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Abstract.  An interfacial penny-shaped crack between piezoelectric layer and elastic half-space subjected 
to mechanical and electric loads is investigated. Using Hankel transform technique, the mixed boundary 
value problem is reduced to a system of singular integral equations. The integral equations are further 
reduced to a system of algebraic equations with the aid of Jacobi polynomials. The stress intensity factor and 
energy release rate are determined. Numerical results reveal the effects of electric loadings and material 
parameters of composite on crack propagation and growth. The results seem useful for design of the 
piezoelectric composite structures and devices of high performance. 
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1. Introduction 

 

Piezoelectric materials have wide applications in transducers, sensors and actuators due to the 

electric and mechanical coupling characteristics. Because of the brittle nature, the fracture of 

piezoelectric materials has received much attention.  

The paper of Zhang et al. (2002), Zhang and Gao (2004), Kuna (2010) provided extensive 

reviewing for the current state of the fracture mechanics research of piezoelectric materials. On the 

penny-shaped crack problems, using the method of potential functions, Wang (1994) obtained the 

general solution of three-dimensional problems for transversely isotropic piezoelectric materials 

and analyze the mechanical-electric coupling behavior of penny-shaped crack. Kogan et al. (1996) 

obtained the closed form solution for the penny-shaped crack in an infinite piezoelectric media 

using harmonic functions. The problem of a penny-shaped crack in a transversely isotropic 

piezoelectric material loaded by both normal and tangential tractions and by electric charges was 

analyzed by Karapetian et al. (2000). Chen and shioya (2000) presented an exact analysis of the 

problem of a penny-shaped crack in a transversely isotropic piezoelectric medium subjected to 

arbitrary shear loading that is antisymmetric with respect to the crack plane. The effect of a 

penny-shaped crack on the deformation of an infinite piezoelectric material subjected to mode I 
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electrical and mechanical loading has been studied by Yang (2004) using the theory of linear 

piezoelectricity and applying appropriate boundary conditions. Yang and Lee (2003a, b) 

investigated the problems of a penny-shaped crack in a piezoelectric cylinder and in a piezoelectric 

cylinder surrounded by an elastic medium, respectively. Wang et al. (2001) analyzed the problem 

of a penny-shaped crack in a piezoelectric medium of finite thickness. Li and Lee (2004) 

investigated the effects of electrical load on crack growth of penny-shaped dielectric cracks in a 

piezoelectric layer. Feng et al. (2006) considered the dynamic fracture behaviors of a 

penny-shaped crack in a piezoelectric layer. Using the finite element method, three-dimensional 

cracks of different geometry were considered by Shang et al. (2003). Wang et al. (2011) studies a 

penny-shaped crack in a finite thickness piezoelectric material layer which is subjected to a 

thermal flux on its top and bottom surfaces. Ueda and Ashida (2007), Ueda (2008) investigated the 

penny-shaped crack in a functionally graded piezoelectric strip. 

As far as the interfacial penny-shaped crack problem is considered, an integral equation 

formulation is successfully developed to analyze the case of a penny-shaped crack at the interface 

of a piezoelectric bi-material system by Tian and Rajapakse (2006). To the authors’ knowledge, 

the interfacial penny-shaped crack between piezoelectric layer and elastic half space subjected to 

electroelastic loadings has not been considered. 

The objective of this paper is to seek the solution to the interfacial penny-shaped crack problem 

between piezoelectric layer and elastic half-space. This is a two-dimension axisymmetric problem. 

A system of algebraic equations is derived using the Hankel transform and Cauchy singular 

integral equation methods. The stress intensity factor (SIF) and energy release rate (ERR) of crack 

tip are obtained and numerically solved. It is shown that the crack tip behaviors depend strongly 

upon the electric loadings, material parameters of composite, which could be of particular interest 

to the analysis and design of smart sensors/actuators constructed from piezoelectric composite 

laminates.  

 

 

2. Basic formulations 
 

As shown in Fig. 1, a penny-shaped crack with the radius a perpendicular to the poling axis is 

situated at the interface of piezoelectric layer and elastic half sapce and occupies the region 0≤r<a, 

z=0. The thickness of piezoelectric layer is h. 

