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Abstract.  In this paper, three dimensional static and dynamic analyses of two dimensional functionally 
graded annular sector plates have been investigated. The material properties vary through both the radial and 
axial directions continuously.  Graded finite element and Newmark direct integration methods have been 
used to solve the 3D-elasticity equations in time and space domains. The effects of power law exponents and 
different boundary conditions on the behavior of FGM annular sector plate have been investigated. Results 
show that using 2D-FGMs and graded elements have superiority over the homogenous elements and 1D-
FGMs. The model has been compared with the result of a 1D-FGM annular sector plate and it shows good 
agreement. 
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1. Introduction 

 

Functionally graded materials (FGMs) are composite materials that are microscopically 

inhomogeneous, and the material properties vary continuously throughout the structure. This is 

obtained by gradually changing the composition of the constituent materials along one or more 

direction. Advantages of FGMs over laminated composites are eliminating the delamination mode 

of failure, reducing thermal stresses, residual stresses and stress concentration factors. Therefore, 

FGMs can be tailored to satisfy different requirements for material service performance at 

different parts or locations in a structure. The annular sector plates are widely employed as a part 

of engineering structures, including civil, mechanical, and aerospace engineering. Therefore, it is 

important to study the behavior of annular sector plates made of FGMs for the technical design of 

these structural elements.  

Many studies have been performed to analyze the static and dynamic behavior of FGM 

structures (Asemi et al. 2010, 2011, Rahmati Nezhad et al. 2011, Ghannad et al. 2012, Yas et al. 

2011, Behravan Rad 2012, Bian and Wang 2013). Among the FGM plate structures, little attention 

has been given to static and dynamic analysis of FGM annular sector plates. For example, Nosier 

and Fallah (2008) based on the first-order shear deformation plate theory obtained analytical 

solutions for axisymmetric and asymmetric behavior of FGM circular plates with various clamped 
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and simply supported boundary conditions under mechanical and thermal loadings. Li et al. (2008) 

using a direct displacement method analytically solved the axisymmetric problem of FGM annular 

plate subject to a uniform transverse load. Sburlati and Bardella (2011) obtained three-dimensional 

elastic solutions for FGM thick circular plates subjected to axisymmetric conditions. They utilized 

a Plevako’s representation form which reduces the problem to the construction of a potential 

function satisfying a linear fourth-order partial differential equation.  Lei and Zheng (2009) 

presented an exact analysis for axisymmetric bending of FGM circular plate. The displacement 

function was expanded as Fourier-Bessel series. Reddy et al. (1999) studied axisymmetric bending 

and stretching of FGM solid and annular circular plates using the first-order shear deformation 

Mindlin plate theory. Li et al. (2006) investigated the pure bending problem of simply supported 

transversely isotropic circular plates. They derived the stress functions for the axisymmetric 

deformation problem. Also, they investigated the bending of transversely isotropic circular plates 

subject to a transverse load in the form of qrk (Li et al. 2008). They presented analytical elasticity 

solutions for simply-supported and clamped plates. Aghdam et al. (2010) presented an iterative 

procedure based on the First Order Shear Deformation Theory and the extended Kantorovich 

method (EKM) to gain highly accurate solution for bending of moderately thick FG fully clamped 

sector plates. Using the direct displacement method, Yun et al. (2010) investigated the 

axisymmetric bending of transversely isotropic and FG circular plates subject to arbitrarily 

transverse loads. The transverse load was expanded in the Fourier-Bessel series and superposition 

principle was used to obtain the total response based on the results of each item of the series.  

The above literature review denotes that the dynamic analysis of FGM annular sector plates has 

been given little attention by the research groups. However, some studies have been done on free 

vibration of FG annular and annular sector plates (Saidi et al. 2011, Tajeddini et al. 2011, Jodaei et 

al. 2012, Dong 2008, Nie and Zhong 2008, Tahouneh and Yas 2012). 

