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Abstract.  To analyze the tension performance of laminated rubber bearings under tensile loading, a 
theoretical tension model for analyzing the rubber bearings is proposed based on the theory of elasticity. 
Applying the boundary restraint condition and the assumption of incompressibility of the rubber (Poisson’s 
ratio of the rubber material is about 0.5 according the existing research results), the stress and deformation 
expressions for the tensile rubber layer are derived. Based on the derived expressions, the stress distribution 
and deformation pattern especially for the deformation shapers of the free edges of the rubber layer are 
analyzed and validated with the numerical results, and the theory of cracking energy is applied to analyze the 
distributions of prediction cracking energy density and gradient direction. The prediction of crack initiation 
and crack propagation direction of the rubber layers is investigated. The analysis results show that the stress 
and deformation expressions can be used to simulate the stress distribution and deformation pattern of the 
rubber layer for laminated rubber bearings in the elastic range, and the crack energy method of predicting 
failure mechanism are feasible according to the experimental phenomenon. 
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1. Introduction 

 

Recently, the high rise buildings have been built with the development of seismic isolated 

structures, and the large aspect ratio isolated buildings are also applied in engineering (Hino 2008), 

the tension stress will appear in the bearings of these kinds of structures (Takaoka et al. 2011) and 

there is a difference between design and real behavior of the base isolation device (Lee 2014), 

therefore, many experimental and numerical investigations have been carried out on the tensile 

behavior of laminated rubber bearings. Liu (2004) conducted tensile tests on the rubber bearings 

with diameter of 300 mm, the double stiffness model and original stiffness model are proposed to 

describe the tension properties of rubber isolators (Yang 2010). In order to study the tension 
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properties of laminated rubber bearings with different shape factors, Muramatsu et al. (2001) 

carried out tests on natural rubber bearings with three types of diameter, the test results show that 

the tensile deformation capacity of natural rubber bearing decreases with the increase of diameter, 

but the reason was not analyzed and given. Zhang (2012) conducted tensile tests on the rubber 

bearings with diameter of 800mm to investigate the tensile performance and cracking mechanism. 

The stress are not easy to be measured during the tests, however, the overall performance and 

stress distribution can be analyzed through theory analysis method or the FEA numerical method 

(Matsuda 2004, Yoshida et al. 2004). Closed-form expressions of the compression load-deflection 

relation and stress distribution which satisfy exactly the governing equations and conditions, are 

derived by Ling (1995) using an approximate-linear approach, the results show that the 

compression stress distributes un-uniformly and the stress at the central part of the bearing is larger 

than the other region of the rubber layer. Yoshida et al. (2004), Matsuda (2004) developed finite 

element model of the overall bearing to investigate overall tension and torsion performance, the 

overall properties such as tension stiffness, yield strength, yield strain and limit deformation has 

great important reference for design and application of rubber bearing at tension state. Actually, 

there is a preformed hole in rubber bearings and the tensile stress distribution and deformation rule 

are different with that of the bearings without hole, moreover, the present numerical and 

experimental research mainly focuses on the tension properties but not on the cracking collapse 

mechanics (Zhang 2012), the cracking collapse mechanics of rubber bearings under tension 

loading need to be studied. 

In order to predict the cracking collapse mechanics of rubber bearings, an analysis model is 

developed firstly in this paper for rubber bearings with preformed hole using a superposition 

approach, and then a tension model for analyzing the rubber layers is proposed based on the theory 

of elasticity, the stress and deformation expressions for the tensile rubber layer are derived 

applying the boundary restraint condition and the assumption of incompressibility of the rubber 

layer. Based on the derived expressions, the stress distribution and deformation pattern especially 

for the deformation shapers of the free edges of the rubber layer are analyzed and compared with 

the finite element analysis results. Furthermore, the theory of cracking energy is applied to analyze 

the distributions of cracking energy density and gradient direction, and the prediction of crack 

initiation and crack propagation direction of the rubber layers is investigated. Finally, the tests on 

the laminated rubber bearings under tensile loading are presented and the prediction results based 

on the theory of cracking energy are compared with the test results. 

