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Abstract.  The cross-section warping due to the passage of high-speed trains can be a relevant issue to 
consider in the dynamic analysis of bridges due to (i) the usual layout of railway systems, resulting in 
eccentric moving loads; and (ii) the use of cross-sections prone to warping deformations. A thin-walled 
beam formulation for the dynamic analysis of bridges including the cross section warping is presented in this 
paper. Towards a numerical implementation of the beam formulation, a finite element with seven degrees of 
freedom is proposed. In order to easily consider the compatibility between elements, and since the coupling 
between flexural and torsional effects occurs in non-symmetric cross-sections due to dynamic effects, a 
single axis is considered for the element. The coupled flexural-torsional free vibration of thin-walled beams 
is analysed through the presented beam model, comparing the results with analytical solutions presented in 
the literature. The dynamic analysis due to an eccentric moving load, which results in a coupled flexural-
torsional vibration, is considered in the literature by analytical solutions, being therefore of a limited 
applicability in practice engineering. In this paper, the dynamic response due to an eccentric moving load is 
obtained from the proposed finite element beam model that includes warping by a modal analysis. 
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1. Introduction 

 

The structural behaviour of a bridge girder can be analyzed as a thin-walled beam and therefore 

one-dimensional models, properly enriched to consider three-dimensional effects, can 

advantageously be adopted for its analysis when compared with sophisticated shell finite element 

models. In fact, shell models not only require more data towards the definition of the model, which 

remains sometimes undefined at a designing stage, but also produce a considerable amount of data 

to post-process and interpret that can mislead the analysis of a less experienced engineer. 

On the other hand, the use of beam models not sufficiently refined, i.e., not considering 

deformation modes of higher order, fails to consider three-dimensional structural effects, which 

can be significative in high-speed railway bridges given the usual layout adopted for the railway 
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lanes. In fact, railway lanes have often an eccentricity in relation to the shear centre of the bridge 
cross-section, which implies to consider the cross-section torsion, warping and distortion in the 
analysis. 

Therefore, the use of a one-dimensional model for the dynamic analysis of railway bridge 
girders should be able to consider the most relevant 3D structural behaviour, considering both the 
girder cross-section geometry and the lane layout. 

For an arbitrary cross section geometry the cross section shear centre, centroid and mass centre 
do not coincide, resulting in a coupled system of dynamic equations that has associated a triple 
coupling between flexural and torsional vibrational modes. Hence, this coupling has to be 
considered in the beam model either in a free vibration analysis or when the beam is subjected to 
moving loads. Moreover, for an accurate analysis of the problem, in addition to the cross section 
warping, the cross section shear deformation and rotary inertia should be included in the analysis. 

The analysis of coupled free vibrations in beams considering these effects is a subject where 
extensive work has been developed. One of the earliest works to include warping effects was 
addressed in Vlasov (1961), Gere (1954, 1958), where an analytical solution for the free vibration 
both for symmetric and mono-symmetric cross-sections was given. 

A method commonly adopted for the solution of the coupled equations is the dynamic stiffness 
matrix method, which is often referred as an exact method inasmuch it considers the analytical 
solutions of the governing equations to derive a dynamic matrix (frequency dependent) that 
includes both mass and stiffness properties of the element, allowing to obtain natural frequencies, 
Banerjee (1989); a general approach for the dynamic stiffness formulation is presented in Banerjee 
(1997). 

The coupled vibration for a Timoshenko beam was studied through the dynamic stiffness 
method, deriving from the solution of the respective equations of motion analytical expressions for 
the corresponding matrix, Banerjee and Williams (1992). 

A dynamic stiffness matrix that considers the triple coupling, but neglects warping was derived 
by Friberg (1983). The effect of warping was included in Hallauer and Liu (1982), Friberg (1985), 
Dokumaci (1987), Bishop et al. (1989), Banerjee et al. (1996), Tanaka and Bercin (1997) 
regarding the evaluation of free vibration frequencies of thin-walled beams, being concluded that 
the effect of warping stiffness on natural frequencies is significant. 

More recently, a dynamic matrix for thin-walled beam-columns subjected to eccentrically axial 
loads was proposed in Kim et al. (2003), being considered the cross section warping and the 
coupling due to shear deformation in Kim and Kim (2005). The free vibration of thin-walled open 
sections considering the coupling between axial (due to restraining the axial displacement in a 
point different from the centroid), bending and torsional vibrations is considered in Chen (2008) 
through the formulation of a seven degree freedom beam element. The free vibrations of curved 
beams were studied analytically including the effects of rotary inertia, shear and axial 
deformations in Zhu et al. (2013). 

The coupled free vibrations of thin-walled beams was also studied analytically in Tanaka and 
Bercin (1999), Arpaci et al. (2002, 2003), Prokic (2005) where the effect of neglecting the rotary 
inertia as well as the cross section warping on the accuracy of results was analysed; the coupling 
effect due to warping, including the thin-walled beam shear deformation, was addressed in Prokic 
(2006). 

The analysis of beams subjected to moving loads is a topic that has been extensively studied 
since the early work of Timoshenko (1974), Fryba (1999) and more recently in Olsson (1985, 
1991). Nevertheless, the works dealing with the combined lateral-torsion of beams considering the 
cross section warping under moving loads are relatively limited, Michaltsos et al. (2005). 
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However, and in particular for high-speed trains, the repeated action of axle loads can lead to 
resonance vibration problems, Fryba (2001). Hence, regarding the dynamic analysis of railway 
bridges for high-speed trains, the influence of the load eccentricity together with its repeated action 
at a high-speed should be taken into account. 

This dynamic analysis can be performed through a 3D finite element model, Ju and Lin (2003), 
Lee and Yhim (2005), Podworna (2011a, b). However, the analysis of moving loads along the 
girder through the use of a beam model capable to incorporate such 3D effects would be simpler, 
less consuming, and will allow a more clear interpretation of the phenomena given its uncoupled 
nature. Beam models have already been successfully adopted for the analysis of relevant bridge 
dynamic topics Mohammad (2013); however, the response due to moving loads does not consider 
the effect of coupling between bending and torsion Yang et al. (1997), Li and Su (1999), Garinei 
and Risitano (2008), Ichikawa et al. (2000), Piccardo and Tubino (2012). 