In the above mentioned papers, the material properties are assumed having a smooth variation 

usually in one direction. Due to difficulty in obtaining analytical solutions for dynamic response of 

graded material systems, analytical or semi-analytical solutions are available only through a 

number of problems with simple boundary conditions, i.e., for annular sector plates with simply 

supported radial edges (Saidi et al. 2011,Tahouneh and Yas 2012, Nie and Zhong 2008). 

Therefore, powerful numerical methods are needed to solve the governing equations. The graded 

finite element method (GFEM) is a relatively new numerical technique in structural analysis.  This 

method incorporates the material property gradient at the size scale of the element and employs a 

generalized isoparametric formulation. Some works can be found in the literature on modeling 

non-homogenous structures by using GFEM (Santare et al. 2003, Kim and Paulino 2002, Santare 

and Lambros 2000, Zhang and Paulino 2007, Asgari et al. 2009, 2010, 2011, Asemi et al. 2011, 

2012). In these researches, it is shown that the conventional FEM formulation cause a 

discontinuous stress field in the direction perpendicular to the material property gradation, while 

the graded elements give a continuous and smooth variation. However, when the loading is 

parallel to the material gradation direction, the GFEM formulation estimates sharp jumps in stress 

at the element boundaries while the conventional FEM formulation does not. The use of a GFEM 

has several benefits over the use of conventional FEM in the dynamic and wave propagation 

analyses. In conventional FEM, the boundary of homogenous elements of an inhomogeneous 

material acts as discrete boundaries for the stress waves. These boundaries cause artificial wave 

reflections and have a cumulative effect on the magnitude and speed of propagating stress waves. 

In addition, these inaccuracies will be more significant in 2D-FGM problems. Therefore, by using 

GFEM in which the material property is graded continuously through the elements, accuracy can 
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be improved without refining the mesh size. 

Conventional FGMs may also not be so effective in such design problems since all outer 

surface of the body will have the same composition distribution. Therefore, variation of volume 

fraction in two directions has a higher capability to reduce the mechanical, thermal and residual 

stresses and leads to a flexible design than 1D FGMs. Some studies have been carried out about 

static, dynamic and free vibration of structures made of 2D-FGMs (Goupee 2006, Nemat-Alla 

2009, Sobhani Aragh and Hedayati 2012, Shariyat and Alipour 2011, Nie and Zhong 2007, Lu et 

al. 2008, Behravan Rad and Shariyat 2013).  

The main aim of the present paper is to present static and dynamic analyses of 2D-FGM 

annular sector plate based on three dimensional theory of elasticity. Material properties vary 

through both the radial and axial directions continuously. To solve the problem, graded finite 

element method and Newmark direct integration method have been applied. Using this method, 

discontinuities and inaccuracies which could be produced in the conventional FEM has been 

improved. Using this method, the effects of power law exponents and different boundary 

conditions on distribution of displacements and stresses have been investigated. 

 

 

2. Governing equations 
 

A functionally graded annular sector plate with thickness h, inner radii a and outer radii b is 

considered. The plate is subjected to a distributed load p on its top surface. The geometry and 

coordinate system of the plate is shown in Fig. 1. 

Two-dimensional FGMs are usually made by continuous gradation of three or four different 

material phases where one or two of them are ceramics and the others are metal alloy phases, and 

the volume fractions of the constituent materials vary continuously through the r and z directions 

in a predetermined composition profile. The inner surface of the plate is made of two distinct 

ceramics and the outer surface of two metals. c1, c2, m1 and m2 denote first ceramic, second 

ceramic, first metal and second metal, respectively. The volume fraction distribution function of 

 

 

 
Fig. 1 Geometry of annular sector plate 
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Fig. 2 Volume fraction of second ceramic for nr=2, nz=3 

 

 

each material can be expressed as (Asgari and Akhlaghi 2009) 
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Where nr and nz are non-negative volume fraction exponents through the r and z directions. For 

instance, the volume fraction distribution of second ceramic for the typical values of nr=2, nz=3 is 

shown in Fig. 2. In this case h=0.1 m, a=0.5 m and b=1 m. 

Material properties at each point can be obtained by using the linear rule of mixtures. 

