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Abstract.  In the present work appropriate concrete material models have been proposed to predict drying 
shrinkage and specific creep of High-performance concrete (HPC) using Artificial Neural Network (ANN). 
The ANN models are trained, tested and validated using 106 different experimental measured set of data 
collected from different literatures. The developed models consist of 12 input parameters which include 
quantities of ingredients namely ordinary Portland cement, fly ash, silica fume, ground granulated blast-
furnace slag, water, and other aggregate to cement ratio, volume to surface area ratio, compressive strength 
at age of loading, relative humidity, age of drying commencement and age of concrete. The Feed-forward 
backpropagation networks with Levenberg-Marquardt training function are chosen for proposed ANN 
models and same implemented on MATLAB platform. The results shows that the proposed ANN models are 
more rational as well as computationally more efficient to predict time-dependent properties of drying 
shrinkage and specific creep of HPC with high level accuracy. 
 

Keywords:  artificial neural network, high performance concrete, prediction models, drying shrinkage, 
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1. Introduction 

 

The time-dependent concrete properties such as shrinkage and creep plays significant role in 

long-term performance of HPC concrete infrastructures. Hence, a reasonable accurate estimation 

of actual shrinkage and creep is an often requirement for good design practice especially for 

structures which are sensitive to secondary effects. The problem associated with prediction of 

shrinkage and creep of HPC is that the existing prediction models primarily developed for ordinary 

concrete does not considered the influence of some basic parameters such as secondary 

cementitious material and aggregate (Brooks 1999, Brooks 2005, Buil et al. 1985, Nasser et al. 

1986, Mazloom et al. 2004). In fact, such properties prediction for HPC is very complex and 

complicated mechanism and there has been no model which can satisfactorily predict the same 

(Brooks 2005, Mazloom 2008, Bazant 2001, Huo et al. 2001, Pan et al. 2013, Karthikeyan et al. 

2008, Gedam et al. 2013). The existing shrinkage and creep prediction models ACI (2008), fib  
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Table 1 Input parameters range used to construct ANN models 

Sr. No. Input Parameters Unit 
Data used in ANN models 

Min. Max. 

1 Cement
 

kg/m
3
 300 500 

2 Fly Ash
 

kg/m
3
 17 190 

3 Silica Fume kg/m
3
 30 75 

4 GGBS kg/m
3
 64 240 

5 Water kg/m
3
 113.2 195.3 

6 a/c - 2.85 6.4 

7 v/s mm 16.32 44.44 

8 fck MPa 20 85 

9 RH % 40 90 

10 Age of specimens (t env.) day 1 73 

11 Age of concrete  

 • drying commencement (ts) day 7 73 

 • loading (t0) day 7 73 

12 Age of concrete (t) day It vary based on experimental measured data sets 

 

 

(2010), B3 (2000) and GL (2001) are empirical in nature and based upon test data spread over 

different geographic locations. 

Earlier, Karthikeyan et al. (2008) have trained ANN to predict drying shrinkage strain and 

creep coefficient of HPC using experimental measured data along with the published database of 

other researchers to train the ANN model. The employed ANN model is a multi-layer network and 

employed nonlinear differentiable functions a back propagation training algorithm (Widrow-Haff) 

learning rule. Bal et al. (2013) have presented the application of a nonparametric ANN approach to 

predict effectively dimensional variations due to drying shrinkage. This model employed 

multilayer back propagation function using experimental data of RILEM Data Bank. The drying 

shrinkage and specific creep of HPC depends upon large number of parameters including the use 

of secondary cementitious materials which is quite important (Brooks 1999, Brooks 2005, Buil et 

al. 1985, Nasser et al. 1986, Mazloom et al. 2004). In this study an attempt has been made to 

predict drying shrinkage and specific creep of HPC made from locally available ingredients using 

ANN. The test data of seven different HPC mixes using different alternative cementitious material 

have been used for training, testing and validation of the proposed models. 

 

 

2. Objective and methodology 
 

The main object of this work is to demonstrate the applicability of ANN in predicting the 

secondary effect of drying shrinkage and specific creep of HPC especially in indigenous condition. 