To the best knowledge of the authors, one of the works considering the coupling between 
bending and torsion through a beam model, simultaneously with a moving load, was presented in 
Michaltsos et al. (2005). This study relies on the analytical solution of the coupled equations of 
motion derived from the application of an eccentric moving load, which is obtained by considering 
the separation of variables and using harmonic functions, as in the classic solutions of the problem; 
however, since it relies on an analytical solution, its use to more general structural systems is 
somewhat limited. 

A model for the dynamic analysis of the coupled torsional-bending vibrations of thin-walled 
beams subjected to a “high-speed” moving load through a one-dimensional model that considers 
the cross-section warping is presented in this paper. The model is developed under the framework 
of the finite element method through an approximation of the displacement field along the 
longitudinal axis, allowing to be efficiently adopted for the analysis of railway bridge girders. The 
cross-section is considered to be in-plane undeformable, being the cross section warping defined 
according to Vlasov’s theory. The beam model is subjected to a moving load, being the 
corresponding mass considered to be small relatively to the mass of the girder. Moreover, although 
the objective is to consider the effect of high-speeds trains, the work is focused only in terms of 
modeling the torsional bending coupling together with a moving load, representing the train 
traveling at high speed, disregarding other relevant issues specific to the carriage modeling, in 
particular the vehicle-structure interaction. 
 
 
2. Thin-walled beam formulation 

 
A beam-like model considering the warping of the thin-walled cross-section will be developed 

in this section according to the Vlasov theory, in order to obtain a set of equations describing both 
the static and the dynamic equilibrium of the bridge girder. The beam governing equations are 
derived according to the small displacement hypothesis for a linear, elastic and isotropic material. 
The cross-section is admitted to be in-plane rigid, being the shear strain of the middle surface of 
the open cross-section neglected. The beam can have a generic cross-section geometry, being 
adopted the most common layouts for civil engineering applications. 

 
2.1 Displacement field 
 
The cross-section layout considered in this formulation is admitted to be constituted by a set of  
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Fig. 1 Thin-walled beam element Fig. 2 Cross-section rotation around a generic point

 

Fig. 3 Rotation of a thin-walled sector 
 
 

rectilinear wall segments forming a generic shape, either of open or closed profile. A global 
reference frame O(x,y,z) is adopted for the thin-walled beam element, where x represents the 
longitudinal axis of the beam and y, z the principal transverse axes, being represented in Figs. 1 
and 2; a local right oriented reference frame O(x,y,z)  is considered for each wall element, where 
the coordinate s defines the coordinate running along the midline of the cross section, and n 
corresponds to the perpendicular direction to the wall of each element. The coordinates s and n are 
illustrated in Fig. 3 for a generic wall sector. The surface defined by the cartesian pair (x,s) 
corresponds to the cross section middle surface. 

The displacement field is referred to a generic point P=(yP,zP), being η x) the corresponding 
axial displacement and y(x) and z(x) the respective transverse displacements along the y and z 
direction, respectively. The transverse displacement of a cross-section is described by two body 
translations y and z along the y and z axis, respectively, and a rigid twist rotation  around a 
generic point P=(yP,zP) as illustrated in Figs. 1 and 2. The in-plane displacement components are 
given by 

 
uy (x, y, z)  y (x) z  zP (x) and uz (x, y, z)  z (x) y  yP (x)

           
(1) 

The beam axial displacement is defined according to the assumed hypotheses as follows, 

 
ux (x, y, z) (x) y  yP  y (x) z  zP  z (x)P (s)  (x)

              
(2) 

which corresponds to the Vlasov’s kinematical description, being the warping function defined 
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through the sectorial coordinate represented in Fig. 3, properly corrected so as to consider cross-
sections with a closed profile (see Cedolin 1996). The warping is thus defined as follows 

                     

(3) 

where hP(s) is the distance from the rotation pont P to the tangent of s, P(s) is the sectorial 
coordinate relative to P, t is the thickness of the section wall and m the area delimited by the 
midline of the closed profile. The constant c can be obtained by imposing the following condition: 

 
                               

(4) 

The coefficient m in Eq. (3) cancels for open cross-sections and the warping coordinate is 
reduced to the Vlasov sectorial coordinate, Vlasov (1961). A method that obtains the warping 
function and the location of the shear centre in a single step, which was developed in Attard (1987) 
and implemented in a numerical code in Lisi (2012), is adopted for the developed model. The 
method is independent of the axes’ selection, of the elastic centre location and of the principal axes 
direction, which are calculated in a systematic way. The warping constant is easily evaluated by 
using the warping function distribution along the section profile by integration of linear functions. 

 
2.2 Deformation field 
 
The deformation field is defined according to the compatibility conditions, as follows 

 
 x 

ux

x
 and  xs 

ux

s

us

x  
(5) 

which considering the displacement definition in Eq. (2) yields the following deformation 
components 

 
 x   (x) y  yP  y (x) z  zP  z (x)P (s)  (x)

 
(6) 

 
  xs  2n  (x)

 
(7) 

being the corresponding stress field obtained by the following uniaxial constitutive relations 

 
 x  E x  and  xs  G xs

 
(8) 

where E is the elasticity modulus and G the shear modulus.  
Under the considered assumptions, the bending and the non-uniform torsion of the beam do not 

consider the shear deformation of the cross-section due to flexure and hence the corresponding 
tangential stresses can only be obtained through local equilibrium equations. The tangential 
stresses due to distortion are reduced to the contribution of the uniform torsion. The corresponding 
set of internal forces are obtained by integrating the stress field components over the beam cross-
section, being summarized in Table A.2 presented in appendix. 