The boundary conditions for the penny-shaped crack problem are set as 

    ,0 ,0 0,E

rz rzr r      ,0 ,0 0,E

zz zzr r    ,0 0,zD r   0 r a   (1a) 

    ,0 ,0 ,E

rz rzr r     ,0 ,0 ,E

zz zzr r   ,0 0,zD r   a r   (1b) 

    ,0 ,0 ,E

r ru r u r    ,0 ,0 ,E

z zu r u r  a r   (1c) 

    1, ,rz r h p r     2, ,zz r h p r   0 r    (1d) 

    3, ,zD r h p r  0 r    (1e) 

where ζrz, ζzz and Dz are stresses and electric displacement of the piezoelectric layer; E

rz  and E

zz  

are stresses components of the elastic half-space; ur and uzr are the displacement components of 
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Fig. 1 Configuration of the interfacial penny-shaped crack problem 

 

 

the piezoelectric layer; E

ru  and E

zu  are the displacement components of the elastic half-space; 

p1(r), p2(r) and p3(r) are given amplitude of the applied loadings respectively. 

 

2.1 Piezoelectric layer 
 

Consider a transversely isotropic piezoelectric material with a cylindrical polar coordinate 

system defined with (r, θ, z)
 
as the plane of isotropy and z-axis as the poling direction. 

In the case of axisymmetric deformations, the elastic displacement components and the electric 

potential are functions of only r and z. The constitutive equations can be expressed in terms of the 

elastic displacements and electric potential as  

 
11 12 13 31

r r z

rr

u u u
c c c e

r r z z




  
   

  
 (2a) 

 
12 11 13 31

r r zu u u
c c c e

r r z z





  
   

  
 (2b) 

 
13 13 33 33

r r z

zz

u u u
c c c e

r r z z




  
   

  
 (2c) 

 44 15

r z

rz

u u
c e

z r r




   
   

   
 (2d) 

 15 11

r z

r

u u
D e

z r r




   
   

   
 (2e) 

 
31 31 33 33

r r z

z

u u u
D e e e

r r z z




  
   

  
 (2f) 

where ϕ is the electric potential; cij 
and eij (i,j=1,3,4,5) are elastic and piezoelectric constants, 

r 

z 

h 

Elastic half-space 

Piezoelectric layer 

2a 
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respectively; εij (i,j=1,3) is dielectric permeablility coefficient. 

In the absence of body forces and electric charges, the equilibrium equations can be expressed 

as 

    
2 2 2 2

11 44 13 44 31 152 2 2

1 1
0r r r zu u u u

c c c c e e
r r r z r zr r z

     
        

      
 (3a) 

  
2 2 2 2 2

13 44 44 33 15 332 2 2 2

1 1 1
0r r z z zu u u u u

c c c c e e
r z r z r r r rr z r z

              
             

           
 (3b) 

  
2 2 2 2 2

15 31 15 33 11 332 2 2 2

1 1 1
0r r z z zu u u u u

e e e e
r z r z r r r rr z r z

  
 

            
             

           
 (3c) 

The solution to the governing equations can be obtained by means of Hankel transform with 

respect to the variable r. It can be expressed as 

        
6

1 1 1 1
0

1

, expr j j j

j

u r z a z A J r d   




  (4a) 

        
6

2 1 1 0
0

1

, expz j j j

j

u r z a z A J r d   




  (4b) 

        
6

3 1 1 0
0

1

, expj j j

j

r z a z A J r d    




  (4c) 

where ρ is the Hankel transform parameter; A1j(ρ)(j=1,2,…,6)
 

are unknown functions to be 

determined and Ji(i=0,1) are i th order Bessel functions of the first kind. The constants {a1j, a2j, 

a3j} and parameters λ1j 
are given in Appendix A. 

The general solution for relevant components of stress and electric displacement can be 

expressed as 

        
6

1 1 1 1
0

1

, exprz j j j

j

r z C z A J r d     




  (5a) 

        
6

2 1 1 0
0

1

, expzz j j j

j

r z C z A J r d     




  (5b) 

        
6

3 1 1 0
0

1

, expz j j j

j

D r z C z A J r d    




  (5c) 

where C1j, C2j and C3j are also given in Appendix A. 

 

2.2 Elastic half-space 
 

The displacements and stresses in an elastic half-space can be expressed as  
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        
2

1 2 2 1
0

1

, expE E

r j j j

j

u r z a z A J r d   




  (6a) 

        
2

2 2 2 0
0

1

, expE E

z j j j

j

u r z a z A J r d   




  (6b) 

        
2

1 2 2 1
0

1

, expE E

rz j j j

j

r z C z A J r d     




  (6c) 

        
2

2 2 2 0
0

1

, expE E

zz j j j

j

r z C z A J r d     




  (6d) 

where  1 2,E E

j ja a ,  1 2,E E

j jC C  and 2 j  are given in Appendix B. 