The level of accuracy of ANN model prediction depends on the randomly selected input data point 

for training. Therefore, to train the ANN architecture sufficient input data points have been 

collected from different studies reported in literatures, namely Shariq (2007), Puri (1978), Nautiyal 

(1974), Jain (1976), Karthikeyan (2008), Huo (2001), Mazloom (2004) and Gedam (2013).  

The input data used in ANN model are classified into twelve basic parameters that cover the 
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ordinary Portland cement (OPC), fly ash (FA), silica fume (SF), ground granulated blast-furnace 

slag (GGBS), water (w), aggregate to cement ratio (a/c), volume to surface area ratio (v/s), 

compressive strength at age of loading (fck), relative humidity (RH), age of concrete when moved 

to controlled environmental condition (t env.), age when drying commencement (ts) or age of 

concrete loading (t0), and age of concrete at which shrinkage or creep repaved (t), respectively. 

The applicability of drying shrinkage and specific creep models is limited to the values of input 

parameters lying within the range shown in Table 1. Furthermore, its performance has also been 

compared with the existing shrinkage and creep prediction models available in different 

international codes and design procedure as mentioned earlier. 

 

2.1 Artificial neural network (ANN) 
 

The development of ANN was inspired by neuroscience which studies brain, biological 

neurons, and synapse (Duan et al. 2013). Nowadays this study finds application in many research 

fields and adopted widely to solve the problems that are computationally difficult to solve (Duan 

et al. 2013, Hakim et al. 2011, Kumar et al. 2010, Tanyildizi et al. 2010, Pala et al. 2007, 

Noorzaei et al. 2007, Nagendra et al. 2006, Oztas et al. 2006, Maru et al. 2004, Atis et al. 2005, 

Nagendra et al. 2004, Kim et al. 2004, Lee et al. 2003, Dias et al. 2001, Al-Khaleefi et al. 2002, 

Guang et al. 2000, Yeh et al. 1998, Lai et al. 1997, Lek et al. 1996). The main advantage of use of 

ANN is that it can deal with all complexities, insufficient data or imprecise information. Further, 

ANN approach enables to continuously re-train and where new data sets are made available so that 

it can conveniently adopt to the new set of data of HPC drying shrinkage and specific creep 

(Hakim et al. 2011). 

The proposed ANN models have potential to predict drying shrinkage and specific creep of 

HPC. The network architecture of ANN is optimized and its performance is evaluated by using 

correlation coefficient (R
2
), root mean square error (RMSE) and mean absolute percentage error 

(MAPE) between outputs and targets, as given below 
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Where, t and o are the predicted and actual output of the ANN, and p is the total number of 

training, testing and validation patterns. 

Use of Feed-forward backpropagation networks with Levenberg-Marquardt training function 

have been made and the same were implemented on MATLAB (2007). The models were trained 

using extensively compiled experimental database of HPC drying shrinkage and specific creep 

under controlled environmental condition. The models takes into account all more all basic input 

parameters which affect the time-dependent properties of drying shrinkage and specific creep and 

have been considered in the proposed models.  
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Fig. 1 Proposed 12-7-1 architecture of ANN model for drying shrinkage 

 

 

Fig. 2 Proposed 12-5-1 architecture of ANN model for specific creep 

 

 

2.2 ANN architecture for drying shrinkage and specific creep 
 

The optimized ANN architectures for drying shrinkage and specific creep are shown in Fig. 1  
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Inputs: 

xcr-1: cement (kg/m
3
) 

xcr-2: fly ash (kg/m
3
) 

xcr-3: silica fume (kg/m
3
) 

xcr-4: ground granulated blast furnace slag 

(kg/m
3
) 

xcr-5: water (kg/m
3
) 

xcr-6: aggregate to cement ratio 

xcr-7: volume to surface ratio mm 

xcr-8: compressive strength MPa 

xcr-9: relative humidity % 

xcr-10: age of specimen (days) 

xcr-11: age of loading (days) 

xcr-12: age of concrete (days) 
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Fig. 3 Performance evaluation of drying shrinkage using ANN (12-7-1) model 
 

