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Abstract.  Large post-buckling behavior of Timoshenko beams subjected to non-follower axial 
compression loads are studied in this paper by using the total Lagrangian Timoshenko beam element 
approximation. Two types of support conditions for the beams are considered. In the case of beams 
subjected to compression loads, load rise causes compressible forces end therefore buckling and post-
buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. 
The considered highly non-linear problem is solved considering full geometric non-linearity by using 
incremental displacement-based finite element method in conjunction with Newton-Raphson iteration 
method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-
Karman strain displacement relations of the beam. The beams considered in numerical examples are made 
of lower-Carbon Steel. In the study, the relationships between deflections, rotational angles, critical buckling 
loads, post-buckling configuration, Cauchy stress of the beams and load rising are illustrated in detail in 
post-buckling case. 
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1. Introduction 

 

Buckling or post-buckling is occurred by a sudden failure of a structural member subjected to 

high compressive loads. Understanding the buckling and post-buckling mechanism of structural 

elements is very important. It is known that buckling and post-buckling problems are geometric 

nonlinear problems. In recent years, with the development of technology in aerospace engineering, 

structural engineering, robotics and manufacturing make it inevitable to excessively use non-linear 

models that must be solved numerically. Because, closed-form solutions of geometrically 

nonlinear problems of beams with general loading and boundary conditions using elliptic integrals 

are limited. In the literature, studies of the post-buckling of beams under axial compressive loads 

are as follows; Nakashima et al. (1983) studied buckling and post‐buckling behavior of steel 

beam‐columns. Wu (1995) investigated shear deformation on the buckling behavior of a beam 

supported laterally by a Winkler elastic foundation. Kounadis and Ioannidis (1994) examined 
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elastic lateral postbuckling response of geometrically perfect beams, under simultaneously 

uniform bending and axial compression. Moradi and Taheri (1999) present the postbuckling 

response of a one-dimensional delaminated composite beam under axial compression by using 

differential quadrature method. Post-buckling behavior of poroelastic columns subjected to axial 

compressive forces is investigated by Cederbaum (2000). Ji and Hansen (2000) examined the non-

linear response of a clamped-sliding postbuckled beam subjected to a harmonic axial load. Dado et 

al. (2004) studied post-buckling problem of a fixed-free column composed of two segments 

connected by a linear rotational spring with different flexural stiffness and lengths. Zyczkowski 

(2004) analyzed the effects of behaviour of loading during the buckling process on the value of 

critical force and initial stability of post-buckling path for elastic, non-prismatic columns. Li and 

Zhou (2005) examined geometrically non-linear theory for extensible elastic beams, governing 

equations of statically post-buckling of a beam with one end hinged and the other fixed, subjected 

to a uniformly distributed. Kounadis (2006) investigated lateral postbuckling response of thin-

walled structures such as bars and frames with members having steel rolled shapes as well as 

circular cylindrical shells under axial compression. Aristizabal-Ochoa (2007) studied nonlinear 

large deflection-small strain analysis and postbuckling behavior of Timoshenko beam-columns of 

symmetrical cross section with semi-rigid connections subjected to conservative and non-

conservative end loads. Nayfeh and Emam (2008) investigated an exact solution for the 

postbuckling configurations of beams with fixed-fixed, fixed-hinged, and hinged-hinged boundary 

conditions taking into account the geometric nonlinearity arising from midplane stretching. 

Challamel (2011) investigated post-buckling of an axially loaded elastic beam resting on linearly 

elastic medium. Challmel (2012) studied geometrically exact elastic stability analysis of two 

interacting kinematically constrained, flexible columns. Dolecek et al. (2009) analyzed of beam 

elongation influence on the postbuckling displacements in case of axial compression by a force 

depending on axial deformation of the beam. Dourakopoulos and Sapountzakis (2010) present 

postbuckling analysis of beams of arbitrary cross section taking into account moderate large 

displacements, large angles of twist and adopting second order approximations for the deflection-

curvature relations. Gupta et al. (2010) anlyzed simple, elegant, and accurate closed-form 

expressions for predicting the post-buckling behavior of composite beams with axially immovable 

ends using the Rayleigh-Ritz (R-R) method. Sepahi et al. (2010) investigated post-buckling 

analysis of variable cross-section cantilever beams under combined load by using differential 

quadrature method. Emam (2011) studied postbuckling response of composite beams modeled 

according to higher-order shear deformation theories. Kocatürk and Akbaş (2011) investigated 

post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform 

thermal loading by using total Lagrangian finite element approximation. Fallah and Aghdam 

(2011) studied and presented simple analytical expressions for large amplitude free vibration and 

post-buckling analysis of functionally graded beams rest on nonlinear elastic foundation subjected 

to axial force with using Von Karman's strain-displacement relation. Kocatürk and Akbaş (2012) 

present thermal post-buckling behavior of functionally graded Timoshenko beams by using the 

total Lagrangian Timoshenko beam element approximation. Saetiew and Chucheepsakul (2012a) 

studied post-buckling behavior of a linearly tapered column with pinned ends made of nonlinear 

elastic materials and subjected to an axial compressive force by using Ludwick constitutive law.   