 

 

2. Analysis model of rubber layer 
 

For the circular rubber bearing with a preformed hole, consider a rubber layer of the axial 

height h and outer radius a, inside radius b. The rubber layer is bonded to rigid end plates at z=0 

and z=h which prevent all distortions of its end surfaces. It is assumed throughout that the rubber 

layer is homogeneous and isotropic, and that during the subsequent deformations the displacement 

gradients are sufficiently small for the classical linear theory of elasticity to be applicable. The 

resulting deformation is calculated here by the superposition of the displacements arising in two 

separate specified loading situations (Zhang 2012), as represented diagrammatically in Fig. 1. 

Case A (uniform tension state): the rubber layer is subject to an axial tensile load and at the same 

time the outer and inside surfaces are prevented from distorting by the application of a tensile 

stress of magnitude σL. Case B (lateral tension state): the same rubber layer is loaded on its lateral  
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Fig. 1 Tension model of rubber layer 

 

 

surfaces alone with a compressive stress equal and opposite to that in Case A. 

Case A (uniform tension state): Suppose that the rubber layer is subjected to an axial tensile 

load F which is applied on the plane end face z=h with the lateral faces restrained to remain 

undistorted and parallel to the z-axis by tensile stresses of magnitudeσL applied normally to these 

faces. The magnitude of the imposed axial stress is F/A and the material is everywhere in a state of 

hydrostatic tensile stress, whose magnitude σL is given by 

)(/ 22 baFL                              (1) 

Case B (lateral tension state): the same rubber layer is loaded on its lateral surfaces by a radial 

compressive stress −σL, which are equal and opposite to those in Case A. The displacement and the 

corresponding strain and stress components at a point within the rubber are denoted by ui, εij and σij 

respectively, with i, j=ρ, ϕ or z. The assumption of incompressibility implies that Poisson’s ratio 

μ=0.5 and shear modulus G=E/3, then the constitutive equations relating the stress and strain 

components become (Xu 2009) 
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Which upon integration gives 
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With the function f(z) depending upon z alone. The force-free lateral surfaces will be drawn 

inwards, as illustrated in Fig. 1, suppose there is a position ρ=ρ0, where the radial deformation is 

equal to zero, then 
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Substituting the representation (5) into the representation (4) 
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Substituting the representation (7) into the Eqs. (2-1)、(2-2)、(2-4) and (6) yields 
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According to the equilibrium equation which must be fulfilled in the radial direction (Xu 2009) 
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Substituting the representation (8) into the Equation (9) yields 
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With the function C can be determined by applying the boundary conditions imposed at lateral 

faces of the block, σρρ=−σL (ρ=a, b) 
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Substituting the representation (11-1, 11-2) into the Eqs. (8-2) yields 
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at the position ρ=ρ0, but it is difficult to 

precisely meet the condition all at the section, as a result, suppose σρρ1=σρρ2 at the key points z=0 or 

h. Therefore, ρ0 
can be obtained according to Eqs. (11-1) and (11-2) 
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Finally, substituting the representation (13) into the Eqs. (11), (8-3) yields 
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3. Results analysis 
 

Based on the derived expressions, the stress distribution and deformation pattern especially for 

the deformation shapers of the free edges of the rubber layer can be analyzed. On the other hand, 

the finite element analysis result is adopted also to compare with the stress and deformation 

expressions. In this work we define a rubber layer with different shape factors, as shown in Fig. 2, 

the rubber layer is 6 mm thick and the different values of the shape factor are realized by defining 

different values of the outer diameter (D=300, 500), and the inside diameter d=40 mm. Suppose 

the rubber layer is made of natural rubber with the shear modulus G=0.4 MPa and the bulk 

modulus of elasticity Eb=200MPa. The finite element model is performed using the Abaqus code 

with the Mooney-Rivlin material model coefficients given by: C10=0.2, C01=0.005. Since the 

geometrical and loading conditions are axisymmetric, the finite element model is defined by 

axisymmetric elements. In order to avoid finite element size effect, different types of mesh are 

defined and analyzed, and one mesh consists of 500 elements in the radial direction and 10 

elements in height direction is applied. 