Therefore, the material property P such as modulus of elasticity and mass density in the 2D-FGM 

annular sector plate is determined by linear combination of volume fractions and material 

properties of the basic materials as (Asgari and Akhlaghi 2009) 

     1 1 2 2 1 1 2 2 P PcVc Pc Vc PmVm Pm Vm     (2) 

0.5
0.6

0.7
0.8

0.9
1

0

0.05

0.1
0

0.2

0.4

0.6

0.8

1

r (m)z (m)

V
c
2

1070



 

 

 

 

 

 

Three dimensional static and dynamic analysis of two dimensional... 

Table 1 Basic constituents of 2D-FGM annular sector plate (Asgari and Akhlaghi 2009) 

Constituent Material E (GPa) )(
3m

Kg
  

m1 Ti6A14V 115 4515 

m2 A1 1,100 69 2715 

c1 SiC 440 3210 

c2 A12O3 300 3470 

 

 

Fig. 3 Distribution of modulus of elasticity for nr=2, nz=3 

 

 

The volume fractions in Eq. (1) reduce to the conventional 1D-FGMs for nr=0. In this case, the 

material properties vary only through the thickness direction. The basic constituents of the 2D-

FGM annular sector plate are presented in Table 1. For instance, the variation of a material 

property such as modulus of elasticity based on the mentioned approach, for the typical values of 

nr=2, nz=3 is shown in Fig. 3. It should be noted that Poisson’s ratio is assumed to be constant 

through the body. This assumption is reasonable because of the small differences between the 

Poisson’s ratios of basic materials. 

In the absence of body forces, the equilibrium equations of 2D-FGM annular sector plates in 

cylindrical coordinates can be written as follows (Sadd 2005) 

     
 

2

2
,r rrrr rz u

r z
r r z r t

   




  
   

  




 (3-1) 

    
 

2

2

2
,r z r z

v
r

r r z r t

      




   
   

   
 (3-2) 

     
 

2

2
,zrz zz rz r z

r r z r t

w  




  
   

   
 (3-3) 

1071



 

 

 

 

 

 

Kamran Asemi, Manouchehr Salehi and Mojtaba Sadighi 

where ρ is the mass density which depends on r and z coordinates. u, v, and w are the displacement 

components along the r, θ and z axes, respectively. 

The stress- strain relations of linear elasticity from the Hook’s law in terms of the modulus of 

elasticity E and Poisson’s ratio ν in cylindrical coordinates are as follow 
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It should be noted that E varies through the r and z directions and  is assumed to be constant. 

The problem is solved in the rectangular Cartesian coordinates system and then the 

displacement and stress components transformed into the cylindrical coordinates system using the 

following relations. 

           u=Ucosθ+Vsinθ (6-1) 

           v=Ucosθ−Vsinθ (6-2) 

           

(6-3) 
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where U and V are the displacement components in rectangular Cartesian coordinate system. [σ]x,y,z
 

is the stress tensor in rectangular Cartesian coordinate systems. 

So, the equilibrium equations in terms of rectangular Cartesian coordinates system are as 

following (Sadd 2005) 
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where  
1

2 2 2r x y  .  

The stress- strain relations of linear elasticity in Cartesian coordinates are as following 
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So, the strain-displacement relations of the infinitesimal theory of elasticity in the rectangular 

Cartesian coordinates are  
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3. Graded finite element modeling 
 

Consider a three dimensional 8-node linear brick shape element in the rectangular Cartesian 

coordinates. Nodal coordinates are known in the global xyz- coordinates. Using the finite element 

approximation to the displacement field, the displacement component are approximated by shape 

function N, as 
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where [δ](e) is the nodal displacement vector in rectangular Cartesian coordinates, and shape 

function matrix is as follows 

1 2 3 4 5 6 7 8

( )
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where Ni, i=1,2,…,8 are the shape functions of 8-node linear brick element. The components of 

matrix [N](e) are given in the appendix A.  

