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Abstract.  Using the infinitesimal theory of elasticity and analytical formulation based on the first-order 
shear deformation theory (FSDT) is presented for axisymmetric thick-walled cylinders made of functionally 
graded materials under internal and/or external uniform pressure. The material is assumed to be isotropic 
heterogeneous with constant Poisson’s ratio and radially exponentially varying elastic modulus. At first, 
general governing equations of the FGM thick cylinders are derived by assumptions of the FSDT. Then the 
obtained equations are solved under the generalized clamped-clamped conditions. The results are compared 
with the findings of both FSDT and finite element method (FEM). 
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1. Introduction 

 

Axisymmetric hollow cylinders are important in industries. In order to optimize the weight, 

mechanical strength, displacement and stress distribution of a shell, one approach is to use shells 

with functionally graded materials (FGMs). FGMs or heterogeneous materials are advanced 

composite materials with microscopically inhomogeneous characters. The first order displacement 

field (FSDT) for homogeneous thick cylindrical shells was expressed by Mirsky and Hermann 

(1958). Greenspon (1959) compared the results of different theories of thick-walled cylindrical 

shells. Fukui and Yamanaka (1992) used the Navier solution for derivation of the governing 

equation of a thick-walled FGM tube under internal pressure and solved the obtained equation 

numerically by means of the Runge-Kutta method. Simkins (1994) used the FSDT for determining 

displacement in a long and thick tube subjected to moving loads. Eipakchi et al. (2003) have 

investigated the governing equations of homogeneous cylinders with variable thickness using 

FSDT and represent the solution of the equations using perturbation theory. They further (2008) 

extended their previous work by considering homogenous and isotropic conical shells with 

variable thickness using FSDT and SSDT (second-order shear deformation theory) and solve the 

conducted equations by perturbation theory.  

Hongjun et al. (2006) indicated the exact solution of FGM hollow cylinders in the state of 

plane strain with exponential function of elasticity modulus along the radius. Zhifei et al. (2007) 
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analyzed heterogeneous cylindrical shells with power function of elasticity modulus by the usage 

of multilayer method with homogeneous layers. Thick-walled FGM cylinders in plane strain state 

with exponentially-varying material properties were solved by Tutuncu (2007) using Frobenius 

method. Zamani Nejad et al. (2009) developed 3D set of field equations of FGM thick shells of 

revolution in curvilinear coordinate system by tensor calculus. Ghannad et al. (2010) present the 

general method of derivation and the analysis of an internally pressurized thick-walled cylinders 

with clamped-clamped ends. They (2012) presented a complete elastic solution of pressurized 

thick cylindrical shells made of heterogeneous functionally graded materials by the usage of plane 

elasticity theory.                

Taking into account the effect of shear stresses and strains, the general method of derivation 

and the analysis of an internally and/or externally pressurized thick-walled cylindrical shells made 

of functionally graded material with constant Poisson’s ratio and radially exponentially varying 

elastic modulus. The obtained equations are solved under the generalized clamped-clamped 

conditions. The results are compared with the findings of both FSDT and FEM. 

 

 

2. Problem formulation 
 

In shear deformation theory (SDT), the straight lines perpendicular to the central axis of the 

cylinder do not necessarily remain unchanged after loading and deformation, suggesting that the 

deformations are axial axisymmetric and change along the longitudinal cylinder. In other words, 

the elements have rotation, and the shear strain is not zero. The displacement field is assumed as a 

polynomial of a variable (z) through the thickness. As the number of terms in the polynomial 

function increase, the approximate solution will be improved. The first-order shear deformation 

theory (FSDT) is employed to simulate the deformation of every layer of the cylinder (Mirsky and 

Hermann 1958). 

Where the parameter r, is the radius of every layer of cylinder which can be replaced in terms 

of radius of mid-plane R and distance of every layer with respect to mid-plane z as follows (Fig. 1) 

    r R z   (1) 

x and z are the length and the thickness variables. The parameters x and z have been changed in the 

following intervals 

    0 ,
2 2

h h
x L z       (2) 

Where h and L are the thickness and the length of the cylinder. 