 
2.3 Beam equations of motion 
 
The beam dynamic equilibrium equations are derived according to the variational principles in 
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mechanics by defining a stationary value for the definite integrals corresponding to the beam 
energy. This is generally known as the Hamilton principle, which allows to derive the equations of 
motion. The beam energy is expressed as a functional of the displacement field, which is enforced 
to become stationary through 

     

(9) 

where the dot and the prime express the time and spatial (with respect to the x coordinate) 
derivation, respectively. Ek represents the beam kinetic energy of the structure, V the potential 
energy, which is calculated by the relation between the strain energy U and the work of 
conservative external forces W as V=U-W; the variation qi represents the generalised coordinate 
relative to the i-degree of freedom, being kinematical compatible. Integrating the velocity 
dependent terms of Eq. (9), the following Lagrangian equations for the generalized virtual 
displacements are derived 

          

(10) 

The application of Eq. (10) to the formulation of the thin-walled beam governing requires the 
definition of the corresponding beam energy. For an elastic linear analysis and taking in account 
that the external forces are conservatives, the potential energy is given as follows 

 
V U W  with U 

1

2
E x

2 G xs
2 

                      
(11) 

where U represents the the beam deformation energy obtained by considering the deformation 
field defined in Eqs. (6)-(7). The axial component of the strain energy per unit length is obtained 
by substituting the Eq. (6) in the first term of Eq. (11) as follows 

 

1

2
E x

2 dA 
A

1

2
E   y  z   

A Sy
P Sz

P S
P

Sy
P Iy

P Iyz
P Iy

P

Sz
P Izy

P Iz
P Iz

P

S
P I y

P Iz
P I

P
























 
 z

 





















         

(12) 

while the substitution of Eq. (7) in the second term of the Eq. (11) leads to the tangential strain 
energy component per unit length 

 

1

2
G xs

2 dA 
A


1

2
 GK 

                           
(13) 

The work of the external forces is defined per unit volume as follows 

 
W  pxux  pyuy  pzuz                             

(14) 

where px, py and pz are the components of the volume load vector along the directions x, y and z, 
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respectively. Integrating Eq. (14) over the cross-section area, the following expression is obtained 

 

pxux  pyuy  pzuz dA  qx  qyy 
A
 qzz  m my y mz z  b 

        
(15) 

The resultant line loads are summarized in the appendix Table A.3 for the generalized degrees 
of freedom. The energy defined in Eq. (11) is written as a functional of the generalized 
displacement functions by considering Eqs. (12)-(13) and (15). The elastic energy can be written 
as 

 

V  FV ,  ,y,z,, y, z,  , y, z,  
L
 dL

                   
(16) 

where the functional FV represents the elastic energy per unit length of the beam, being defined as 
follows 

 

FV 
1

2
E  A  Sy

P y Sz
P z   S

P   ySy
P  yIy

P y  yIyz
P y  yIy

P   zSz
P

      zIzy
P y  zIz

P z  zIz
P    S

P   Izy
P    Iz

P    I
P    1

2
 GK 

      qx  qyy  qzz  m my y mz z  b      

(17) 

Notice that the terms in braces are referred to the four generalized displacements that represent 
the axial strain of the beam. The term of Eq. (13) is due to the tangential strain energy. The 
geometric properties of the cross-section represented in Eq. (17) are summarized in the appendix at 
Table A.1. The kinetic energy of the beam is defined by considering the corresponding inertial 
forces as follows 

                          
(18) 

with representing the mass per unit volume and where the three components take into account the 
kinetic energy associated with the element motion along directions x, y and z, respectively. The 
displacements are those described by Eqs. (1)-(2). The kinetic energy associated with the thin-
walled beam extension, bending and torsion, considering the warping of the cross-section, is 
defined by substituting the displacement field ux (obtained from Eq. (2)) into the corresponding 
component of Eq. (18), being written as follows 

   

(19) 

The kinematic contribution of the transverse displacements is derived by considering Eq. (1), 
being written as follows 
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(20) 

The integration over the cross-section of the Eqs. (19)-(20) leads to the energy functional FEk , 
which allows to obtain the beam kinetic energy written as follows 

                         
(21) 

where the energy per unit length is given by 

         

(22) 

The functional of Eq. (22) takes into account the inertial forces due to the motion of the beam 
and depends on the generalized velocities. The equation (10) is rearranged considering (i) ,  
for the axial problem, (ii) y, y, y  and z, z, z   for the bending in the two directions and 

(iii) ,  ,  for the torsion of the beam. The dynamic equilibrium equations are obtained by 
the integration by parts of Eq. (10) considering the definition of the functionals given in Eqs. (16) 
and (22), being the resulting set of differential equations written in Eqs. (23)-(26) for the 7 degrees 
of freedom represented in Fig. 4. The equations are represented in an uncoupled form by 
considering the bending and the axial effects of the beam referred to the elastic centre axis and the 
twist with respect to the shear centre axis: 

Axial displacement 

 
A

2
t2  EA

2
x2  qx  0

                         
(23) 

 
 

 
Fig. 4 Beam model model 
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Bending in (x, y) plane 

 

2M y

x2 
my

x
 qy  A

2y

t2  Sz
A 

2
t2  Iy

2 y

t2  0
               

(24) 

Bending in (x, y) plane 

 

2Mz

x2 
mz

x
 Iy

2 z

t 2

Vz

x
 qz  A

2z

t2  Sy
A 

2
t2  0

              
(25) 

Torsion 

 
T  I

2

t2


x







M

x
TS  b

                      
(26) 

 

dT

dx
  Iy

A  Iz
A  

2

t2
 Sz

A 
2y

t2
 Sy

A 
2z

t2
 m  0

               
(27) 

where the superscript A refers to the shear centre; the cross-section properties and the beam 
internal forces are defined in Tables A.1, A.2 and A.3. The differential equations that represent the 
static equilibrium of thin-walled beams are obtained by considering the time-dependent derivatives 
of the generalized displacement to be null. 

In the dynamic equilibrium Eq. (26), where all inertial contributions are considered, bending  
and torsion are coupled through the terms A

y
A
z SS  and . In fact, in thin-walled beam dynamics,  

although considering the cross-section kinematic's referred to the shear centre and the elastic 
centre, the flexural and torsional behaviour remain coupled. This coupling is a result of the rotation 
around A(y,z) causing transverse displacements of the elastic centre, Friberg (1985). 
 
 
3. Numerical model of the thin-walled beam 
 

3.1 Finite element formulation 
 
A finite element is derived for the solution of the governing beam differential equations for an 

arbitrary thin-walled cross section. The formulation of the finite element considers the 
displacement field interpolation functions to be also adopted as weight functions (Galerkin 
approach), in order to derive the corresponding discrete equations. In comparison to conventional 
beam elements this finite element considers an additional degree-of-freedom to represent the 
cross-section warping, being suitable for considering this effect both in static and dynamic analysis 
of thin-walled beams. 