 

 

3. The derivation of the integral equations 
 

Define the dislocation functions as 

 

       ,0 ,0 , 0E

r r ru r u r u r r a      (7a) 

        ,0 ,0 , 0E

z z zu r u r u r r a      (7b) 

Substitute Eqs. (4)-(6) into boundary conditions Eq. (1) and using Eq. (7), one obtains 

          
10 10

0 0

a

s r s s dsd r    


  J P J V Γ  (8) 

where 

      10 1 0,r diag J r J r     J  (9a) 





a

T dsdssrsrlrlr
0

1010
0

21  )()(
~

)()( )}(  )({)(  ΞJγJΓ              (9b) 

         
T

1 2 3s p s p s p s  (9c) 

)](),(),([)(
~

00110 rJrJrJdiagr  J                       (9d) 

       
T

r zs u s u s  V  (9e) 

with P(ρ) and    being given in Appendix C. 

A set of new unknown functions are now introduced 

       1

1
,0 ,0E

r rd r ru r ru r
r r


 


 (10a) 
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       2 ,0 ,0E

z zd r u r u r
r


 


 (10b) 

For the penny-shaped crack shown in Fig. 1, physical considerations require that 

     ,0 ,0 0E

r ru r u r  , for r a  (11a) 

     ,0 ,0 0E

z zu r u r  , for r a  (11b) 

    ,0 0, ,0 0E

r ru r u r  , for 0r   (11c) 

     ,0 ,0 0E

z zu r u r
r


 


, for 0r     (11d) 

Therefore, the unknown function defined by Eq. (10) must satisfy the following conditions 

  1
0

0
a

rd r dr   (12a) 

  2
0

0
a

d r dr   (12b) 

By partial integration of Eq. (8) and using Eq. (10), one can easily obtain 

          
10 01

0 0

a

s r s s dsd r    


  J K J F Γ  (13) 

where 

      01 0 1,s diag J s J s     J  (14a) 

  
   

   
11 12

21 22

1 P P

P P

 


 

 
  

 
K  (14b) 

       
T

1 2s d s d sF  (14c) 

In order to avoid divergent integrals, Eq. (13) is now integrated with respect to r to yield the 

following equation. 

 
 a

rdsdssrs
0

0101
0

)(
~

 )()()()(
~

 ΓFJKJ                     (15) 

where 

)](),([)(
~

1001 rJrJdiagr  J                        (16a) 

T
r r

CdlCdlr
















  0 0

2211 )( 
1

  )( )(
~




Γ                 (16b) 

and C1 and C2 are integral constants. 
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After changing the order of integration, Eq. (15) can be written as 

)(
~

 )()(])()[(
~

 )()()(
~

0101
00

0101
00

rdsdssrsdsdssrs
aa

ΓFJMKJFMJJ  


  (17) 

where 

  lim





M K  (18) 

Eq. (17) can be further expressed as 

)(
~

 )()(])()[(
~

)( 0101
000

rdsdssrssdss
aa

ΓFJMKJF  


            (19) 

where 

 11 11 12 12

21 21 22 22

h M h M

h M h M

  
   

 
 (20) 

with 

    
 

 
11 0 0

0

1
,

2

1
,

K s r s r
r

h J r J s d

K r s s r
s

  







  
 


  (21a) 

    
   

   
22 1 1

0

1
,

2

1
,

K s r E s r s r
s

h J r J s d

K r s E r s s r
r

  





   

  
    

  (21b) 

    12 0 1
0

0,

1
,

s r

h J r J s d
s r

s

  





  




  (21c) 

    21 1 0
0

1
,

0,

s r
h J r J s d r

s r

  





  
 

  (21d) 

In Eqs. (21a) and (21b), K(k) and E(k) are, respectively, the complete elliptic integrals of the first 

and second kind, i.e. 