In Fig. 3 distribution of the axial stress, through longitudinal mid-height of the rubber layer 

with different shape factors, is plotted nondimensionalized with respect to the maximum tensile 

stress. The solid lines represent the theory solution results, the other curves represent the results 
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Fig. 2 Geometrical dimensions of rubber layers 
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Fig. 3 Normal stress distribution in the radial direction Fig. 4 Shear stress distribution in the bonded surface 

 

 
Fig. 5 Rubber layer deformation 

 

 

provided by the numerical analysis referred to the different shape factor bearings. The results show 

that the normal stress decreases at the circumference of the rubber layer and the maximum normal 

stress position can be determined according to the normal stress results. On the other hand, the 

maximum normal stress position can also be calculated through the representation (14), which is 

74.1 mm and 110.9 mm for both the rubber layers, respectively. Fig. 3 indicates that the 

correlation between the numerical solutions and the analytical ones is also quite good. It should be 

noted that stress concentrations are encountered in the region close to the edge according to the FE 

analysis results proposed by Imbimbo and Luca (1998), and the theoretical analysis can’t simulate 

it. However, it is known that for a thin rubber layer block, the effect of the stress concentration is 

confined to a very narrow region near the circumference (Benthem 1972). Thus we expect the 

theoretical analysis method is suitable. 

Fig. 4 shows the distribution of the horizontal shear stress on the bonded surface, through the 

longitudinal section of the rubber layer, for both the bearings with different shape factor 

respectively. The shear stress results refer to the part of the rubber layers placed at the interfaces 

with the steel shims. The analysis results show that the shear stress direction at the outer 

circumference of the bonded surface is opposite to that at the inner circumference of the bonded 

surface, and there is a neutral surface where the shear stress is equal to zero. The neutral surface 

radius can be calculated through representation (14), Figs. 3 and 4 indicate that the normal stress 

reaches a maximum and the shear stress becomes zero at ρ=74.1 mm and ρ=110.9 mm for both the 

rubber layers, respectively. The results show that the correlation between the numerical solutions 

and the analytical ones is very good except for the position around the lateral surfaces. The results 

of the theoretical analysis are relatively smooth, but the numerical results show that stress 

concentrations are encountered in the region close to the lateral edges of the rubber layer, which is 
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similar with the analysis results from Imbimbo and Luca (1998). 

When the rubber layer is subjected to an axial tensile loading, the inner and outer lateral 

surfaces will be drawn inwards. Fig. 5 shows the deformation results of the lateral surfaces of the 

rubber layer with diameter D=500mm, the analysis results are calculated according to the 

representation (15), in which ρ=20 and 250, respectively. The results show that the deformation of 

the lateral edges of the rubber layer is approximate parabolic profile, and the deformation of the 

inner edge is larger than that of the outer edge. 

 
 
4. Cracking prediction 

 

Up to now, the crack collapse have been studied in many rubber components such as tires and 

hoses, but paid less attention in rubber bearings. Reasonable rubber material constitutive model 

and failure criterion is need to analyze the cracking mechanics of the rubber layer, Mars (2002) 

introduced a concept of cracking energy density to describe the crack initiation and propagation in 

rubber materials. The cracking energy density is defined as the energy produced by the principal 

stress acting directly on each crack, and the orientation of maximum cracking energy density is the 

direction of maximum principal tensile stress.  