Based on FSDT, every component of deformation can be stated by two variables that includes 

the displacement and rotation. For an axisymmetric cylindrical shell, axial and radial components 

of displacement field may be regarded as follows (Ghannad et al. 2010). 
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Where u(x) and w(x) are the displacement components of the middle surface. Also, ϕ(x) and 

ψ(x) are the functions used to determine the displacement field. 
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Fig. 1 Geometry of the thick pressurized cylindrical shell 

 
 

The mechanical kinematic relations in the cylindrical coordinates system for an axisymmetric 

cylinder are 
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 (4) 

Modulus of elasticity E is assumed to be radially exponentially dependent and is assumed to 

vary as follows 

    
1 1

i i

i i

r R z
n n

r r
E r E Ee e

   
      
   


 

   
(5) 

Here Ei is the modulus of elasticity at the inner surface ri and n is the inhomogeneity constant 

determined empirically. Since the analysis was done for a thick wall cylindrical pressure vessel of 

isotropic FGM, and given that the variation of Poisson’s ratio (ν) for engineering materials is 

small, the Poisson’s ratio is assumed as constant. 

The range −1≤n≤+1 to be used in the present study covers all the values of coordinate exponent 

encountered in the references cited earlier. However, these values for n do not necessarily 

represent a certain material. 
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Fig. 2 Distribution of normalized elasticity modulus in FGM cylinder 

 

 

Fig. 2 shows the distribution of normalized elasticity modulus with respect to the normalized 

radius in a heterogeneous cylinder for integer values of n. 

On the basis of the constitutive equations for inhomogeneous and isotropic materials, the stress-

strain relations are as follows 
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Where the parameter λ is the constant value as follows 
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Distribution of elasticity modulus basis on Eq. (1) and Eq. (5) is 
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(8) 

The normal forces (Nx, Nθ, Nz), shear force (Qx), bending moments (Mx, Mθ, Mz), and the 

torsional moment (Mxz) in terms of stress resultants are 
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K is the shear correction factor that is embedded in the shear stress term. It is assumed, in the 

static state, for conical shells K=5/6. 

In order to drive the differential equations of equilibrium, the principle of virtual work have 

been used as 

     U W   (13) 

Where U is the total strain energy of the elastic body and W is the total external work due to 

internal and/or external pressure. The strain energy is 
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and the external work is 
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Pi and Po are the horizontal pressures in the internal and external surfaces. Variation of the 

strain energy can be expressed as follows 
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And the variation of the external work is 
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By substituting Eqs. (4), (6) and (8) into Eqs. (16)-(17) and by using Eq. (13), and carrying out 

the integration by parts, the equilibrium equations are obtained in the form of 
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And the boundary conditions at the two ends of cylinder are 

     
0

0
L

x x x xzR N u M Q w M    
      (19) 

Eq. (18) expresses the main governing equations based on the FSDT for the cylindrical shells 

under internal and/or external pressure. Eq. (19) is the boundary conditions which should be 

satisfied at two end of the cylinder. 

In fact, Eq. (18) is the set of differential equations. In order to solve the set of Eq. (18), forces 

and moments should be written by the usage of Eqs. (9) to (12) in the terms of displacement field. 

Finally a set of linear non-homogenous differential equations with constant coefficients would be 

resulted as follows 

                 
2

2

d d
A y B y C y F

dx dx
    (20) 

Where {y} is the unknown vector including the components of displacement field, [A]4×4, [B]4×4 

and [C]4×4 are the coefficients matrices and {F}is the force vector which can be expressed as the 

non-homogeneity of the set of differential equations. The coefficient matrices [A] and [C] are 

symmetric while [B] is anti-symmetric. The coefficient matrices have been defined in the 

appendix. 

Matrix [C] is irreversible and its reverse is needed in the next calculations. In order to make 

[C]
-1

, the first equation in the set of Eq. (18) is integrated. 