The main objective of this beam model is the application to the dynamic analysis of bridge 
girders, particularly regarding its dynamic analysis considering the warping and eccentric loads. 
However, the application to a static analysis was also performed in order to validate the model, 
being the results presented in Lisi (2012). The approximation of the displacement field for the 
beam finite element is defined as follows 

 
 e  N Hy

e dHy
e

dx
Hz

e dHz
e

dx
H

e dH
e

dx













ue

             

(28) 
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with  e  and ue defined by 

 e  e y
e y

e z
e z

e  e  e





 and ue  ux
e uy

e uy
e uz

e uz
e u

e u
e





T

 
(29) 

where linear and Hermite polynomials, Ne and Hi
e, respectively, are used as approximation 

functions in order to obtain the continuity and the completeness required for the finite element 
beam model. The vectors ui

e, with i=x, y, z and represent the generalized vectors containing the 
displacements of the end nodes of the element. 

The displacement field interpolation is substituted in the beam equilibrium Eqs. (23)-(26) 
obtained by applying the Hamilton's principle, being the resultant residue weighted by the same set 
of interpolation functions towards the definition of the corresponding weak formulation. 

The undampened dynamic equilibrium of the thin-walled beam corresponding to a multi-degree 
of freedom system is thereby defined through the following system of algebraic equations 

 
                            (30) 

where the matrices Me and Ke represent, respectively, the mass and the stiffness element matrices 
and fe the element vector of external forces; de represents the element nodal displacements, having 
14 components, corresponding to 7 degrees of freedom considered for each end, being written by 

 
de  d1

e d2
e





T

                             
(31) 

where d1
e and d2

e are defined as follows 

 

d1
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e w1
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e
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e wz2
e wz2

e w 2
e w 2

e





T

                 

(32) 

The beam element is shown in Fig. 5. The displacements represented by the three arrows are 
the twist curvatures, expressed as first derivative of the twist angle for each end node because 
Vlasov's theory is considered. 
 
 

 
Fig. 5 Beam element and generalized degrees of freedom. 
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The stiffness components associated with the torsional degree of freedom are written for the 
reference frame with the point P as the respective origin as follows 

 
K

e  K1
e K 2

e K3
e K 4

e

                         
(33) 

where the different components refer to the axial, bending in the (x,z), (x,y) plans and torsion 
contribution considering the coupled effects. These components are given by 
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As done for the elements stiffness matrix, the mass components associated with the torsional 
degree of freedom are written for the same reference frame as follows 

 
M

e  M1
e M 2

e M3
e M 4

e

                        
(38) 

where the different components refer to the same contributions considered for the stiffness matrix. 
The components of the mass matrix are given by 

                      

(39) 

              

(40) 

               

(41) 

            

(42) 

The coupling between torsional and flexural behaviour occurs due to inertial effects, Eqs. (24), 
(25) and (26), even if the equilibrium equations are referred to the shear centre and the centroid of 
the cross-section. In the sequel, the beam element is derived in a coupled form by considering a 
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single axis. By doing so the compatibility of displacements between elements is simplified. In fact, 
although being possible, Gunnlaugsson and Pedersen (1982), the compatibility between beam 
elements that were formulated considering both shear centre and centroid axes is not so 
straightforward to implement. 

Furthermore, the obtained coupled lateral-torsional vibration modes can be directly represented 
by the displacements of the corresponding axis, allowing a clear understanding of the vibration 
phenomena and the evaluation of the modal participation factors. 

Therefore, and since it is not possible to uncouple the beam dynamic equations, the finite 
element was derived by referring the equations to a single axis, assuming thereby a coupled form. 
This formulation has the advantage of considering the compatibility between elements in a 
simplified procedure since the nodal displacements are referred to a single axis. The element 
stiffness, Ke, mass Me and the vector of external forces fe written in Eq. (30) are obtained 
considering the element axis coincident with the elastic centre axis C, being given in the appendix. 

This formulation allows to define the displacement field, the stress distribution and the 
boundary conditions of the element referred to the same axis and take into account the coupling 
between bending and torsion, as represented for a mono-symmetric beam (Fig. 4). 
 

3.2 Structural dynamic analysis 
 
The dynamic analysis of the combined flexural-torsional vibration for general multi-spans 

bridges is considered through the previously developed model. 
 

3.2.1 Free vibrations of the system 
The finite element method is used in the sequel for solving the vibration problem for a 

continuous straight beam structure. The dynamic equilibrium of the system is described by a 
vectorial equation, written for the undamped vibration in the following form 

 
                              (43) 

where M and K are respectively the mass and stiffness matrices of the multi-degrees of freedom 
system. Notice that these matrices are obtained assembling the element property matrices 
(presented in section 2) that compose the whole system using the finite element method 
techniques. If harmonic functions are considered for the time-variation of the displacements v(t) 
the Eq. (43) can be written as 

 
K  p2M  v̂  0

                             
(44) 

where p is the radian frequency and v̂  is the amplitude of the displacement vector. The Eq. (44) 
represents an eigenvalue problem, being the corresponding N roots the frequencies of the 
respective modes of vibration. 
 

3.2.2 Forced vibrations of the system 
The orthogonality properties of the normal coordinates may be used to simplify the equations 

of motion of the system. The general form of the dynamic equations for the damped system is 
given by 

                             
(45) 
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where C is the damping matrix of the system and f(t) is the time-dependent external load vector. 
The element damping matrix is calculated a posteriori as proportional to the mass and the stiffness 
matrix by the Rayleigh assumptions, Lisi (2012), so as to satisfy the orthogonality conditions. The 
Eq. (45) can be written in normalized coordinates to obtain an independent SDOF equation for 
each vibrational mode of the structure as follows 

 
                          (46) 

In Eq. (46) Yn is the scalar modal coordinate, i.e., the modal amplitude at time t, being the 
structure property matrices normalized with respect to the n-vibrational mode and thus represented 
with the subscript n. The displacements can now be expressed in geometric coordinates by the 
modal superposition method, leading to 

 
v(t)  1Y1 2Y2  ... nYn  ...                        (47) 

being n the shape vector of the n-th vibration mode. 
An eccentrically concentrated moving load traveling with a constant velocity is considered in 

the thin-walled beam model. The mass of the moving load is considered to be small when 
compared with the mass of the thin-walled structure and thus the corresponding inertial effects are 
neglected, Fryba (1999). 
 