 

 
 

 

Fig. 4 Performance evaluation of specific creep using ANN (12-5-1) model 
 

Table 2 Parameters of ANN model 

Parameters 
Drying shrinkage Specific creep 

12-7-1 12-5-1 

Number of input layer neurons 12 12 

Number of hidden layer 1 1 

Number of hidden layer neurons 7 5 

Number of output layer 1 1 

Number of output layer neurons 1 1 

Momentum rate 0.9 0.9 

Learning rate 0.001 0.001 

Learning cycle 1000 1000 

 

 

and Fig. 2. There are three layers in ANN architecture, first is the input layer, second is hidden 

layer and third is the output layer. The input and output layer neurons depend on the type of 

problems and its parameters. The hidden layer neurons vary based on modified learning rate and 

weights, such that it correctly reproduced the output results with presented input parameters. The 

performance of proposed ANN models on training, testing and validation data sets are shown in  
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Table 3 Performance evaluation of ANN models 

Sets 
Drying shrinkage (12-7-1) Specific creep (12.5-1) 

R
2 

RMSE MAPE (%) R
2 

RMSE MAPE (%) 

Training 0.9926 2.4413 6.06 0.9309 1.0201 2.88 

Testing 0.9937 3.1719 6.96 0.9558 1.0136 3.49 

Validation 0.9930 3.6110 7.45 0.9334 1.0050 4.97 

 
Table 4 HPC mix proportion testing data sets 

Component Unit 
HPC mix proportion 

Mix-I Mix-II Mix-III Mix-IV Mix-V Mix-VI Mix-VII 

Cement kg/m
3
 340 425 400 420 420 440 450 

Fly ash kg/m
3
 34 - 40 - - - - 

Silica fume kg/m
3
 - - - 21 - 44 - 

GGBS kg/m
3
 - - - - 42 - 90 

Fine aggregate kg/m
3
 680 709 647 663 675 678 614 

Coarse aggregate kg/m
3
 1110 1150 1055 1082 1102 1107 1002 

Water kg/m
3
 153 148.75 162 168 151.2 135.52 129.60 

Superplasticizer kg/m
3
 2.72 1.7 1.12 4.2 3.36 3.52 3.60 

w/c - 0.45 0.35 0.36 0.38 0.32 0.28 0.24 

fck MPa 23.19 48.09 44.41 43.57 48.94 57.72 57.72 

t0 and ts Days 28 28 28 28 28 28 28 

 

 

Fig. 3 and Fig. 4. The results of training phase indicated that the proposed ANN architectures were 

successful in learning the relationship between the different input and output parameters. The best 

ANN architecture observed for drying shrinkage is 12-7-1 and that for specific creep is 12-5-1. 

The simulation of ANN architecture has been done by using feed-forward backpropagation, 

hyperbolic tangent sigmoid neural transfer function, the weigh and bias values update according to 

Levenberg-Marquardt backpropagation training function and gradient descent with momentum 

weight and bias learning function. Its selected parameters for training, testing and validation are 

shown in Table 2. 

 

 

3. ANN model performance evaluation 
 

Two separate ANN models have been developed to predict drying shrinkage and specific creep. 

Total 106 experimental data sets (2176 data points) of drying shrinkage and specific creep have 

been used in three parts, 70% for learning process, 15% for testing and 15% for validation. All 

input data points have been selected randomly and their performances of training, testing and 

validation have been evaluated based on correlation of coefficient between outputs and targets 

using Eq. (1), the higher value of R
2
 means better prediction relationship. The error computed by 

root mean square error (RMSE) using Eq. (2) and mean absolute percentage error (MAPE) using 

Eq. (3), and computed error results are shown in Table 3.   