To model the problem, Graded Finite Element Method is used (Santare and Lambros 2000, 

Kim and Paulino 2002, Santare et al. 2003, Zhang and Paulino 2007, Asgari and Akhlaghi 2009, 

2010, 2011, Asemi et al. 2012). This method employs the same shape functions to interpolate the 

unknown displacements, the geometry, and the material parameters. This approach effectively 

represents the material variation at the element level and results in smooth solution transition 

across the element boundaries. This gives more accurate results than dividing the solution domain 

into homogenous elements. Therefore, the material property at the element level is interpolated as 

follows 
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where Pi is the material property corresponding to node i.  

Substituting (10) in (9) gives the strain matrix of element (e) as 
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where [B](e)=[d][N](e) and is given in the Appendix A. 

The finite element model can be derived using Rayleigh Ritz energy formulation. The details of 

this method could be found in different textbooks (Eslami 2003, Zienkiewicz and Taylor 2005). 
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By applying this method to the governing equations, the stiffness, mass and force element matrices 

in Cartesian coordinate system are as follows 
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Using 8-point Guass quadrature rule, mass and stiffness matrices are evaluated. In this regard, a 

transformation between Cartesian coordinate system into local coordinates system is used (−1≤ξ,η, 

ζ≤1) (Zienkiewicz and Taylor 2005). 

Now by assembling the element matrices, the global dynamic equilibrium equations for the 2D-

FGM annular sector plate can be obtained as 
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..

{ }M K F    (17) 

The essential boundary conditions are as 

For fully clamped plates (CCCC) 

         
       , , ,0, , , , , , , , , , , , , 0maxu v w r z u v w r z u v w a z u v w b z       (18) 

For plates with clamped edges at θ=0and θ=θmax (CFCF) 

                
   , , ,0, , , , , 0maxu v w r z u v w r z   (19) 

For plates with clamp edge at r=a (FCFF) 

             
 , , , , 0u v w a z   (20) 

For plates with clamp edge at r=b (FFFC) 

              
 , , , , 0u v w b z   (21) 

Once the finite element equilibrium equation is established, different numerical methods can be 

employed to solve Eq. (17) in space and time domains. To solve the equilibrium equation, the 

Newmark direct integration method (Eslami 2003) is used. Newmark integration parameters 

(Eslami 2003) are taken as: 
1

2
  and

1

4
  , which lead to a constant average acceleration. This 

choice of parameters corresponds to a trapezoidal rule which is unconditionally stable in linear  
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Fig. 4 Non-dimensional transverse displacement through the , ,
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 compared with 

Aghdam et al. (2010) 

 

 

analyzes. Moreover, to achieve convergent results, the time step is taken as 2e-6 (s). It should be 

noted that the problem generally is solved in rectangular Cartesian coordinates system followed by 

a transformation of the displacements and stresses components into the cylindrical coordinates. 

 

 

4. Results and discussions 
 

4.1 Validation 
 

The present solution can be validated using data of a 1D-FGM fully clamped plate under the 

same loading that were previously presented (Aghdam et al. 2010). So, we consider the parameters 

as nr=0, a=3, b=5, h=0.3, θ=45°, Em1=70 GPa, Em2=380 GPa, P=1 Pa and υ=0.3. The non-

dimensional transverse displacement through the centerline , ,
2 2

a b h


 
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 for different power law 

exponent nz is considered here, and the obtained results are compared with the published data. Fig. 

4 shows good agreement between these results. 

 

4.2 Numerical results 
 
4.2.1 Static analysis 
Consider a 2D-FGM annular sector plate with inner radii a=0.5 m, outer radii b=1 m, sector 

angle θ=60° and thicknesses h=0.1 m. The plate is all-round clamped and subjected to a uniform 

static load on its top surface. Constituent materials are two distinct ceramics and two distinct  

0 0.2 0.4 0.6 0.8 1
-3

-2.5

-2

-1.5

-1

-0.5

0
x 10

-3

/
max

w
 E

m
2
 h

3
/b

4

 

 

nz=1, present

nz=4, present

nz=10, present

nz=1, Aghdam et al. (2010)

nz=4, Aghdam et al. (2010)

nz=10, Aghdam et al. (2010)

1076



 

 

 

 

 

 

Three dimensional static and dynamic analysis of two dimensional... 