Saetiew and Chucheepsakul (2012b) analyzed post-buckling behavior of a simply supported 

column made of nonlinear elastic materials subjected to an end axial force by using the shooting 

method. Large amplitude free vibration and thermal post-buckling of shear flexible Functionally 

Graded Material (FGM) beams is studied using finite element formulation based on first order 
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Large post-buckling behavior of Timoshenko beams under axial compression loads 

Timoshenko beam theory by Anandrao et al. (2012). Akbaş and Kocatürk (2012) analyzed post-

Buckling behaviour of Timoshenko Beams with Temperature-Dependent Physical Properties under 

Uniform Thermal Loading. Yuan and Wang (2011) investigated buckling and post-buckling 

analysis of extensible beam-columns by using a new differential quadrature based iterative 

numerical integration method. is proposed to solve post-buckling differential equations of 

extensible beam-columns. Brojan and Kosel (2011) investigated post-buckling analysis of non-

linearly elastic columns made of Ludwick material for free-clamped, hinged-hinged and clamped-

clamped supports. Le Grognec and Le van (2011) examined elastoplastic buckling and post-

buckling of Timoshenko beams under axial compression. Zhang and Murphy (2013) analyzed 

instability phenomenon in the post-buckling region. Zhu et al. (2011) presented nonlinear stability 

and post-buckling for Euler-type beam-column structures. Gundaand Rao (2013) investigated post-

buckling analysis of composite beams with axially immovable ends using geometric nonlinearity 

of von-Karman type. Humer (2013) investigated buckling and postbuckling of beams taking into 

account both the influence of axial compressibility and shear deformation. Rahimi et al. (2013) 

investigated postbuckling behavior of functionally graded beams by using Von-Karman type 

nonlinear strain-displacement relationships. 

It is seen from literature that that investigations of post-buckling of beams are limited within 

the full geometrically nonlinear analysis. It is seen from literature that the post-buckling studies of 

beams are investigated within von Karman nonlinear strain approximation in which full geometric 

non-linearity cannot be considered. In von Karman nonlinear strain approximation, because of 

neglect of some components of strain, satisfactory results can be obtained only for large 

displacements but moderate rotations. It is known that post-buckling problems are geometrically 

nonlinear problems. In the present study, the large post-buckling analysis of Timoshenko beams 

with various boundary conditions under non-follower axial compression loads is considered by 

using the total Lagrangian finite element method by taking into account full geometric 

nonlinearity. There is no restriction on the magnitudes of deflections and rotations in 

contradistinction to von-Karman strain displacement relations of the beam. 

The considered highly non-linear problem is solved considering full geometric non-linearity by 

using incremental displacement-based finite element method in conjunction with Newton-Raphson 

iteration method. The distinctive feature of this study is large deflection static analysis 

Timoshenko beams considering full geometric non-linearity according to other studies which are 

investigated by using von-Karman strain displacement relations of the beam. 

The development of the formulations of general solution procedure of nonlinear problems 

follows the general outline of the derivation given by Zienkiewicz and Taylor (2000). In deriving 

the formulations for geometrically nonlinear analysis of Timoshenko beams, the total Lagrangian 

Timoshenko beam element formulations for given by Felippa (2014) are used. The relationships 

between deflections, rotational angles, thermal post-buckling configuration, Cauchy stresses of the 

beams and temperature rising are illustrated in detail in post-buckling case. 

 

 

2. Theory and formulations 
 

The various beam configurations, made of isotropic, elastic material, with co-ordinate system 

O(X,Y,Z), considered in the present study are shown in Fig. 1. The beam is subjected to a non-

follower compressive point load (P) at the end of the beam as seen from Fig. 1. 

In this study, the Total Langragian Timoshenko beam element is used and the related 
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(a) Cantilever beam (b) Simple supported beam 

 

Fig. 1 Beams with various boundary conditions subjected to a non-follower compressive point load (P) 

at the end of the beam and cross-section 

 

 

Fig. 2 A two-node C
0
 beam element 

 

 

formulations are developed by using the formulations given by Felippa (2014). In the present 

study, finite element model of Timoshenko beam element is developed by using a two-node beam 

element shown in Fig. 2. Each node has three degrees of freedom: Two node displacements uxi and 

uyi, and one rotation θi about Z axis. 

