curves agree reasonably well 

with the FEA results. α increases and eventually approaches 1.0 with the increase of n. In the 

simple-support cases, α increases from 0.58 in the 2-segment case to 0.82 in the 3-segment and 

0.94 in the 5-segment cases. In the fixed-support cases, where the two end supports serve as 

connectors themselves, α increase from 0.25 in 2-segment case to 0.80 in the 5-connector case and 

0.91 in the 7-segments case. 
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Analytical model for the composite effect of coupled beams with discrete shear connectors 

 
(a) n=4 (b) n=6 

Fig. 7 Effect of length ratio l/L of the connection region 

 

 

c) Relative length of the shear connection region 
Similar to increasing the number of connectors, a larger connector length (l) is expected to lead 

to a better coupling effect between the top and bottom beams. Eq. (17) shows that increasing l 

reduces , and as a result α increases. Fig. 7 shows the influencing trend of l/L on the composite 

effect in a simply supported CBSDCR with the number of shear connectors (n) being 4 and 6, 

respectively. It can observed that for the case n=4, with l/L increasing from 0.01 to 0.19, α 

increases from 0.82 to 1.0; for the case n=6, with l/L increasing from 0.01 to 0.14,   increases 

from 0.92 to 1.0. 

 

 

5. Modification to basic formulation considering local deformation 
 

5.1 Local deformation and stress distribution around connection regions 
 
The basic formulation for CBDSCR presented above has assumed that the cross-section at the 

junction between the connectors and the unconnected segments remain plane during bending. This 

assumption is apparently a source of errors in the predicted beam responses. To illustrate this, we 

create a modified FE model in which rigid beam elements are inserted vertically at all junction 

sections, as shown in Fig. 8(a), such that these sections are artificially constrained to deform as 

plane sections. Fig. 8(b) shows a comparison of the resulting composite ratio α between the two 

FE models as well as that predicted using the basic beam formulation. It can be observed that the 

results from the modified FE model match closely the simplified beam formulation, and both 

results exhibit similar overestimation of the composite effect as compared with the original FE 

model. This indicates that the plane cross-section assumption at the junctions is indeed the major 

source of the discrepancy in the predicted beam response with the proposed beam formulation. 
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(a) FE model with artificial plane section (rigid elements) inserted at the junction interfaces 

 

(b) Variation of composite effect predicted using different models 

Fig. 8 Evaluation of effect of the plane section assumption on prediction accuracy 

 

 

(a) Axial stress distribution near the connection region 

 

(b) XY shear stress distribution near the connection region 

Fig. 9 Stress concentration around a connection region 

 

 

The deviation from the plane section assumption may be attributed to the following 

mechanisms of local deformation around the connection regions:  

1) Local deformation within the main beam sections in the vicinity of the shear connectors, i.e., 

the Saint-Venant’s effect, as can be observed from the stress distribution from a FE analysis shown 

in Fig. 9(a); 
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Analytical model for the composite effect of coupled beams with discrete shear connectors 

2) The deformation within the connectors, as depicted in Fig. 9(b), causing a relative 

displacement between the top and bottom of a connector, or “shear slide” in a generic sense. The 

effect due to the shear slide of the connectors could be significant in a CBDSCR with slender 

connectors (i.e., large g/l ratio) and when the number of connectors is small.  

 

5.2 Modification to the basic beam formulation 
 

To take into account the above mentioned deviations from the idealised beam formulation, a 

modification is considered herein. If the relative displacement mainly comes from the shear 

deformation of the connectors, i.e., the “shear slide”, a theoretical solution of the additional 

deflection in the beam due to such an effect has been derived previously for a simply supported 

composite beam (Nie and Cai 2003), as follows:  

a) Concentrated load at mid span 

)])(([4
2

2

TBTBcTB

CTB

IIAAdAAhKn

dAAPL
d


                 (18a) 

b) Uniformly distributed load 

)])(([8
2

3

TBTBcTB

cTB

IIAAdAAhKn

dAAqL
d


                 (18b) 

where dC=dT+dB, h=hT+hB. K is the shear stiffness of the connector. 