  
2

0 2 21 sin

d
K k

k

 





  (22a) 

  
2

2 2

0
1 sinE k k d



    (22b) 

Differentiating Eq. (19) with respect to r yields 
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        
0 0

1 1a a

r s ds s ds r
s r

  
 AF BF QF Γ  (23) 

where 

 12

21

0

0

M

M

 
  
 

A  (24a) 

 11

22

0

0

M

M

 
  
 

B  (24b) 

      10 01
0

s r s d    


    Q κB J K M J  (24c) 

with 

    11 22, , ,diag r s r s    κ  (25a) 

  
 1

11 2 2

2 ,1 1
,

rM r s
r s

s rs r




 
  

 
 (25b) 

  
 2

22 2 2

2 ,1 1
,

sM r s
r s

s rs r




 
  

 
 (25c) 

and 

  
 

   
1 2 2 2

2 2

,

,

,

s
E s r s r

r
M r s

s s r
E r s K r s s r

r r




 
  



 (26a) 

  
   

 

2 2

2

,
,

,

r s r
E s r K s r s r

M r s s rs

E r s s r

 
 

 
 

 (26b) 

Introducing two non-dimensional variables   and   

 2 2s a a   (27a) 

 2 2r a a   (27b) 

Eq. (23) becomes 

  
 

     
1 1

1 1

1
,d d


      

   
  

 
F

AF B Q F L  (28) 

where 
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  
2 2

a a
 

 
  

 
F F  (29a) 

  , ,
2 2 2 2 2

a a a a a
   

 
   

 
Q Q  (29b) 

  
2 2

a a
 

 
   

 
L  (29c) 

 

 

4. The solution of integral equations 
 

To solve the Cauchy singular integral equation of the second type, an approximate method 

described in Shen and Kuang (1998) is employed.  

Multiplying Eq. (28) by B
-1

 leads to 

  
 

     
1 1

1 1 1

1 1

1
,d d


      

  

  

 
  

 
F

B AF B Q F B L  (30) 

There exists a matrix R which is composed of eigenvectors of B
-1

A to make B
-1

A diagonal, i.e. 

 1 1  R B AR   (31) 

where Λ is the diagonal matrix of eigenvalues. Eq. (30) can be further expressed as 

  
 

     
1 1

1 1

1
,d d


      

   
  

 
G

G G L   (32) 

where 

    1 G R F  (33a) 

    1 1, ,    R B Q R  (33b) 

    1 1  L R B L  (33c) 

The solutions of Eq. (32) can be expressed in the form 

 

     

   

   

1 1

2 2

,

0

1 2

,

0

s s

s

s s

s

A P

diag W W

B P

 

 



  











 
 
 

     
 
  




G  (34) 

where 
   

,
1,2j j

sP j
 

  are the Jacobi polynomials, and      1 1j j

jW
 

      is the weight 

function of Jacobi polynomials with 

 

1 i 1 i1 i 1 i
ln , ln

2 2 1 i 2 2 1 i

j j

j j

j j

 
 

   

 
    

 
 (35) 
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where γj are the elements of the eigenvalue matrix Λ. From Eqs. (34), (35) and constitutive 

equations, one knows that there is oscillating singularity of stress around the crack tip. 

Substituting Eq. (34) into Eq. (32), one obtains the following system of algebraic equations 

 
111 12

0

N

ms s ms s m

s

T A T B L


     (36a) 

 
221 22

0

N

ms s ms s m

s

T A T B L


     (36b) 

where 

 

   
 

             

1 2
2

,

1 1

1 1 ,,

1 1

1

2

,

i i

j ji i

iij

ms s ijm s

i m ij j s

T

W P W P d d

 

  


  

       

 

 

 


 




  

 (37a) 

 

 
     

1 ,

1
, 0,1, , 1, , 1,2i ii

m i m iL W P d m N i j
 

  
 




    L  (37b) 

with  

      1 1j j

jW
 

  
 

     (37c) 

  
     

   

1

, 2 1 1

! 2 1 1
k

k k

k k k

 

   


   

 
     


      

 (37d) 

and δij being the Kronecker Delta function.  

Therefore, As and Bs can be obtained from Eq. (36) and the following equation yield from Eq. 