 

Fig. 5 Transverse displacement distribution through , ,
2 2

a b h


 
 
 

 for different power law exponents 

 

 

Fig. 6 Radial displacement distribution through , ,
2 2

a b h


 
 
 

 for different power law exponents 

 

 

metals described in Table 1. The static pressures and Poisson’s ratio are taken as constant values: 

P=20 MPa and 0.3  .  

Figs. 5, 6 and 7 show the distribution of transverse, radial and hoop displacements at centerline 
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 

 for different values of power law exponents.  Fig. 5 denotes that by increasing the 

power law exponent nz (nr=1), the transverse displacement decreases. This is because of increasing  
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Fig. 7 Hoop displacement distribution through , ,
2 2

a b h


 
 
 

 for different power law exponents 

 

 

Fig. 8 Radial stress distribution through , ,
2 2

a b h


 
 
 

 for different power law exponents 

 

 

the volume fraction of first ceramic and subsequently increasing the overall stiffness of the plate. It 

is seen from Fig. 5 that the minimum value of transverse displacement belongs to nr=2, nr=3 and 

its maximum value is obtained for the power law exponents nr=0, nz=1 which is for the 

transversely 1D-FGMs. Fig. 6 denotes that the general form of the radial displacement for nr=0, 

nz=1, i.e., for conventional transversely 1D-FGM sector plates differs from the obtained radial 

displacements corresponds to 2D-FGMs. Fig. 7 shows that the distribution of hoop displacement is 

asymmetrical about centerline , ,
2 2
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 

 
 

. 

Figs. 8, 9, 10 and 11 show the distribution of radial, hoop and axial stresses and shear stress σrz  
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Fig. 9 Hoop stress distribution through , ,
2 2

a b h


 
 
 

 for different power law exponents 

 

 

Fig. 10 Axial stress distribution through , ,
2 2

a b h


 
 
 

 for different power law exponents 

 

 

at centerline , ,
2 2

a b h


 
 
 

 for different values of power law exponents, respectively. Figs. 8 and 9 

show that the nature of radial and hoop stress is mainly compressive and its maximum value 

belongs to the power law exponents nr=0, nz=1, in which the material properties vary only through 

the thickness direction. Fig. 10 shows that the distribution of the axial stress does not change 

considerably with the power law exponents. Fig. 11 shows that the shear stress σrz is mainly tensile 

and its maximum and minimum values belong to the power law exponents nr=0, nz=1 and nr=1, 

nz=0 which are respectively for transversely and radially 1D-FGMs. As it can be seen from the 

results, the distribution of stresses has continuous variations due to using graded elements.  
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Fig. 11 Shear stress distribution σrz through , ,
2 2

a b h


 
 
 

 for different power law exponents 

 

 

Fig. 12 Transverse displacement distribution through , ,
2 2

a b h


 
 
 

 for different boundary 

conditions and power law exponents nr=nz=1 

 

 
Figs. 12 and 13 show the distribution of transverse and radial displacements at centerline 

, ,
2 2

a b h


 
 
 

 for power law exponents nr=nz=1 and different boundary conditions. As it can be 

seen from these figures, the fully clamped plate has minimum values of displacements and the 

plate with clamped edge at r=b has maximum values of displacements. These results show that the 

present solution has a high compatibility to model the 2D-FGM annular sector plates under 

different boundary conditions.  
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Fig. 13 Radial displacement distribution through , ,

2 2

a b h


 
 
 

 for different boundary conditions 

and power law exponents nr=nz=1 

 

 

Fig. 14 Time history of radial displacement at  , ,
2 2 2

 
 
 

max
θa b h  for different power law exponents 

 

 

4.2.2 Dynamic analysis 
Consider the 2D-FGM sector plate of the previous section. The plate is fully clamped and 

subjected to an dynamic loading on its top surface. The loading function equation is assumed as: 