In a CBDSCR, the overall effect of the local deformation causes a further increase of the beam 

deflection, and hence a further reduction of the beam stiffness. In this respect, Eq. (18) may be 

adopted in an extended manner, with changes of dC=dT/2+hB/2+g and h=hT+hB+g, whereas the 

shear stiffness of the connector K is modified to Keq, which denotes an equivalent stiffness of the 

shear connection region in a CBDSCR and accounts for all local effects around a connector, 

including the shear slide. The basic shear stiffness of the connection region, as schematically 

shown in Fig. 10, may be calculated as 

  c

shear
d

Ebl
K




12
                            (19) 

 

 

 

Fig. 10 Calculation of the basic shear stiffness Kshear 
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The equivalent Keq is related to Kshear by a reduction factor  

sheareq KK                                (20) 

The approximation of  may be obtained by an empirical method. As far as the strain 

distribution along the section depth is concerned, it can be envisaged that  is primarily a function 

of the parameters relating to the local deformations, namely hT, hB, g and l, or in a more general 

sense the normalised parameters of hB/hT, g/hT and l/hT. Thus 













TTT

B

h

l

h

g

h

h
,,                              (21) 

The actual function may be established numerically through finite element calculations. For the 

FE analysis, the top beam is assumed to have a reference depth of hT=0.1 m, while all the other 

dimensions are assigned subsequently in accordance with the specified ratios, and the material is 

assumed to be the same. hB/hT is assumed to vary from 1 to 3, g/hT from 0.0 to 1.0, l/hT from 0.2 to 

8.0. These ranges are chosen to cover most of practical CBDSCR cases. Totally 75 CBDSCR 

models are constructed and analysed using FE model to derive the empirical . The results are 

summarised in Table 5. 

The modified composite ratio α can be calculated by the following simple steps:  

1) Use the composite ratio α in Eq. (17) to calculate the deflection of the CBDSCR without 

considering the local deformation;  

2) Use Eqs. (18), (20), (21) and Table 5 to calculate the additional deflection of a CBDSCR.  

3) Use the summation of the two deflections above to calculate the modified composite ratio α. 

It should be noted that Table 5 has been generated from FE analysis for coupled beams with the 

same material, but it is not restricted to single-material coupled beams and is applicable to 

 

 

Table 5 φ as a function of hB/hT, g/hT and l/hT 

1
T

B

h

h  g/hT 
2

T

B

h

h  g/hT 

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 

Th

l  

0.2 5.643 1.520 0.606 0.324 0.208 

Th

l  

0.2 4.474 1.678 0.811 0.488 0.344 

0.5 3.321 1.507 0.897 0.591 0.422 0.5 2.463 1.219 0.802 0.577 0.439 

1.0 1.964 1.053 0.744 0.565 0.452 1.0 1.728 0.903 0.653 0.517 0.428 

2.0 1.196 0.661 0.477 0.372 0.306 2.0 1.211 0.650 0.494 0.413 0.360 

4.0 0.879 0.518 0.374 0.288 0.235 4.0 0.845 0.470 0.365 0.313 0.2749 

8.0 0.940 0.767 0.605 0.477 0.388 8.0 0.714 0.504 0.416 0.367 0.335 

    
3

T

B

h

h  g/hT    

    0.00 0.25 0.50 0.75 1.00    

    

Th

l  

0.2 5.080 2.168 0.598 0.214 0.114    

    0.5 2.613 1.357 0.373 0.160 0.090    

    1.0 1.760 0.942 0.230 0.111 0.068    

    2.0 1.216 0.665 0.149 0.078 0.051    

    4.0 0.795 0.332 0.107 0.060 0.040    

    8.0 0.543 0.269 0.112 0.067 0.046    
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Table 6 Comparison of maximum deflections of 12 CBDSCR beams  

Beam 
FE model 

δmax (mm) 