(12) 

   


 



















1

1
0 0

),(),(
21 0)(  )()(),(1,

22
211  

dPBPAWWdiag
aa

diag

T
N

s

N

s

ssss
sR     (38) 

 

 

5. Field intensity factors and energy release rates  
 

After the constants As and As (s=0,1,2,…N)
 
have been determined from Eqs. (36) and (38), 

define the equivalent stress intensity factors (SIFs) including mode-I SIF and mode-II SIF, of the 

crack tip as 

 

 

 
 

 
   

1

2

1 1
II

1 11
I

1 0 1
lim ,

0 1

e

e

e

K
a d d

K





 
     

  




  

       
       

        
 

G
K G G   (39) 

It should be noted that the oscillating singularity of stress can be eliminated in the process of 

derivation of SIFs.  
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Then comparing the right-hand sides of Eqs. (30) and (32), one can obtain the relation between 

the actual SIFs and the equivalent SIFs as 

 
eK BRK  (40) 

Finally, the SIFs at the crack tip can be deduced as 

 

     

     

1 11

2 22

1 2 ,2

1

1 2 ,20
2

1 2 1

1 2 1

N
s s

s
s s

P A
a

P B

 

 





  
   

 
 

K BR  (41) 

In accordance with the definition of the energy release rate (ERR), the ERR of the crack tip can 

be derived as 

 
1

4

e eG  K K  (42) 

where 

 
     

 

1 1 21

2 1 3

i j

i j

ij ij

j i j

a
   

  

       
   

    
 (43a) 

  
1 2

21ij i ij 


    (43b) 

with 

  
= R B R  (43c) 

 

 

6. Numerical results 
 

For the numerical examples, the PZT-5H is considered as the piezoelectric layer. The material 

properties of which are given as follows  

11 126GPa,c  13 53GPa,c  33 117GPa,c  44 35.3GPa,c  2

31 6.5C/m ,e    

2

33 23.3C/m ,e  2

15 17.0C/m ,e  9 2 2

11 15.1 10 C /(Nm ),   9 2 2

33 13.0 10 C /(Nm )   . 

The material properties of the elastic half-space can be set as 

 11 1 11,Ec r c 13 2 13 ,Ec r c 33 3 33 ,Ec r c 44 4 44

Ec r c . (44) 

For simplicity, only the loading case of Γ(r)={0 ζ0 D0}
T

 
is considered. Also, D0 is determined 

by the load combination parameters λD=D0c33/(ζ0e33). The numerical results are plotted in Figs. 

2-9, where the mode-I SIF KI and mode-II SIF KII are normalized by K0 with 

 1 2

0 0K a  (45) 

And the energy release rates G is normalized by G0, which can be expressed as 
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 2

0 22 0
4

G B a


  (46) 

where 22B  is the element of matrix B , with 

 1B B                                  (47) 

Accuracy of the present formulation is first verified by comparing with analytical solution 

reported for a penny-shaped crack in an ideal elastic material. In the present problem, the 

piezoelectric layer with the same elastic properties as elastic half-space is selected, but the 

piezoelectric and dielectric constants are set to negligibly small values. The normalized modes I 

and II SIFs under purely mechanical loading are shown in Fig. 2. It is clear that with the increasing 

of h/a, the normalized mode-I and II SIF approaches to 2/π and zero corresponding to the 

asymptotic value of a penny-shaped crack in an infinite homogeneous elastic material (Kassir and 

Sih 1975). The normalized ERR is plotted in Fig. 3. Normalized ERR approaches to 4/π
2
 with the 

increasing of h/a.  

The effect of electric loading on normalized ERRs of the crack tips is plotted in Fig. 4. Fig. 4 

shows that the normalized ERRs increase linearly with the increasing of λD for a smaller h/a. With 

the increasing of h/a, the effect of electric loading on the SIF becomes increasingly weak. This 

means that increasing electric loading is liable to promote the crack extension. 
 

 

 

Fig. 2 Variations of normalized mode I and II SIFs with h/a 

 

 

Fig. 3 Variations of normalized ERR with h/a 
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Fig. 4 Variations of normalized ERR with λD 

under different h/a 

Fig. 5 Variations of normalized ERR with h/a 

(r1=r2=r3=r4=1) 

 

  

Fig. 6 Variations of normalized ERR with r1 

under λD=0
 
and different h/a 

Fig. 7 Variations of normalized ERR with r2 

under λD=0
 
and different h/a 

 

  

Fig. 8 Variations of normalized ERR with r3 

under λD=0
 
and different h/a 

Fig. 9 Variations of normalized ERR with r4 

under λD=0
 
and different h/a 
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Fig. 5 show the effect of the h/a on the normalized ERR. As expected, the ERR decrease with 

increasing h/a. Therefore, increasing the thickness of the layer can suppress the crack extension. 