A particle originally located at P0(X,Y) moves to P(x,y) in the current configuration, as shown 

in Fig. 3. The projections of P0 and P along the cross sections at C0 and C upon the neutral axis are 

called C0(X,0) and C(xc,yc), respectively. It will be assumed that dimensions of the beam cross 

section do not change, and that the shear distortion γ<<1 so that cosγ can be replaced by 1 (Felippa 

2014). 

 sin]sin)cos1()[sin()cossin(sin YxYxYxx ccc        (1)

    cos]cos)cos1()[cos()sinsin(cos YyYyYyy ccc       (2) 

where xc=X+uXC and yc=uXC. Consequently, x=X+uXC−Ysinθ and y=uYC+Ycosθ. From now on we  
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(a)                                           (b) 

Fig. 3 Lagrangian kinematics of the C0 beam element with X-aligned reference configuration (a) plane 

beam moving as a two-dimensional body (b) reduction of motion description to one dimension measured 

by coordinate X. This figure is given by Felippa (2014) 

 

 

shall call uXC and uYC simply uX and uY, respectively, so that the Lagrangian representation of the 

motion is 
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in which uX, uY and θ are functions of X only. This concludes the reduction to a one-dimensional 

model, as sketched in Fig. 3(b). For a two-node C0 element, it is natural to express the 

displacements and rotation functions as linear in between the node displacements 
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in which ξ=(2X/L0)−1 is the isoparametric coordinate that varies from ξ=−1 at node 1 to ξ=1 at 

node 2.  

The Green-Lagrange strains are given as follows Felippa (2014) 
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where e is the axial strain, γ is the shear strain and κ is curvature of the beam, u′x=dux/dX, 

u′Y=duY/dX, θ′=dθ/dX. 

According to Hooke’s law, constitutive equations of the beam with the second Piola-Kirchhoff 

stresses are as follows 
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where s
0

1, s
0
2 are initial stresses, E is the modulus of elasticity, G is the shear modulus. Using 

constitutive equations, axial force N, shear force V and bending moment M can be obtained as 

  

A A

AEeNdAEesdAsN 1
0

1
0
11 ][                       (8) 
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22 ][                       (9) 
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where 

  

0 0 0

0
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00
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00
1

0    ,   ,

A A A

dAYsMdAsVdAsN                   (11) 

For the solution of the total Lagrangian formulations of Timoshenko beam problem, small-step 

incremental approaches from known solutions are used. As it is known, it is possible to obtain 

solutions in a single increment of the external force only in the case of mild nonlinearity (and no 

path dependence). To obtain realistic answers, physical insight into the nature of the problem and, 

usually, small-step incremental approaches from known solutions are essential. Such incremental 

procedures are useful to reduce excessive numbers of iterations and in following the physically 

correct path. In the iterations, the load is divided by a suitable number according to the value of 

load. The loading is divided by large numbers. After completing an iteration process, the load is 

increased by adding load increment to the accumulated load. 

In this study, small-step incremental approaches from known solutions with Newton-Raphson 

iteration method are used in which the solution for n+1 th load increment and i th iteration is 

obtained in the following form 

                            
1

( )
i i i

n T n
d

+
=

-1

u K R
                            

(12) 

where (K )i

T
 is the system stiffness matrix corresponding to a tangent direction at the i th 

iteration, i

n
d u  is the solution increment vector at the i th iteration and n+1 th load increment, 

1
( )

i

n S
R
+  is the system residual vector at the i th iteration and n+1 th load increment. This iteration  
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procedure is continued until the difference between two successive solution vectors is less than a 

selected tolerance criterion in Euclidean norm given by 

toli
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A series of successive approximations gives 
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The residual vector 
1

i

nR +  for a finite element is as follows 

pfR 
i
n 1                                (16) 

where f is the vector of external forces and p is the vector of internal forces given in Appendix. 

The element tangent stiffness matrix for the total Lagrangian Timoshenko plane beam element 

is as follows which is given by Felippa (2014) 

                                   T M G
= +K K K                              (17) 

where KG is the geometric stiffness matrix, and KM is the material stiffness matrix given as 

follows by Felippa (2014) 


0L

m
T
mM dXSBBK                              (18) 

The explicit forms of the expressions in Eq. (17) is given in Appendix. After integration of Eq. 