In this article, we aim at predicting the cracking initiation location and cracking direction but 

not the cracking process, because the real failure process is based on accurate rubber material 

constitutive model and failure criterion. The cracking energy density can be calculated as (Mars 

2002) 

krdkrW T
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T ][
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


                            (17) 

Where r is a unit vector normal to the crack plane, kc is the transformation matrix from the 

crack plane to the principal stresses. The stress distribution of a rubber layer under tensile loading 

can be calculate through representation (16) in this paper, and then the principal stresses σ1, σ2 and 

σ3 at any point of rubber layer can be determined. As a result, the cracking energy density due to 

the principal stresses can be calculated as following 

EvvW 2/)( 3121

2

1                         (18) 

Suppose that here are no intrinsic flaws in the rubber layer, and the crack will propagate toward 

the point of minimum strain energy density around the crack tip, which is utilized to determine the 

direction of crack propagation. As a result, the crack in bonded rubber layer initiates at the point 

with the maximum cracking energy density, and then propagates along the direction with the 

lowest cracking energy density. 

Rubber layer with different outer diameters are analyzed under tensile load equivalent to 0.1 

MPa. To compare their cracking performance, the contours of cracking energy densities in rubber 

layers with outer diameter D=100, and inner diameter d=40, 20 are shown in Fig. 6 and Fig. 7, 

respectively. The position with the maximum cracking energy density in Fig. 6 is located at the 

mid-cross-section of the layer and 31mm from the center axis, which indicates that the crack is 

most likely to initiate here. However, Fig. 7 representing the other rubber layer (D=100, d=20) 

shows that the maximum cracking energy density occurs at the inner surface between rubber layer 

and steel plates, where the crack is most likely to initiate. As a result, the crack initiation location 

is different for different rubber layers. 
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Fig. 6 Cracking energy density distribution in 

rubber layer (D=100 d=40) 

Fig. 7 Cracking energy density distribution in 

rubber layer (D=100 d=20) 

 

 
 

Fig. 8 Crack position in the thickness direction Fig. 9 Crack position distribution in the radial direction 

 

  

Fig. 10 Cracking energy density gradient 

distribution (D=800 d=600) 

Fig. 11 Cracking energy density gradient 

distribution (D=100 d=40) 

 

 

Initial cracking position of rubber layer in the thickness direction with different outer diameters 

D=800, 600, 300 mm and different aperture ratio β=0.05~0.75 are show in Fig. 8. The results show 

that the crack initiate at the inner surface between rubber layer and steel plates for rubber layer 

with aperture ratio β <0.2, and the crack initiate at the mid-height of the layer for rubber layer with 

aperture ratio β >0.2. Fig. 9 represents the distribution of initial cracking position of rubber layer 
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in the radial direction. It can be seen from the figure that initial cracking position gradually moves 

to the inner surface with the aperture ratio decrease. 

After the initial cracking position is determined, the crack propagation direction can be 

estimated by the distribution of cracking energy density gradient. Fig.10and Fig.11 represent the 

distribution of cracking energy density gradient for two kinds of rubber layers respectively, which 

show that the direction of cracking energy density gradient is almost horizontal, and it is 

approximately right for other cases. 

 

 

5. Experimental results analysis 
 

Tensile tests on three groups of ordinary laminated rubber bearing are carried out to study the 

cracking mechanics of the rubber bearing (Zhang 2012). Pure tension test, shear-tension test and 

tension-shear test are performed on the three groups, and each group consists of nature laminated 

rubber bearings and lead core rubber bearings. The first group includes two ordinary laminated 

rubber bearings with 800mm diameter (LNR-1 and LRB-1), which is tested under pure tensile 

load. Fig. 12 shows the geometrical dimensions of the rubber bearing, each bearing is made of 

twenty-six rubber layers, each rubber layer is 6 mm thick and each steel shim is 3.5 mm thick. The 

shear modulus is 0.40 Mpa, the first shape factor is 30.83, and the second is 5.13. The test setup is 

shown in Fig. 13. The vertical load is controlled through a 2000 kN vertical jack, and the 

maximum vertical displacement stroke is 600 mm.  