Further, to check performance of the proposed ANN models, the predicted value of drying 

shrinkage and specific creep have been compared with seven different HPC mixes that were  
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Table 5 Drying shrinkage in microstrain 

Concrete 

mixes 

80×270 mm high specimens after 587 days 150×300 mm high specimens after 406 days 

Measured 

value 

Predicted value Measured 

value 

Predicted value 

Mazloom ANN (12-7-1) Mazloom ANN (12-7-1) 

OPC 532 505 525.869 468 445 475.077 

SF6 528 504 533.382 462 443 450.319 

SF10 523 503 520.092 446 442 442.010 

SF15 512 501 508.903 435 441 438.313 

Error coefficient (M) 4.08 % 0.88 %  3.39 % 1.61 % 

 
Table 6 Specific creep of 80×270 mm high specimens in microstrain/MPa 

Concrete 

mixes 

Creep after 400 days at age of loading 7 days Creep after 400 days at age of loading 28 days 

Measured 

value 

Predicted value Measured 

value 

Predicted value 

Mazloom ANN (12-5-1) Mazloom ANN (12-5-1) 

OPC 595 596 589.312 413 447 410.405 

SF6 510 518 506.390 407 390 407.070 

SF10 459 457 496.520 381 344 395.588 

SF15 417 366 436.599 328 276 341.248 

Error coefficient (M) 5.16 % 4.33 %  9.61 % 2.60 % 

 

 

investigated according to ASTM standard C512 (2011) and whose mix proportions are shown in 

Table 4. 

To check the performance of proposed ANN models of drying shrinkage and specific creep 

with proposed model by Mazloom et al. (2004), Mazloom (2008) the comparative study also has 

been done using their own experimental measured data. This additional study corroborated the 

importance of ANN model prediction for drying shrinkage and specific creep in concrete using 

cement with cementitious material. The comparative results of ANN models and Mazloom’s 

models with experimental measured data are shown in Tables 5 and 6 for shrinkage and creep 

respectively. The accuracy of prediction models are evaluated according to Brooks and Neville. 

(1978) the error coefficient (M) for drying shrinkage and specific creep is defined as follows 

 
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(4) 

Furthermore, it can be seen that, Mazloom’s data of shrinkage and creep included in study, 

which covers a range of concrete mixes using cementitious material silica fume that partially 

replaced cement by 0 to 15%, different size of specimen and test age. The error coefficient is 

computed using Eqs. (4) and for drying shrinkage it varies 3% to 4%, for Mazloom’s  model  

while for ANN model this error varies 0.8 to 1.6% only. Similarly, the error coefficient for creep 

varies 5 to 9.6 % for Mazloom’s model, while ANN model it shows 2 to 4.3 % error. As seen in 

these results, the error of ANN prediction models are much less than the Mazloom’s proposed 

models. 
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Table 7 Comparison of testing data sets with predicted results of proposed ANN model with existing 

prediction models for drying shrinkage 

HPC mix 

Predicted results mean absolute percentage error (%) and correlation coefficient 

ANN (12-7-1) ACI fib B3 GL 

MAPE R
2
 MAPE R

2
 MAPE R

2
 MAPE R

2
 MAPE R

2
 

Mix-I 11.43 0.9951 36.80 0.8682 19.89 0.9401 48.28 0.7977 50.19 0.7851 

Mix-II 6.99 0.9976 47.49 0.7714 12.34 0.9918 61.59 0.6523 56.39 0.7127 

Mix-III 9.14 0.9965 50.85 0.6918 20.07 0.9707 63.67 0.6295 61.81 0.6417 

Mix-IV 4.86 0.9981 54.47 0.6316 20.78 0.9401 50.90 0.7567 55.44 0.6572 

Mix-V 6.61 0.9978 12.68 0.9939 39.94 0.2819 32.14 0.8940 19.84 0.9713 

Mix-VI 6.47 0.9975 41.53 0.7962 12.82 0.9858 38.91 0.8676 45.37 0.8160 

Mix-VII 11.99 0.9925 51.56 0.7368 19.48 0.9925 51.00 0.7858 57.90 0.7230 

Avg. 8.21 0.9964 42.20 0.7843 20.76 0.8718 49.50 0.7691 49.56 0.7581 

 

 

4. Results and discussion 
 

Based on the comparison of predicted and test results of different HPC mixes investigated it is 

inferred that the proposed ANN models of drying shrinkage and specific creep satisfactorily 

predict the time-dependent properties of HPC. Using these ANN models, around seven data sets 

(133 data points) of simulations have been performed to evaluate the time-depended properties of 

drying shrinkage and specific creep of different grades of HPC using different material properties. 