The effects of material combination on the ERR can be seen from Figs. 6-9. It is found that 

different components of the elastic moduli tensor different by influence the ERR. As shown in Fig. 

6 and Figs. 8-9, the normalized ERRs decrease with the increasing of r1, r3 and r4. However, as the 

value of r2 increases, the normalized ERR increases (Fig. 7). This means that increasing c11, c33 

and c44 or decreasing c13 of elastic half-space will be benefit for the stable of the structure. 

 

 

7. Conclusions 
 

In this paper, the interfacial penny-shaped crack between piezoelectric layer and elastic 

half-space under mechanical and electric loadings is investigated. Hankel transforms and 

dislocation density functions are used to reduce the mixed boundary value problem to a system of 

Cauchy singular equations. With the aid of Jacobi polynomials the integral equations are further 

reduced to a system of algebraic equations, which can be numerically solved. According to energy 

release rate fracture criterion, the following conclusions may be drawn: 

(i) Decreasing the electric loading can suppress the crack propagation or growth. 

(ii) Increasing c11, c33 and c44 or decreasing c13 of elastic half-space will be benefit for the stable 

of the structure.  

(iii) Increasing the thickness of the piezoelectric layer will be beneficial to remain the crack 

stable. 

 

 

Acknowledgments 
 

The research described in this paper was financially supported by the Natural Science 

Foundation of Hebei Province, China (E2013402077), the Natural Science Foundation of China 

(11272223) and the Program for Leading Talent of Innovative Research Team of University in 

Hebei Province, China. 

 

 

References 
 
Chen, W.Q. and Shioya, T. (2000), “Complete and exact solutions of a penny-shaped crack in a piezoelectric 

solid: antisymmetric shear loadings”, Int. J. Solids Struct., 37, 2603-2619. 

Feng, W.J., Li, Y.S. and Ren, D.L. (2006), “Transient response of a piezoelectric layer with a penny-shaped 

crack under electrical-mechanical impacts”, Struct. Eng. Mech., 23, 163-176. 

Karapetian, E., Sevotianov, I. and Kachanov, M. (2000), “Penny-shaped and half-plane cracks in a 

transversely isotropic piezoelectric solid under arbitrary loading”, Arch. Appl. Mech., 70, 201-229. 

Kassir, M.K. and Sih, G.C. (1975), Three-Dimensional Crack Problems, Noordhoff International 

Publications, Leyden. 

Kogan, L., Hui, C.Y. and Molkov, V. (1996), “Stress and induction field of a spherical inclusion or a 

penny-shaped crack in a transversely isotropic piezoelectric material”, Int. J. Solids Struct., 33, 

2719-2737. 

Kuna, M. (2010), “Fracture mechanics of piezoelectric materials-where are we right now?”, Eng. Fract. 

Mech., 77, 309-326. 

14



 

 

 

 

 

 

A penny-shaped interfacial crack between piezoelectric layer and elastic half-space 

Li, X.F. and Lee, K.Y. (2004), “Effects of electric field on crack growth for a penny-shaped dielectric crack 

in a piezoelectric layer”, J. Mech. Phys. Solid., 52, 2079-2100. 

Shang, F., Kuna, M. and Abendroth, M. (2003), “Finite element analyses of three-dimensional crack 

problems in piezoelectric structures”, Eng. Fract. Mech., 70, 143-160. 

Shen, S.P. and Kuang, Z.B. (1998), “Wave scattering from an interface crack in laminated anisotropic 

media”, Mech. Res. Commun., 25, 509-517. 

Tian, W.Y. and Rajapakse, R.K.N.D. (2006), “Fracture parameters of a penny-shaped crack at the interface 

of a piezoelectric bi-material system”, Int. J. Fract., 141, 37-48. 

Ueda, S. (2008), “Functionally graded piezoelectric strip with a penny-shaped crack under 

electromechanical loadings”, Eur. J. Mech. A/Solid., 27, 50-60. 

Ueda, S. and Ashida, F. (2007), “Transient response of a functionally graded piezoelectric strip with a 

penny-shaped crack under electric time-dependent loading”, Acta Mech., 194, 175-190. 

Wang, B.L., Noda N., Han, J.C. and Du, S.Y. (2001), “A penny-shaped crack in a transversely isotropic 

piezoelectric layer”, Eur. J. Mech. A/Solid, 20, 997-1005. 