(18), KM can be expressed as follows 

                                   
a b s

M M M M
= + +K K K K                (19) 

where 
a

MK  is the axial stiffness matrix, 
b

MK  is the bending stiffness matrix, 
s

MK  is the shearing 

stiffness matrix and explicit forms of these expressions are given in Appendix. The geometric 

stiffness matrix KG, Bm and the internal nodal force vector p remain given in Appendix. 

After obtaining the displacements of nodes, the second Piola-Kirchhoff stress tensor 

components Sxx, Sxy, Syy can be obtained by using Eq. (7). It is known that the relation between the 

Cauchy stress tensor components σxx, σyy, σxy and the second Piola-Kirchhoff stress tensor 

components Sxx, Sxy, Syy can be written as follows 
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where 
0
ρ and ρ represent the mass densities of the material in configurations C0 and C, 

respectively. The relations between the Lagrange coordinates X,Y and Euler coordinates x,y are 

given by Eqs. (1), (2). The relation between 
0
ρ and ρ

 
is as follows; 

The relation between 
0
ρ and ρ is as follows 

0
ρ=ρJ                                   (21) 

where J is the determinant of the deformation gradient tensor F (or the Jacobian of the 

transformation) and defined as follows 
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In this study, it is assumed that 
0
ρ=ρ. 

 

 

3. Numerical results 
 

In the numerical examples, the post-buckling deflections as well as the max. Cauchy normal 

stresses, thermal post-buckling configuration, critical buckling temperatures, end rotational angles  

are calculated and presented in figures for different compressive loads. To this end, by use of usual 

assembly process, the system tangent stiffness matrix and the system residual vector are obtained 

by using the element stiffness matrixes and element residual vectors for the total Lagrangian 

Timoshenko plane beam element. After that, the solution process outlined in the previous section 

is used for obtaining the related solutions for the total Lagrangian finite element model of 

Timoshenko plane beam element. The beams considered in numerical examples are made of 

lower-carbon Steel: E=70 GPa, ν=0.2875. In the numerical integrations, five-point Gauss 

integration rule is used. In the numerical calculations, the number of finite elements is taken as 

n=100. Unless otherwise stated, it is assumed that the the height of the beam is h=1 m, the width of 

the beam is b=1 m and length of the beam is L=3 m in the numerical results. In the post-buckling 

case, the Cauchy stresses can be obtained by using Eqs. (20a-c) after obtaining the second Piola-

Kirchhoff stresses by using Eq. (7). 

In Fig. 4 critical buckling compressive loads (PCR) versus the ratio L/h (Length/height) of the 

beam is compared with Euler Bernoulli beam theory and Timoshenko beam theory. For calculating 

of Euler Bernoulli beam theory, the Euler formula is used (Pcr=π
2
EI/L

2
b). 

It is clearly seen from Fig. 4 that, with decrease in the ratio L/h, the difference between the 

results of Euler Bernoulli beam theory and Timoshenko beam theory differs considerably. This 
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Fig. 4 Critical buckling compressive loads (PCR) the ratio L/h (Length/height) of the beam for Euler 

Bernoulli beam theory and Timoshenko beam theory (a) Cantilever beam (b) Simple supported beam 

 

  

Fig. 5 Post-buckled configurations for (a) p/pcr=1.0105 and (b) p/pcr=2.5344 

 

 

difference based on that the effect of the shear stresses on the deformation in the Timoshenko 

beam theory. This is because, with decrease in the ratio L/h, the shear stresses increases in the 

beam. Therefore, for the ratio L/h, Timoshenko beam theory must be used instead of Euler 

Bernoulli beam theory.  

In order to establish the accuracy of the present formulation and the computer program 

developed by the author, the results obtained from the present study are compared with the 

available results in the literature. For this purpose, the post-buckling configurations of a cantilever 

beam with different loads (normalized loads and displacements) are plotted and compared with 

data presented in Fig. 4(a) and Fig. 4(d) of Mazzilli (2009). 

It is clearly seen that Fig. 5 that the curves of the present study are very close to those of 

Mazzilli (2009). 
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Fig. 6 Load-deflection curves of a simply supported beam 

 

  

Fig. 7 Load-the maximum vertical displacements curves rising compressive loads (a) Cantilever beam 

(b) Simple supported beam 

 

 

To further verify the present results, for a simple supported beam, the maximum deflection 

versus compressive forces are plotted and compared with those of Fig. 8(a) of Humer (2013). 

Comparisons of Fig. 6 with Fig. 8(a) of Humer (2013) show that there is a perfect harmony 

between the present results and those of Humer (2013). 