 
4. Benchmarking of the model 
 

The developed model is applied to (i) the analysis of free vibrations of thin-walled beams, 
evaluating the natural frequencies and the corresponding vibrational modes, and (ii) to the analysis 
of beams submitted to a moving load. Towards an evaluation of the model performance, a 
comparison with models reported in the literature was made, namely the formulation of Prokic 
(2005) regarding the evaluation of coupled natural frequencies and the analytical solution of 
Michaltsos et al. (2005) for a moving load analysis including the cross-section warping in a simple 
supported beam. A comparison with the pioneer work of Gere (1954) was also performed, 
allowing to verify an excellent agreement between results, which however are not presented in this 
paper, but can be found in Lisi (2012). 
 

4.1 Coupled flexural-torsional free vibrations 
 
Whenever the centroid and the shear centre do not coincide, the free vibration of a beam with a 

non-symmetric cross-section results in a coupled vibration of flexural and torsional modes. The 
analytical solution of the coupled equilibrium equations towards the evaluation of the natural 
frequencies becomes more difficult and cumbersome to obtain for general support conditions. 
Conversely, the numerical model derived in section 3 is an efficient form of evaluating coupled 
natural frequencies for more general boundary conditions, in particular those corresponding to 
continuous bridge girders. 

The coupled frequencies of a simple supported beam with a double-T cross-section 
(represented in Fig. 6 with the dimensions given in Table 1) are obtained analytically from the 
formulation presented in 2 by considering the equilibrium equations referred to the elastic centre 
axis and neglecting rotary inertial effects, since its relevance for lower modes of vibration can be 
considered reduced. Similarly to Timoshenko (1974), Gere (1954) and Prokic (2005), the  
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Fig. 6 Double-T cross-section layout 

 
Table 1 Double-T cross-sectio dimensions 

B [m] 0.45 tw [m] tf [m] h [m] 
6.65 3.33 0.80 0.35 3.03 

A [m2] Iy [m
4] Iz [m

4] Iωω [m6] K [m4] 
9.51 9.16 122.37 110.14 1.17 

 
 

displacement components are defined by lengthwise sine functions (having n multiples of the 
beam span as wavelengths, nx/L) in compliance with the beam boundary conditions (simple-
supported). For each wavelength n=1, 2, 3, two coupled natural frequencies are obtained, which 
correspond to modes with a predominantly flexural and with a prevalently torsional behaviour. 

The coupled natural frequencies obtained for the three wavelengths from the derived 
formulation are compared with the formulations of Prokic (2005) (“exact” approach) and of 
Michaltsos et al. (2005), which neglects rotary inertial effects. Two numerical values of 
frequencies are given for each wavelength n; the lowest value (which is lower than the 
corresponding uncoupled value) represents a response predominantly torsional, while the highest 
value (higher than the corresponding uncoupled value) is prevalently flexural, Gere and Lin 
(1958). The developed formulation allows to obtain “exact” values of frequencies for each 
wavelength n as it can be inferred from Table 2, while the error associated with Michaltsos’s 
obtained frequencies, although negligible for the first frequency, increases with n and is higher for 
the prevalently flexural frequencies. This is due to the fact that rotary inertial effects are neglected 
in Michaltsos et al. (2005): the second frequency associated with n=3, where prevalently flexural 
motion is involved, is 23.7% higher then the exact value. (the error Michaltsos’s formulation is 
evaluated by [(fe−fM)/fM]/100, represented in Table 2 as “Dimensionless difference”, fe is the exact 
frequency and fM is obtained frequency). 

The finite element derived in section is applied to the free vibration analysis of beams so as to 
efficiently consider more general boundary conditions. The accuracy of the solution in terms of 
natural frequencies is verified for the 1st and 2nd vibrational modes of the double-T simple 
supported beam; the results obtained with numerical models with 1, 2, 4 and 8 finite elements are 
presented in Table 3, being verified a good agreement between results and a convergence to the 
exact values as the model is refined by increasing the number of elements. A small number of 
elements for the model increases the beam stiffness and hence the frequency values obtained by 
the numerical model are higher than the exact values; nevertheless, good results in terms of 
convergence are attained; frequencies obtained from a model with only 4 elements for the first and 
second mode are, respectively, 0.015% and 0.026% higher than the corresponding exact values. 
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Table 2 Mode vibration frequencies for the S-S beam with double coupling 

Wavelength n=1 n=2 n=3  

Freq. [Hz] 

2.74 8.60 8.64 31.75 18.19 64.16 Prokic (exact) 
2.75 8.85 8.69 35.29 18.43 79.36 Michaltsos 
0.14 2.90 0.56 11.15 1.27 23.68 Dimensionless difference [%] 
2.74 8.60 8.64 31.74 18.19 64.16 Presented formulation 

 
Table 3 Covergence rate of frequencies for the 1st and 2nd vibration modes 

 Developed finite element  
Vibr. Mode Freq. 1 el. 2 el. 4 el. 8 el.  

1 mode [Hz] 
2.9076 2.7492 2.7439 2.7435 Exact: 2.7435Hz 
5.981 0.208 0.015 0.000 Dimensionless difference [%] 

2 mode [Hz] 
9.5364 8.6356 8.6043 8.6022 Exact: 8.6021Hz 
10.861 0.389 0.026 0.001 Dimensionless difference [%] 

 
 

The warping of a thin-walled cross-section increases the natural frequency of a beam, being 
therefore a relevant effect to consider in a dynamic analysis, Gere (1958), Banerjee et al. (1996).  
Towards the evaluation of the cross-section warping influence on the structure dynamic response, 
the derived finite element was adopted for evaluating coupled natural frequencies for different 
values of the warping stiffness and for three different boundary conditions: (i) SS - simple-
supported; (ii) CS - clamped/simple supported and (iii) CC - clamped beam. (the warping degree-
of-freedom is free for a simple supported condition and restrained for a clamped support). The 
results are presented through two non-dimensional parameters: (i) p/pSS (x) that represents the 
frequency increase expressed as a ratio between the frequency of a generally supported beam, p, 
and the frequency of a simple supported beam, pSS; and (ii) a relation between torsional and 
warping stiffness considered by a coefficient defined as follows 

 
 

GKL2

EI                                 
(48) 

where L is the beam length. The frequency ratio is obtained by solving the eigenvalue problem of 
Eq. (44) of the numerical model by taking in account the respective boundary conditions. 
Frequencies of the first and second modes of vibration are represented in a semi-logarithmic scale 
in Fig. 7 as functions of the dimensionless parameter κ for each vibrational mode. 