Wang, B.L., Sun, Y.G. and Zhu, Y. (2011), “Fracture of a finite piezoelectric layer with a penny-shaped 

crack”, Int. J. Fract., 172, 19-39. 

Wang, Z.K. (1994), “Penny-shaped crack in transversely isotropic piezoelectric materials”, Acta. Mech. Sin., 

10, 49-60. 

Yang, F.Q. (2004), “General solutions of a penny-shaped crack in a piezoelectric material under opening 

mode-I loading”, Q. J. Mech. Appl. Math., 57, 529-550. 

Yang, J.H. and Lee, K.Y. (2003a), “Penny-shaped crack in a piezoelectric cylinder under electromechanical 

loads”, Arch. Appl. Mech., 73, 323-336. 

Yang, J.H. and Lee, K.Y. (2003b), “Penny-shaped crack in a piezoelectric cylinder surrounded by an elastic 

medium subjected to combined in plane mechanical and electrical loads”, Int. J. Solids Struct., 40, 

573-590. 

Zhang, T.Y. and Gao, C.F. (2004), “Fracture behaviors of piezoelectric materials”, Theor. Appl. Fract. 

Mech., 41, 339-379. 

Zhang, T.Y., Zhao, M.H. and Tong, P. (2002), “Fracture of piezoelectric ceramics”, Adv. Appl. Mech., 38, 

147-289. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15



 

 

 

 

 

 

J.H. Ren, Y.S. Li and W. Wang 

Appendix A 
 

The constants {a1j, a2j, a3j} and parameters λ1j 
are satisfy 

 

   

 
 

2

11 44 1 13 44 1 31 15 1
1

2 2

13 44 1 33 1 44 33 1 15 2

2 2
331 15 1 33 1 15 11 33 1

0

j j j
j

j j j j

jj j j

c c c c e e a

c c c c e e a

ae e e e

  

  

    

      
      

   
     
 

 (A1) 

and 

 
1 44 1 1 44 2 15 3j j j j jC c a c a e a    (A2) 

 
2 13 1 33 1 2 33 1 3j j j j j jC c a c a e a     (A3) 

 
3 31 1 33 1 2 33 1 3j j j j j jC e a e a a      (A4) 

 

 

Appendix B 
 

The constants  1 2,E E

j ja a  and parameters 2 j  are satisfy 

 
 

 

2

11 44 2 13 44 2 1

2
213 44 2 33 2 44

0

E E E E E
j j j

EE E E E
jj j

c c c c a

ac c c c

 

 

        
      

 (B1) 

where 2 j are two pairs of complex conjugate.  2Real 0j   and corresponding characteristic 

vector are selected here. And 
1

E

jC  and 
2

E

jC  are 

 
1 44 2 1 44 2

E E E E E

j j j jC c a c a   (B2) 

 
2 13 1 33 2 2

E E E E E

j j j jC c a c a   (B3) 

 

 

Appendix C 
 

Matrix  P   and    are  

  

 

 

 

 

 

 

 

 

6 6
1 4 1 5

1 1

6 6
2 4 2 5

1 1

P

j j j j

j j

j j j j

j j

H H

H H

 

 


 

 

 

 

  
 

  

  
 
   

 

 

 (C1) 
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A penny-shaped interfacial crack between piezoelectric layer and elastic half-space 

  

 

 

 

 

 

 

 

 

 

 

 

 

6 6 6
1 6 1 7 1 8

1 1 1

6 6 6
2 6 2 7 2 8

1 1 1

j j j j j j

j j j

j j j j j j

j j j

H H H

H H H

  

  


  

  

  

  

   
 

   

   
 
    

  

  

  (C2) 

where Δ(ρ) is the determinant of the coefficient matrix H, whose elements can be expressed as Hij 

with ith row and jth column; Δkj(ρ) (k=4,5,…8)
 

are, respectively, the corresponding algebra 

cofactors.  

 
1 1 1 1, E

j j k jH C H C   

 
2 2 2 2, E

j j k jH C H C   

 
3 3 3, 0j j kH C H   

 
4 1 4 1, E

j j k jH a H a    

 
5 2 5 2, E

j j k jH b H b    

  6 1 1 6exp , 0j j j kH C h H   

  7 2 1 7exp , 0j j j kH C h H   

  8 3 1 8exp , 0j j j kH C h H   

where j=1,2,…,6, k=1,2. 
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