 

 

steel deck

covering layer

Collar plate
rubber layer

connected steel

  

Fig. 12 Geometrical dimensions of rubber bearings Fig. 13 Rubber bearing test 

 

  

Fig. 14 Crack of the rubber layer for LNR-1 Fig. 15 Crack of the rubber layer for LRB-1 
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Fig. 16 Cracking energy density distribution in 

the rubber layer 
Fig. 17 Cracking energy density gradient distribution 

 

 

Vertical hysteresis tension test is performed when the vertical tensile strain reaches 10%, and 

then the rubber bearing is stretched to failure. The sound can be hear during the stretch, which may 

be due to the rubber tearing or cracking of adhesive layer, and it is especially obvious for the lead 

rubber bearing. The first rubber bearing ruptures suddenly, and the cracking surface is located 

between rubber layer and steel plates as shown in Fig. 14, and there are some rubber residues on 

the plate. For the lead rubber, an obvious tearing crack emerges in the protective rubber layer 

around the bearing (Fig. 15), it is found that much of this rubber layer in the rubber bearing has 

been break and some rubber residues on the steel plate. 

The cracking behavior is also predicted by the method of cracking energy density, the contour 

of cracking energy densities in the rubber layer is shown in Fig. 16, and the distribution of 

cracking energy density gradient is shown in Fig. 17. The analysis results show that the maximum 

cracking energy density occurs at the inner surface between rubber layer and steel plates and the 

crack is predicted to initiate there, and develops rapidly in the horizontal direction until the 

fracture of the overall cross-section of the rubber layer, which is consistent with the experimental 

phenomenon approximately. 

 

 

6. Conclusions 
 

In order to study the cracking performance of laminated rubber bearings under tensile loading, 

a tension model for analyzing the rubber layers is developed and the stress and deformation 

expressions for the tensile rubber layer are derived and analyzed in this paper. Based on the 

derived expressions, the theory of cracking energy is applied to analyze the distributions of 

cracking energy density and gradient direction. The crack initiation, crack propagation direction 

and failure mechanism of the rubber layers are investigated, the following conclusions or 

recommendations can be made: 

• The stress and deformation expressions are based on the equilibrium equations and the 

incompressibility constraint, as a result, the results is suitable to rubber bearings under low tensile 

load. The position of the maximum normal stress in the rubber layer can be determined through the 

representation (14). The deformation of the lateral edges of the rubber layer is approximate 

parabolic profile, and the deformation of the inner edge is larger than that of the outer edge. The 

stress and deformation expressions maybe not suitable in the nonlinear stage, but the initial 
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stiffness, cracking point, and other failure mechanism can still be predicted. 

• Shape factor and aperture ratio are main factors which affect the stress distribution and 

deformation of the rubber layer. 

• The crack energy method is feasible to analyze cracking initiation and cracking direction of 

rubber layer under tensile loading, the crack initiation location and the crack propagation direction 

can be approximately predicted by the distribution of cracking energy density and gradient of the 

rubber layer under low tensile load. The analysis results show that aperture ratio plays an 

important role on the crack initiation location, the crack initiate at the inner surface between rubber 

layer and steel plates for rubber layer with aperture ratio β<0.2, and the crack initiate at the mid-

height of the layer for rubber layer with aperture ratio β>0.2. 

• The experimental results show the cracking failure of the rubber layer, the predicted results on 

the cracking mechanism is consistent with the experimental phenomenon, and the crack energy 

method can be used to approximately predict the cracking initiation and propagation. 
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Notations 
 

E compression modulus of the rubber 

G shear modulus of the rubber 

h height of the rubber layer 

a outer radius of the rubber layer 

b inside radius of the rubber layer 

F axial tensile load 

σL equivalent tensile stress at the outer and inside surfaces 

μ poisson’s ratio 

ui εi σij displacement and the corresponding strain and stress components 

kc transformation matrix from the crack plane to the principal stresses 
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