     0xRN C  (21) 

In Eq. (18), it is apparent that u does not exist, but du/dx does. In Eq. (4), du/dx is needed to 

calculate displacements, therefore by assuming du/dx=v as a new parameter which could be 

indicated in the following terms 

     7u dx C   (22) 

By the mentioned changes, the unknown vector {y} in the set of differential Eq. (18) can be 

rewritten as follows 

        
T

y w    (23) 

Also non-homogeneity of the differential Eq. (18) can be derived as follows 
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3. Analytical solution 
 

The Eq. (18) has the general solution {y}g and the particular solution {y}p, as follows 

          
g p

y y y   (25) 

For the general solution, {y}g={V}e
mx

 is substituted in homogeneous Eq. (20). 

         2
1 2 3 0mx m A m A Ae V             (26) 

Considering that e
mx

 is not equal to zero, the following determinant which is equal to zero 

would be resulted. 

     2
1 2 3 0m A m A A             (27) 

The determinant above is a six-order polynomial which is a function of m, the roots of which 

are the eigenvalues mi consist of 3 pairs of conjugated root. Substituting the calculated eigenvalues 

in Eq. (26), the corresponding eigenvectors {V}i are obtained. Therefore, the general solution has 

been resulted. 

        
6

1

im x

ig i
i

y C V e


  (28) 

Given that {F} is comprised of constant parameters, for the non-homogenous part of solution 

of Eq. (20), the particular solution can be expressed as follows. 

               
1

pp
C y F y C F


    (29) 

Finally, the total solution is a summation of the general and the particular solution. 

          
6 1

3
1

im x

i i
i

y C V e A F




 
 

   (30) 

Constants C1,…,C6 in the general solution and two constants C0, C7 which have been resulted 

by the mathematical calculus will be obtained by applying eight boundary conditions. 

Given that the two ends of the cylinder are clamped-clamped, then 
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4. Results and discussion 
 

As a case study, we consider a thick cylinder whose elasticity modulus varies in radial direction 

and has the following characteristics: ri=40 mm, h=20 mm and L=0.8 m. The modulus of elasticity 

at the internal radius and Poisson’s ratio have values of Ei=200 GPa and v=0.3, respectively. The 

applied internal pressure is Pi=80 MPa. The analytical solution is carried out by writing the 

program in MAPLE 13. 

In order to show the abilities of the presented analytical solution for analyzing a FG cylinder, a 

numerical solution has been investigated. The ANSYS 13 package was used in the static analysis 

of thick hollow cylinder with constant thickness. The PLANE82 element in axisymmetric mode, 

which is an element with eight nodes and two translational degrees of freedom in the axial and 

radial directions per each node, was used for discretization. In order to consider the radial 

continuous varying of elastic modulus along the thickness of cylindrical shell with an exponential 

function, the thickness of cylinder has been divided to some homogeneous layers. Each layer's 

properties have been defined as an exponential function of the distance of layer's middle from 

internal layer. Finally the cylindrical shell consists of some coherent homogeneous layers which 

properties at the contact location of the layers are the average of left and right limit of two layers' 

boundaries. Dividing the thickness of the cylinder into 40 layers causes the results of numerical 

modeling to converge to the results of analytical solution. Considering more than 40 layers have 

no considerable effect on the results of FEM. Internal pressures are applied to the nodes of inner 

layers. Clamped boundary conditions have been exerted by preventing the nodes around two ends 

of the cylinder from movement. The numerical and analytical results have been investigated for 

clamped-clamped boundary conditions. 

The distribution of the normalized radial displacement resulted from the numerical and 

analytical solution at middle of a cylinder is depicted in Fig. 3. It is seen that for negative values of 

n, the displacements of FGM cylinders are higher than of a homogeneous cylinder. For positive 

values of n, the situation is reverse, i.e., the displacement is lower. The variation in the 

displacement of heterogeneous material is similar to that of homogenous material. It is obviously 

observed in Fig. 3 that the radial displacements have its maximum values in internal surface 

(z=−h/2). Figs. 4-5 show the distribution of the normalized radial and axial displacement along the 

axial in the middle surface of the cylinder for different inhomogeneity constants. The radial 

displacement at points away from the boundaries depends on radius and length. It is observed that 

middle of the cylinder has no axial displacement. For n<0 axial displacements of the cylinder are 

more than homogeneous material while for n>0 is smaller. 