Lower values of κ correspond to a more notorious increase of the respective frequency; e.g., for 
a beam with warping restrained at both ends the ratio between frequencies, p/pSS (x), is up to 230% 
for the first vibrational mode. Conversely, whenever the torsional response of the cross-section is 
mainly due to pure Saint-Venant torsion κ>15 the relation between frequencies, p/pSS (κ), is lower 
and the warping influence on increasing the frequency diminishes. It can be inferred from these 
results that the warping is more relevant for thin-walled cross-sections with an open profile than 
for closed cross-sections, being the boundary conditions restraining warping an important factor to 
consider since it significantly increases the beam natural frequencies. However, the increase of 
modal frequency for higher vibration modes is smaller, even for the cases of pure warping torsion; 
in fact, for higher modes of vibration, the stiffness is not as a much affected by restraining 
warping. 
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Fig. 7 Influence of boundary conditions on the 1st and 2nd mode frequencies 

 
Table 4 Maximum midspan displacements with load speed v=20 m/s 

max uy(L/2) [mm] max φ (L/2) [rad*10-3]  

−0.31 0.21 Michaltsos et al. (2005) 
−0.31 0.22 Present model 

−0.2147% −3.3833% Dimensionless difference [%] 
 
 

4.2 Dynamic response due to an eccentric moving load 
 
The developed model was applied to the analysis of a simple supported thin-walled beam 

submitted to an eccentric moving load; the beam has a span with L=50 m and a mono-symmetric 
double-T cross-section. This example was solved analytically in Michaltsos et al. (2005) and is 
adopted herein for comparison purposes. The cross-section geometry is thus equal to that 
considered in Michaltsos et al. (2005). 

The formulation of Michaltsos et al. (2005) derives a set of beam governing equations that 
includes the cross-section warping, considering the cross-section shear centre for the torsional 
behaviour and the cross-section elastic centre for the flexural behaviour. The beam response to a 
concentrated moving load Pz acting eccentrically in the beam cross-section was obtained by 
considering modal solutions defined lengthwise by sinusoidal functions and using Duhamel's 
integral. 

The midspan displacement uy and the cross-section torsion  were obtained for different 
moving load velocities v, magnitudes Pz and eccentricities e. A comparison between the maximum 
midspan displacement uy and torsion  obtained from the developed model and from the 
formulation of Michaltsos et al. (2005) is presented in Tables 4 and 5 for a moving load Pz=1500 
kp (kp-kilopond, 1 kp=9.8 N) acting with an eccentricity of e=1m and for the velocities of v=20 
ms-1 and v=40 ms-1. The results obtained by the developed numerical model are in a good 
agreement with those corresponding to the formulation of Michaltsos et al. (2005); (a 
dimensionless difference determined as [(fM−f)/f]/100 where fM is the displacement value obtained 
by Michaltsos’s equations, while f corresponds to the frequency obtained using the developed 
model). The different values are mainly due to the neglected rotary inertia in the governing 
equations derived by Michaltsos et al. (2005). 
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Table 5 Maximum midspan displacements with load speed v=40 m/s 

max uy(L/2) [mm] max φ (L/2) [rad*10-3]  

−0.46 0.31 Michaltsos et al. (2005) 
−0.47 0.32 Present model 

−2.4737% −3.0858% Dimensionless difference [%] 
 

 
Fig. 8 Dynamic influence lines at the midspan point: 20 m/s (dashed) and 40 m/s (cont.): 
(a) displacement uy; (b) rotation φ 

 
 
5. Application to the dynamic analysis of a bridge girder 
 

The finite element derived in section 3 that includes the cross-section warping as an additional 
degree-of-freedom and is formulated with reference to a single axis coinciding with the beam 
elastic centre, allows to efficiently perform the dynamic analysis of continuous bridge girders 
submitted to an eccentric moving load. This model represents a novel approach for the dynamic 
analysis of bridges through a thin-walled beam model when compared with other formulations 
reported in the literature. In fact, regarding the dynamic response to an eccentric moving load, the 
work of Michaltsos et al. (2005), being based on an analytical formulation, is not efficient to 
analyse a continuous beam. On the other hand, other works that have studied the bridge dynamics 
have not included warping, Garinei and Risitano (2008). 

A continuous concrete bridge with three spans (30 m+40 m+30 m), represented in Fig. 9, 
submitted to a vertical force moving at constant speed and acting with an eccentricity regarding the 
cross-section shear centre is analysed by the developed numerical model. Two types of cross-
sections are considered: (i) the double-T cross-section previously analysed in section 4.1, which is 
depicted in Fig. 6, having the characteristics given in Table 1 and (ii) a closed cross-section with 
the geometry represented in Fig. 10 with the properties represented in Table 5; these two cross-
sections are made of a concrete with an elastic modulus of 32 GPa and have been considered so as 
to have an equivalent flexural stiffness. The analysis is performed numerically by the derived finite 
element, considering a model discretization with 100 elements for the central span and 75 elements 
for the lateral spans. The natural frequencies are obtained by the solution of the eigenvalue 
problem stated in Eq. (44), where both the stiffness and the mass matrices take into account the 
warping degree of freedom, being the mass associated with the railway bridge self-weight and a 
superimposed dead load of 85 kN/m. The railway traffic is modeled by a single vertical load  
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Table 6 Mode vibration frequencies for the bridge model 

 Double-T section Box girder section 

Mode Freq. [Hz] Major modal participation Freq. [Hz] Major modal participation 

1 3.97 uz motion 3.79 uz motion 
2 4.81 Coupled uy-(φ) motion 6.19 uz motion 
3 6.49 uz motion 7.43 uz motion 
4 7.37 Coupled uy-(φ) motion 9.08 ux motion 
5 7.79 uz motion 10.68 Coupled uy-(φ) motion 
6 8.52 Coupled uy-(φ) motion 14.16 uz motion 
7 9.08 ux motion 14.22 Coupled uy-(φ) motion 
8 14.84 uz motion 14.37 Coupled uy-(φ) motion 
9 15.81 Coupled uy-(φ) motion 17.01 Coupled uy-(φ) motion 

10 17.34 Coupled uy-(φ) motion 21.50 uz motion 
11 22.51 uz motion 22.32 Coupled uy-(φ) motion 
12 23.64 Coupled uy-(φ) motion 23.44 uz motion 
13 24.55 uz motion 26.17 Coupled uy-(φ) motion 
14 25.61 Coupled uy-(φ) motion 27.25 ux motion 
15 27.25 ux motion 29.80 Coupled uy-(φ) motion 
 
 
The behaviour of the two cross-sections is significantly different, in that for the open cross-

section the coupled vibrational modes occur for lower values of frequency (namely, the 2nd mode, 
with 4.81 Hz), whereas for the closed section the coupled vibrations correspond to higher natural 
frequencies (the first three frequencies are all given by bending motion in the vertical plane, being 
the coupled mode associated with a frequency of 10.68 Hz). 