)( 005.0

)( 005.0
             

0
)(

0

st

sttP
tP  
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Fig. 15 Time history of transverse displacement at  , ,
2 2 2

 
 
 

max
θa b h  for different power law exponents 

 

 

Fig. 16 Time history of radial stress at  , ,
2 2 2

 
 
 

max
θa b h  for different power law exponents 

 

 

Fig. 17 Time history of axial stress at  , ,
2 2 2

 
 
 

max
θa b h  for different power law exponents 
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Fig. 18 Time history of shear stress σrz at  , ,
2 2 2

 
 
 

max
θa b h  for different power law exponents 

 

 

Fig. 19 Time history of shear stress σθz at  , ,
2 2 2

 
 
 

max
θa b h  for different power law exponents 

 

 

interference would be occurred. The results for different values of the power law exponents are 

presented and discussed as following. 

Figs. 14 and 15 show the time histories of radial and transverse displacements of the center 

point of the plate after the unloading for different values of the power law exponents, respectively. 

Fig. 15 shows that by increasing the power law exponent nz 
(nr=1), amplitude of vibration 

decreases. Moreover, maximum amplitude of vibration belongs to the plate with the power law 

exponents nr=0, nz=1. Figs. 16, 17, 18 and 19 show the time histories of radial and axial stresses, 

shear stress σrz and shear stress σθz of the center point of the plate after the unloading for different 

values of the power law exponents, respectively. Results denote that the time history of stresses is 

strongly affected by the power law exponents. 
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6. Conclusions 
 

Static and dynamic analysis of two dimensional functionally graded annular sector plate based 

on three dimensional theory of elasticity is considered. Material properties vary through both the 

radial and axial directions. The Graded Finite Element Method and Rayleigh-Ritz energy 

formulation are applied. The proposed method is validated by the result of a fully clamped 1D-

FGM plate under the same loading which is extracted from published literature. The comparisons 

between the results show that the present method has a good compatibility with the existing 

results. The obtained results represent that mechanical stress distribution can be modified 

to a required manner by selecting an appropriate volume fraction profiles in two directions 

and this gives designers a powerful tool for flexible designing of structures under 

multifunctional requirements. Also results demonstrate that using graded elements provide 

smoother and more accurate results than homogeneous elements for modeling the dynamic 

problems.  
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Appendix 
 

The shape functions for local coordinates (−1≤ξ,η,ζ≤1) are as following 
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The coordinate transformation law between two coordinate systems can be described in terms 

of the shape functions as (Zienkiewicz and Taylor 2005) 
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where xi, yi and zi are nodal coordinates.  

Matrix B is as following 
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  (A.12) 

Matrix B in local coordinates is calculated as following 

                

_
1B J B  (A.13) 

     

     

     

           

           

           

1,1 0 0 1,2 0 0 ... 1,8 0 0

0 2,1 0 0 2,2 0 ... 0 2,8 0

0 0 3,1 0 0 3,2 ... 0 0 3,8
( , , )

0 3,1 2,1 0 3,2 2,2 ... 0 3,8 2,8

3,1 0 1,1 3,2 0 1,2 ... 3,8 0 1,8

2,1 1,1 0 2,2 1,2 ... 20 ,8 1,8 0

B B B

B B B

B B B
B

B B B B B B

B B B B B B

B B B B B B

  








 

















 
 

  

(A.14) 

where )
3

1
,

3

1
,

3

1
( , , iii   and the matrix J is the Jacobian matrix and is evaluated as 

follows 

1088



 

 

 

 

 

 

Three dimensional static and dynamic analysis of two dimensional... 
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1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

[ ]

e

y z

x y z

x y z

x y z

x y z

x y z

x y z

x y z

x

J B

 
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 
 

   
     

 
 
 
 
 

 
(A.15) 

where [ B ](e) is as 

                         
                       
                       

_
1

8

1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

e

B

               

               

               

                   

                   

                   

 
  
  

  







(A.16) 
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