Distribution of dimensionless circumferential stress in different layers are shown in Figs. 6-7 

for n=±1. The circumferential stress at all points depends on radius and length. The circumferential 

stress at layers close to the external surface at points near boundary is negative, and at other layers 

positive. The greatest circumferential stress occurs in the internal surface (z=−h/2). Distribution  
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Fig. 3 Radial displacement distribution at middle of the cylinder 
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Fig. 4 Radial displacement distribution in the middle surface 
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Fig. 5 Axial displacement distribution in middle surface 

 

 

of dimensionless axial stress in different layers are shown in Figs. 8-9 for n=±1. At points away 

from the boundaries, axial stress unlike the circumferential stress does not show significant 

differences in different layers, while at points near the boundaries, the reverse holds true for both  
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Fig. 6 Circumferential stress distribution in different layers for n=+1 
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Fig. 7 Circumferential stress distribution in different layers for n=−1 

 

-3

-2

-1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

z =-h/2 z =-h/4 z =0 z =h/4 z =h/2

 

Fig. 8 Axial stress distribution in different layers for n=+1 

 

 

of stresses. Figs. 10-11 show the distribution of shear stress along the longitude of cylinder for 

1n    in different layers. It is obviously observed that there are shear stresses near two ends of 

the cylinder. The shear stress at points away from the boundaries at different layers is the same and 

trivial. However, at points near the boundaries, the stress is significant. 
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Fig. 9 Axial stress distribution in different layers for n=−1 

 

 

Fig. 10 Shear stress distribution in different layers for n=+1 

 

 

Fig. 11 Shear stress distribution in different layers for n=−1 

 

 

Tables 1-2 presents the results of the different solutions for the middle of the heterogeneous 

cylinder (x=L/2) and middle surface (z=0). The results suggest that in points further away from the 

boundary it is possible to make use of classical theory (PET). 
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Table 1 Numerical results of radial displacement for x=L/2 and z=0 

 n=−1 n=−0.5 n=0 n=+0.5 n=+1 

ur, mm 
FSDT 0.04710 0.04260 0.03826 0.03420 0.03040 

FEM 0.04677 0.04252 0.03843 0.03418 0.03022 

 
Table 2 Numerical results of stresses for x=L/2 and z=0 

 n=−1 n=−0.5 n=0 n=+0.5 n=+1 

σx, MPa 
FSDT 34.31 35.34 36.23 36.96 37.50 

FEM 35.90 35.94 36.21 35.51 35.51 

σθ, MPa 
FSDT 148.8 152.6 155.6 157.9 159.4 

FEM 151.0 154.0 156.1 157.5 158.4 

 

 

5. Conclusions 
 

In this research, the heterogeneous hollow cylinders with radially exponentially varying elastic 

modulus, have been solved by FSDT and FEM, and have been compared with homogenous 

cylinders. In the present study, the advantages as well as the disadvantages of the classical theory 

(PET) for hollow thick-walled cylindrical shells were indicated. Regarding the problems which 

could not be solved through PET, the solution based on the FSDT is suggested. At the boundary 

areas of a thick- walled cylinder with clamped-clamped ends, having constant thickness and 

uniform pressure, given that displacements and stresses are dependent on radius and length, use 

cannot be made of PET, and FSDT must be used. The shear stress in boundary areas cannot be 

ignored, but in areas further away from the boundaries, it can be ignored. Therefore, the PET can 

be used, provided that the shear strain is zero. The maximum displacements and stresses in all the 

areas of the cylinder occur on the internal surface. The analytical solutions and the solutions 

carried out through the FEM show good agreement. 
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Appendix 
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