These models are showing very good learning relationship between predicted and experimental 

measured values. It consist one hidden layers and minimum numbers of neurons in connection 

weights. The test phase of drying shrinkage and specific creep shows that the ANN architecture is 

capable to generalizing between input and the output variable with reasonable good prediction. 

Attempt has also been made to compare the performance of the standard prediction 

models/practices of international codes, described earlier, against the available test results of the 

seven HPC mixes studied. The results of comparison are given separately for drying shrinkage and 

specific creep, one by one. It may be nodded that error margin of prediction has marginally 

increased as compared to ANN. 

 

4.1 Drying shrinkage 
 

Drying shrinkage strain for seven different HPC testing data sets has been predicted using Eqs. 

(5), (7), (9), (11) (see appendix) and compared with the test results. The error has been evaluated 

statistically using coefficient of correlation and mean absolute percentage error with respect to test 

values and results listed in Table 7. It has been observed that the mean absolute errors of the 

existing prediction models lie in the range of 20% to 50% with fib model having minimum error. It 

is thus evident that the existing models ACI, fib, B3 and GL used to predict drying shrinkage of 

normal concrete are not suitable to predict drying shrinkage of HPC. The coefficient of correlation 

of experimental results vs. predicted value from different models i.e. ANN, ACI, fib, B3 and GL 

are shown in Fig. 5. 

Furthermore, the proposed ANN model for drying shrinkage performs best with its average 

coefficient of correlation is 99.64% and the mean absolute percentage errors lies between 4.86%  
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Fig. 5 Comparison between HPC training data sets and predicted output from the models ANN, ACI, fib, 

B3 and GL 

 
Table 8 Comparison of testing data sets with predicted results of proposed ANN model with existing 

prediction models for specific creep 

HPC mix 

Predicted results mean absolute percentage error (%) and correlation coefficient 

ANN (12-5-1) ACI fib B3 GL 

MAPE R
2
 MAPE R

2
 MAPE R

2
 MAPE R

2
 MAPE R

2
 

Mix-I 5.41 0.9963 64.61 -1.666 9.51 0.9899 51.85 0.7354 88.68 0.2211 

Mix-II 6.99 0.9976 47.50 0.7714 12.34 0.9918 61.59 0.6523 56.39 -0.317 

Mix-III 6.99 0.9927 47.50 0.5519 12.34 0.9715 61.59 0.5456 56.39 0.3231 

Mix-IV 7.90 0.9912 43.69 0.9447 15.60 0.8439 65.57 0.4172 82.92 0.4304 

Mix-V 8.17 0.9906 50.87 0.1608 6.37 0.9950 61.86 0.6075 84.87 0.2864 

Mix-VI 13.96 0.9786 11.23 0.9883 52.64 0.7010 71.22 0.4917 74.49 0.4581 

Mix-VII 1.93 0.9989 47.21 0.3866 12.61 0.9987 41.64 0.8181 89.48 0.2060 

Avg. 7.71 0.9923 40.94 0.3053 21.23 0.9274 61.47 0.6097 78.89 0.2296 

 

 

and 11.99%, only. It may be further seen that individually, three of HPC sets has relative errors in 

the range 9 to 12%, and the other four sets has error in prediction less than 7% for the ANN model. 

The average relative error of the total seven HPC testing data set is about 8.21 %, which can 

considered as a good and acceptable for drying shrinkage. 

 

4.2 Specific creep 
 

Specific creep for seven different HPC test data sets has been predicted using proposed ANN  
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Fig. 6 Comparison between HPC training data sets and predicted output from the models ANN, ACI, 

fib, B3 and GL 

 
 

model by Eqs. (6), (8), (10), (12) (see appendix) and compared with respective test results. 