 
5.2 Forced vibration analysis  
 
The dynamic response of the bridge due to an eccentric moving load Pz is obtained from a 

modal analysis of the numerical model, adopting the Newmark method for the time integration 
procedure with an interval of Δt[s]=0.01T1. The double-T and the box girder cross-section are 
considered in the analysis, being possible to highlight its influence on the bridge dynamic 
response. A material damping corresponding to a coefficient of 1% is considered, being derived a 
proportional damping matrix according with Rayleigh procedure, Lisi (2012). Five different 
speeds of the load passage are considered in the analysis, being the considered values usual in the 
design of high-speed railway bridges; a minimum speed of 200 km/h and a maximum speed of 350 
km/h, which corresponds to a design speed of 420 km/h is considered.  

A dynamic analysis is performed by computing the influence lines at AA’ section, considering 
the double-T section of Fig. 9, for the rotation of the cross-section torsion  and for the horizontal 
and vertical displacements, uy and uz, respectively. The results (dynamic influence lines) for the 
double-T section are represented in Fig. 11, being in Fig. 12 the correspondent dynamic lines of 
the box girder section. 

A dynamic influence line can be considered to represent an index of structural flexibility 
whenever the bridge is submitted to a load moving lengthwise along the bridge girder. The 
maximum values of midspan vertical displacements are obtained for speed values of 300 km/h and  
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Fig. 11 Dynamic influence lines at the section AA’ (double-T section): displacement (a) uz and (b) 
uy; (c) rotation  

 
 
350 km/h, being the vertical deflection of the box section similar to those obtained for the open 
section, Figs. 11 and 12, since the rotary inertia of both cross-sections around the y-axis are of the 
same order of magnitude. 

The effect of warping characterizes the torsional response of the double-T section as it can be 
verified in Fig. 11; the dynamical response regarding the values of torsion and horizontal 
displacement,  and uy respectively, have more oscillations than the vertical displacements of uz as 
can be observed from the corresponding influence lines. The dynamic response of the bridge with 
the closed cross-section has an increased oscillation pattern (by comparison with the results of the 
double-T cross-section), which is verified through the influence line of  represented in Fig. 12; 
this fact is a consequence of the higher torsional stiffness of the box girder when compared with 
the double-T section, which is also represented on the free vibration analysis, table 6. 

The different response between the box girder section and double-T section regarding the 
rotation of torsion, , is highlighted in Fig. 13 for speeds of 420 km/h and 200 km/h. Notice that 
the maximum values of  at the AA' section for the double-T section are about 4 times higher than 
those of the box section. In fact, the rotation of torsion of the closed section has maximum values 
for the loading positioned at the central span, whilst for the open section, which is more prone to 
warping effects, the higher values of rotation are associated with loads acting at the lateral spans. 

The uy displacements for the double-T section are more relevant in terms of magnitude by 
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Fig. 12 Dynamic influence lines at the section AA’ (Box girder section): displacement (a) uz and (b) 
uy; (c) rotation  

 

 
Fig. 13 Twist rotation at the section AA’: load speed of (a) 200 km/h and (b) 420 km/h 

 
 

comparison with those of the box section, being dependent on the torsion’s rotation of the section; 
in fact, the horizontal displacements of the double-T section are about 5 times higher of those of 
the box girder section. 
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The influence of the load speed on the maximum displacements is analysed at the midspan 
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Fig. 14 Maximum generalized displacements at the section (AA’): (a) displacements uz, (b) uy and 
(c) rotation . Double-T (cont.) and box girder (dashed) sections 
 
 

section AA’ for a range of speeds between 200 km/h and 420 km/h. The dynamic influence line of 
each displacement component, uz, uy and , is obtained for each value of speed, so as to determine 
the corresponding maximum values, uz,max(AA’), uy,max(AA’) and max(AA’). These maximum 
values of displacements are represented in Fig. 14. 

The maximum vertical displacements represented in Fig. 14 (uz,max) are similar for both cross-
sections since an equivalent bending stiffness was adopted for the cross-sections and also due to a 
similar dynamical response of the bridge regarding this vibrational mode. Conversely, the cross-
section rotation max (AA’), which is represented in Fig. 14, has different values for the two types 
of cross-sections. In fact, for the closed cross-section, the influence of the moving load speed on 
the maximum rotation is reduced, being the torsion approximately constant for all values of speed. 
On the other hand, though, the max value for the double-T section is variable with the load speed, 
being the maximum value obtained for a value of 420 km/h; notice that this value of rotation is 4.3 
times higher than the correspondent value of a box girder section. The increase of the rotation of 
torsion  occurs at higher velocities, in that the corresponding lateral-torsional vibration response 
has associated higher values of frequency (see table 6). 

The horizontal displacements uy,max, being coupled with the cross-section rotation, are also 
different for the two bridge sections compared. Being the prevalently flexural frequencies of 
vibration for the coupled modes higher than the prevalently torsional ones, the difference between 
the values of uy,max (AA’) for the two types of cross-section (see Fig. 14) is not as significative as 
in the case of the torsion rotation.  
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Fig. 15 Sketch of the point P for the double-T section 
 

 
Fig. 16 Dynamic influence line of the displacement uz

P at the section AA’: (a) 200 km/h; (b) 400 km/h 

 
 

5.2.2 Effect of warping on the open section’s rotation 
The dynamic effect of the warping deformation is analysed in the sequel for the double-T 

cross-section of Fig. 9. Towards the evaluation of the warping effect on the bridge dynamic 
response, the vertical displacement of the cross-section point P, which corresponds to the railway 
track position and hence has an eccentricity of e=2.5 m in relation to the cross-section shear-centre 
as depicted in Fig. 15, due to an eccentric moving load of Pz=1000 kN was obtained. Dynamic 
influence lines were computed for that vertical displacement by two numerical models: (i) a model 
that considers the finite element derived in section 3, which includes an additional degree-of-
freedom representing the cross-section warping, and a conventional beam element that does not 
consider warping. The results obtained are represented in Figs. 16 for two speeds, 200 km/h and 
400 km/h; the maximum vertical displacement uz

P x, t   obtained by neglecting the warping is 
2.43 and 2.28 times higher than the value obtained when warping was considered for 420 km/h 
and 200 km/h, respectively. This fact highlights the relevance of warping regarding the dynamical 
response of bridges with an open cross-section.  
 