In Figs. 7, 8 and 9, the maximum vertical displacements, maximum rotational angles θ (rad.) 

and maximum Cauchy normal stresses versus load rising are presented. For locations of maximum 

vertical displacement; the free end of the beam is taken in the cantilever beam and the midpoint of 

the beam is taken simple supported beam. For locations of maximum rotational angles θ (rad.); the 

free end of the beam is taken in the cantilever beam and the left end of the beam is taken in the 

simple supported beam. For locations of maximum Cauchy normal stresses; the left end of the 

beam is taken in the cantilever beam and the midpoint of the beam is taken simple supported 

beam.    
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Fig. 8 Load-the maximum rotational angles curves rising compressive loads (a) Cantilever beam (b) 

Simple supported beam 

 

  

Fig. 9 Load-the maximum Cauchy normal stresses curves rising compressive loads (a) Cantilever beam 

(b) Simple supported beam 

 

 

In Figs. 7, 8 and 9, furcation points can be seen (see circle). As it is known, buckling occurs at 

the furcation points: Actually these points are bifurcation points. As it is known, according to the 

initial arbitrary deviation from the straight position of the beam, buckling can occur in either 

positive or negative directions. In this study, deviation from the straight position is always taken as 

positive for buckling analysis. The symmetrical branches according to load axis would be obtained 

if the deviations from the straight positions were taken as negative values. It is seen Figs. 7, 8 and 

9 that with increase in load, the responses of the beams converge. This situation may be explained 

as follows: the arm of the external forces change with the magnitude of the external force and, as 

the magnitude of the force increases the arm of these external forces decrease. However, as the  
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Fig. 10 Post-buckling configuration of the beams for different compressive loads (a) Cantilever beam 

(b) Simple supported beam 

 

 

forces increase the configuration of the beam become close to vertical direction and therefore 

increase in the load does not cause a significant increase in displacements after certain load level 

in which the configuration of the beam is close to the vertical direction. This situation is seen in 

Fig. 10 which shows the displaced configuration of the beam. After this load, it is expected that 

axial rigidity of the beam gains more importance than its flexural rigidity. 

Fig. 10 displays the post-buckling configuration of the beam for different compressive loads. 

It is seen from figure 10 that after buckling loads, the configuration of the beams change 

considerably. By using full geometrically nonlinear model, it is calculated and presented more 

realistic mechanical behaviors of structures.        

 

 

4. Conclusions  
 

This paper focuses on post-buckling analysis of Timoshenko beams with various boundary 

conditions subjected to a compressive loading by using the total Lagrangian Timoshenko beam 

element approximation. Two type of support conditions for the beams are considered. The 

considered highly non-linear problem is solved by using incremental displacement-based finite 

element method in conjunction with Newton-Raphson iteration method. The relationships between 
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deflections, end rotational angles, critical buckling loads, post-buckling configuration, Cauchy 

stress of the beams and load rising are illustrated in detail in post-buckling case. In this study, the 

post buckling analysis of Timoshenko beams under compressive loading with various boundary 

conditions is considered by using total Lagrangian finite element method in which full geometric 

nonlinearity can be considered as distinct from the literature studies. Future work should be 

devoted to the interpretation of the results in order to develop post-buckling behavior of beams. 

The superiority or advantage of the finite element method to the other methods is that in the finite 

element method, all the boundary conditions can be taken into consideration without any difficulty. 

It is seen from results that learn about more realistic post-buckling behaviour of the beams, full the 

geometrically non-linear model must be considered. 
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Appendix 
 

The components of the material stiffness matrix: the axial stiffness matrix a
MK , the bending 

stiffness matrix b
MK  and the shearing stiffness matrix s

MK  are as follows 
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where m stands for beam midpoint, ξ=0, and θm=(θ1+θ2)/2, ωm=θm+φ, cm=cosωm, sm=sinωm, 

em=Lcos(θm−ψ)/L=−1, α1=1+em 
and γm=Lsin(ψ−θm)/L0 (See Fig. A1 for symbols). The axis of the 

considered beam initially is taken as horizontal, therefore φ=0. The matrix S is defined as follows 
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Bm matrix is as follows 
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Fig. A1 Plane beam element with arbitrarily oriented reference configuration (Felippa 2014) The 

geometric stiffness matrix KG is given as follows 
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in which Nm and Vm are the axial and shear forces which are evaluated at the midpoint. The internal 

nodal force vector is as follows Felippa (2014) 
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where z
T
=[N V M]. The external nodal force vector can be expressed as follows 
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where fX, fY are the body forces, tX, tY, mZ are the surface loads in the X, Y directions and about the 

Z axis. 
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