Basic beam formulation With local deformation correction 

α δmax (mm) Error α δmax (mm) Error 

1 0.164 0.88 0.159 -3.1% 0.73 0.164 -0.1% 

2 0.495 0.90 0.483 -2.5% 0.73 0.495 0.0% 

3 0.059 0.64 0.054 -8.3% - - - 

4 0.015 0.65 0.013 -7.8% - - - 

5 0.152 0.93 0.150 -1.2% 0.73 0.153 0.3% 

6 0.149 0.96 0.146 -2.2% 0.73 0.149 0.0% 

7 0.148 0.86 0.142 -3.9% 0.60 0.148 0.0% 

8 0.123 0.82 0.116 -5.8% 0.48 0.123 -0.1% 

9 0.151 0.94 0.148 -2.1% 0.57 0.151 -0.1% 

10 0.144 0.98 0.142 -1.4% 0.81 0.144 -0.3% 

11 0.088 0.90 0.084 -4.6% 0.72 0.088 -0.2% 

12 0.052 0.92 0.049 -5.8% 0.72 0.052 -0.0% 

 

  

(a) α vs. ∆I/IO (b) α vs. n  

 

(c) α vs. l/L 

Fig. 11 Improvement of the accuracy of the proposed method considering additional deflection due to 

local deformation 
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different material cases as far as the effect of local deformation concerned is along the depth of the 

coupled beam. For beams with wide flanges where local deformation over the width of the flange 

may become a factor, the exact modification pertaining to the local deformation should be treated 

accordingly and this is not covered in Table 5. 

The modified composite ratio α for the cases described in Section 4.3 is provided in Fig. 11. It 

can be observed that the results match the FE results closely, as can be expected due to the 

empirical modification, and comparing with the un-modified results the accuracy is markedly 

improved. Finally, the 12 CBDSCR beams studied in Section 4.2 (shown in Table 4) are 

re-calculated and the results are summarised in Table 6. Note that these beam cases are not 

involved in the generation of the modification factors in Table 5. Again, a marked improvement of 

the accuracy is achieved. The maximum error which happens in beam-12 is reduced to 0.8% from 

5.8% when the local deformation was not considered. 

 

 

6. Conclusions 
 

This paper presents an analytical approach for the calculation of the composite effect and the 

bending stiffness of a special class of composite beams, called CBDSCR, where discrete shear 

connectors are employed as the coupling mechanism. A coupled beam element is established for 

the unconnected segments in accordance with the compatibility relations at the junctions between 

an unconnected segment and the connection regions. On this basis, the deflection and the stiffness 

of the entire beam are constructed, and an analytical solution for CBDSCR with evenly distributed 

connectors is deduced from assembling the global beam stiffness matrix for a broad range of the 

CBDSCR configurations.  

Comparison of the basic analytical solution with results from refined finite element models 

shows a reasonably good agreement. Results also show that when a significant connector length, 

e.g., around or above the total beam depth, is involved, the influence of the connector length can 

be significant, and the analytical solution with the consideration of the connector length is capable 

of handling well this factor. 

To further improve the accuracy of the analytical solution, a modification factor is introduced to 

compensate for the local deformations around the junction areas that lead to the relative axial 

displacements (or in a general sense “shear slips”) between the top and bottom beams. The 

modification factor is related to three dimensionless parameters, and the detailed relationships are 

established by means of an empirical method using data generated from FE models. With the 

incorporation of the modification factor the analytical solutions are found to match very well the 

FEA results.  

The proposed general solution of CBDSCR provides a simple and yet sufficiently accurate 

means for modular building designers to determine desirable coupling configurations and calculate 

the stiffness and deformations of this type of beams. The basic formulation and the modification 

scheme are readily applicable to coupled beams with different materials as well as single material. 

The specific modification factors may also be applied for different material cases as long as the 

local deformation effect is primarily concerned about the distribution over the depth of the coupled 

beam. For coupled beams involving wide flanges where the local deformation across the width of 

the flange may also have an influence on the behaviour of the coupled beam, extended finite 

element analysis may be required to generate the specific modification data.  
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