5.2.3 Amplification of displacements in dynamic response 
The amplification of displacements in dynamic response is evaluated by adopting the 

developed model to compute static and dynamic influence lines for the displacements of the three-
span bridge mid-span cross-section AA’ due to moving load Pz=1000 kN with an eccentricity 
e=2.5 m. The static and dynamic influence lines for the displacements uy and  of the section AA’ 
are represented in Fig. 17 for load speeds of 350 km/h and 420 km/h, being possible to observe a  
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Fig. 17 Influence lines of the displacements at the section AA’: (a) disp. uz; (b) rotation  

 
Table 7 Dynamic amplification coefficients 

Dynamic factor  uy 
350km/h 1.11 1.13 
420km/h 1.24 1.27 

 
 

relevant amplification of displacements.  
A coefficient di  that represent the increase of max (AA’) and uy,max (AA’) due to the dynamic 

effects produced by the moving load are given for the two considered speeds in Table 7. The 
coefficients  and uy are obtained from di  udi,max AA '  / uS

di,max AA '  , where uS
di is the static 

displacement. 
 
 
5. Conclusions 
 

A beam formulation for the dynamic analysis of thin-walled structures that considers the cross-
section warping was presented. The formulation was verified to be accurate on the free vibration 
analysis of a thin-walled beam, reproducing solutions reported in the literature for single-span 
beams; the influence of warping on the value of coupled natural frequencies was evaluated for 
different boundary conditions.  

A numerical model based on a derived finite element was adopted so as to obtain the thin-
walled beam dynamic response. The finite element has an additional degree of freedom 
representing the cross section warping, having thus seven degrees of freedom per node; the 
displacement field (including the component associated with warping) was approximated by 
Hermite functions. This finite element allowed to efficiently consider general support conditions of 
beams, easily allowing the analysis of continuous beams and being therefore adopted for the 
dynamic analysis of a bridge girder.  

Furthermore, the analysis of a beam submitted to an eccentric moving load was performed by 
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the developed numerical model. To the best knowledge of the authors the analysis of a beam 
submitted to a moving load that involves a lateral-torsional coupled vibration, including the cross-
section warping, was carried out analytically and for simple supported beams. The developed finite 
element allowed to consider the analysis of a thin-walled beam submitted to an eccentric load 
through a one-dimensional model for general supported conditions, which enabled its application 
to the dynamic analysis of a bridge girder.  

Towards a validation of the numerical model, analytical results of a simple-supported beam 
submitted to an eccentric moving load were accurately reproduced. The developed model was then 
adopted for the analysis of a three span continuous bridge, considering two possible types of cross-
sections (a double-T and a box girder section) with an equivalent inertia regarding vertical flexure. 
Coupled lateral-torsional vibrations of the double-T bridge girder were obtained at significantly 
lower frequencies than those of the closed cross-sections. The bridge girders were submitted to an 
eccentric moving load, being computed dynamic influence lines of the mid-span displacements for 
different values of the load speed. The dynamic response of the girder was verified to be affected 
by the cross-section warping, being particularly relevant for the open cross-section and for higher 
load speeds. 
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Appendix 
 

A Cross-section properties, stress resultants and external loads 
The properties of the cross-section referred to the generic point P are illustrated in Table A.1. 

Considering the axial displacement and the bending of the beam referred to the elastic centre C 
(Fig. 2) and admitting the rotation around the shear center of the cross-section (A), the stress 
resultants and the external loads are given by the expressions in Tables A.2 and A.3, respectively. 
 
 

Table A.1 Geometric properties of the cross-section 

 Resultant over the section area 

Cross-section area A  dA
A
  

First moments of area 

Sy
P  y  yP dA

A


Sz
P  z  zP dA

A


 

Second moments of area 

Iy
P  y  yP 2

dA
A


Iz
P  z  zP 2

dA
A


Iyz
P  y  yP  z  zP dA 

A
 Izy

P

 

Sectorial moments 

S
P  P (s)dA

A


Iy
P  y  yP P (s)dA

A


Iz
P  z  zP P (s)dA

A


I
P  P

2 (s)dA
A


 

Torsion parameters  

 
Table A.2 Resultant forces for the degrees of freedom considered 

Displacement Generalized force Resultant 

Extension Axial force N   x dA
A
  
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Table A.2 Continued 

Bending in (x,y) plane 
Shear force 

 
Bending moment 

Vy   xy dA
A


M y   x y dA
A


 

Bending in (x,z) plane 
Shear force 

 
Bending moment 

Vz   xz dA
A


Mz   xz dA
A


 

Torsion 
Torsion moment 

 
Bimoment 

T  U dA 
A
  xshP dA

A


M   x dA
A


 

 
Table A.3 Resultant beam loads per unit length 

 

 
 

B Property matrices of the element 
The stiffness and mass matrices, both of them symmetric with respect to the diagonal terms, 

together with the vector of the external nodal forces, can be written by sub-matrices corresponding 
to the element ends as follows by 

Ke 
K11

e K12
e

K12
e K22

e














, Me 

M11
e M12

e

M12
e M22

e















 and f e 
f11

e

f22
e














 

being the corresponding components defined as follows: 

Generalized displacements Resultant load per unit length 

Extension qx  px dA
A
  

Bending in (x,y) plane 

qy  py dA
A


my  px y  yP dA
A


 

Bending in (x,z) plane 

qz  pz dA
A


mz  px z  zP dA
A


 

Torsion 

m  pz y  yP   py z  zP dA
A


b  px s dA
A

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Dynamic analysis of bridge girders submitted to an eccentric moving load 
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The coefficients of the Me matrix are identified as follows: 
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The vector of nodal forces fe follows as listed, referring by the subscript 1 and 2 at the beam 
element ends, respectively: 
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