Further, the error has been computed using coefficient of correlation and mean absolute percentage 

error with respect to experimental data and the results are listed in Table 8. Mean absolute errors 

of predicted value using existing prediction models are over 21% while for ANN model this error 

7.71 % only. Thus it is evident that the existing model ACI, fib, B3 and GL used to predict specific 

creep are not suitable to predict specific creep of HPC. The coefficient of correlation of 

experimental results vs. predicted value of different models i.e. ANN, ACI, fib, B3 and GL are 

shown in Fig. 6. 

In case of the proposed ANN model for specific creep, the average coefficient of correlation is 

observed 99.23% and its maximum and minimum value of the mean absolute errors in the testing 

sets are 13.96% and 1.93%, respectively. The average error for the seven HPC testing data set is 

about 7.71 %, which can be considered as a good and acceptable for specific creep. It may be seen 

that average error correlation coefficient for other prediction models are much higher in the range 

21.23% for fib to 78.89% for GL models. 

 
 
5. Conclusions 
 

Present study demonstrate that the proposed ANN model for drying shrinkage and specific 

creep predicts time dependent properties of HPC which are very close to experimental results. 

Further, ANN model predictions are far better than the existing prediction models ACI, fib, B3 and 
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GL, which are commonly used by designers and researchers. Some silence findings are: 

• The developed ANN models have potential to predict drying shrinkage and specific creep of 

HPC with high level accuracy for all type of concrete with and without supplementary 

cementitious materials namely FA, SF and GGBS. 

• The proposed ANN modes is far superior to existing models proposed in international codes 

of practices for prediction of drying shrinkage and specific creep of HPC. 
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Nomenclature 
 

The following symbols are used in this paper:  

Ac cross-section area (mm
2
) 

a/c aggregate to cement ratio 

C(sh/cr) mean value of measured shrinkage/creep of concrete 

Cp(sh/cr) predicted value of shrinkage/creep of concrete 

C(sh/cr) measured shrinkage/creep of concrete 

c cement contain in concrete (kg/m
3
) 

d constant, 10 days for standard condition and 6 to 30 days for other than standard 

condition 

Eci modulus of elasticity of concrete at the time of t0 initial load (MPa) 

Ecm modulus of elasticity of concrete at the time of 28 days (MPa) 

f constant, depends on type of curing, 7 days for moist cured concrete and 1-3 days 

for steam cured concrete under the standard condition for other than standard 

condition 20 to 130 days 

fck mean compressive strength of concrete cylinder at the age of loading (MPa) 

fcm mean compressive strength of concrete at the age of t0 days (MPa) 

J(t,t0) creep strain in microstrains per unit MPa 

kh factor depends on relative humidity 

ks shape factor depends on cross section 

n number of measured values 

RH relative humidity of the ambient environment, percentage 

s coefficient which depend on the strength class of cement 

t age of concrete at the time of observation (days) 

tenv. age of concrete contact with controlled environmental condition (days)
 

t0 age of concrete at the time of loading (days) 

ts age of concrete at which drying is commenced (days) 

v/s volume to surface area ratio (mm) 

w water contain in concrete (kg/m
3
) 

w/c water cement ratio in concrete 

αas αds1, αds2 are coefficients, depended on the type of cement 

α constant coefficient, 1 for standard condition and 0.90 to 1.10 for other than 

standard condition 

α1 factor depends on type of cement 

α2 factor depends on type of curing 

ɛsh(t,ts) shrinkage stain in microstrains 

(ɛsh)υ ultimate shrinkage strain in microstrains 

ɛsh∞ time-dependence of ultimate shrinkage (10
-6

) 

μ perimeter of the member in contact with the atmosphere (mm) 

φ(t,t0) creep coefficient as ratio of creep strain to initial strain 
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ψ constant coefficient, 0.60 for standard condition and normally rage between 0.40 to 

0.80 for other than standard condition 

σc(t0) uniaxial constant stress at an age of loading t0 (MPa) 
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Appendix 
 

The different drying shrinkage and specific creep models implemented in international codes 

and design practices are as follows: 
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