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Abstract.  In this paper, we study the inverse mode shape problem for an Euler-Bernoulli beam, using an 
analytical approach. The mass and stiffness variations are determined for a beam, having various boundary 
conditions, which has a prescribed polynomial second mode shape with an internal node. It is found that 
physically feasible rectangular cross-section beams which satisfy the inverse problem exist for a variety of 
boundary conditions. The effect of the location of the internal node on the mass and stiffness variations and 
on the deflection of the beam is studied. The derived functions are used to verify the p-version finite element 
code, for the cantilever boundary condition. The paper also presents the bounds on the location of the 
internal node, for a valid mass and stiffness variation, for any given boundary condition. The derived 
property variations, corresponding to a given mode shape and boundary condition, also provides a simple 
closed-form solution for a class of non-uniform Euler-Bernoulli beams. These closed-form solutions can 
also be used to check optimization algorithms proposed for modal tailoring. 
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1. Introduction 

 

Flexible structures like aerospace vehicles, ships, communication antennas, buildings etc. can 

be subjected to various kinds of excitation loads (Alshorbagy et al. 2011, Azizi et al. 2011, Bayat 

and Pakar 2012, Eltaher et al. 2012, Kisa 2012, Kural and Ozkaya 2012, Liu et al. 2013, Saffari et 

al. 2012, Shahba and Rajasekaran 2011, Song et al. 2012, Tufekci and Yigit 2012). Thus, methods 

for designing a structure for a desired mode shape is useful for many engineering applications, to 

reduce the vibrational energy from being transferred to regions where it can cause material failure. 

It is important to remove the vibrational energy from more sensitive parts, such as the end effector 

of a robotic arm, and transfer it to less sensitive regions. Hence, modal tailoring is an important 

problem from a structural dynamics point of view. For example, the deflections in resonant motion 

can be tailored to enhance the sensing abilities of capacitive resonant sensors like the 

microcantilever gravimetric sensor (Spletzer et al. 2006). Another application is the cantilevers in 

the Atomic Force Microscopes (AFM) where their probes can be designed for large tilts during 

their transversal at resonant frequency in the tapping mode (Niels 2000). In vibration control, the 

amplitude of vibration can be confined at certain locations as desired by the design of the mode 
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shapes (Gafsi et al. 2009). 

This problem falls under the category of the “inverse mode shape problem”, which aims at 

determining the geometric and material data of a structure, given a certain set of mode shapes and 

frequencies. Barcilon (1982) developed a procedure for reconstructing the flexural rigidity and the 

density of a class of beam, having a free end and three different boundary conditions on the other 

end, from data consisting of the displacement and angle of the center line of the free left end after 

an initial impulse. The information content of this seismogram-like impulse response is equivalent 

to three spectra and two gross constants. He also discussed the conditions on the three spectra such 

that the flexural rigidity and density of the beam are physically meaningful. A similar work was 

done by Gladwell (1986), where he studied the necessary and sufficient conditions for the 

reconstruction of the cross-sectional area and second moment of inertia of an Euler-Bernoulli 

beam from the spectral data, corresponding to three end conditions. Mottershead et al. (2001) 

presented an inverse method for the assignment of natural frequencies and nodes of normal modes 

of vibration by the addition of grounded springs and concentrated masses. The method relies 

entirely on measured receptances at the coordinates of the nodes and the modifications. 

Burak and Ram (2001) used a numerical technique to study the inverse problem using the 

knowledge of a single eigenvalue, two eigenvectors and static deflection due to unit load. Lai and 

Ananthasuresh (2002) solved the inverse mode shape problem with one eigenmode and all system 

parameters like the mass, stiffness, density, boundary conditions etc., to determine the cross-

section profile for bars and beams. Ananthasuresh (2004) later extended these studies for the case 

of bars and beams with flexible supports. Ram and Elishakoff (2004) studied the problem for a 

fixed-free beam, where they used a discretized and analytical version to solve the inverse problem. 

Recently, Sundaram and Ananthasuresh (2013) presented a numerical solution methodology in the 

finite element framework for the case of bars, beams and plates to solve the inverse mode shape 

problem. 

Enforcing nodes at selected locations is beneficial because it would allow sensitive instruments 

to be placed near or at nodes where there is little or no vibration. It also allows certain locations of 

the structure to remain stationary without rigid support. Cha and Pierre (1999) used a chain of 

oscillators as a means to passively impose a single node for the normal modes of any arbitrarily 

supported elastic structure. Cha (2002) generalized the approach to impose multiple nodes for any 

normal mode of an elastic structure using a set of parallel spring masses. Cha (2004, 2005) 

extended his theory and used tuned spring-mass oscillators to enforce nodes at any location in 

harmonically excited, linear elastic systems and tuned the oscillators based upon the tolerable 

vibration amplitudes. Cha and Zhou (2006) further expanded upon this by adding rotational 

oscillators, which allowed points of zero displacement and zero slope to be enforced. Cha and 

Chen (2011) also induced nodes along a linear structure using lumped masses alone. Cha and 

Rinker (2012) further extended this work by attaching properly tuned damped vibration absorbers 

to suppress vibration along an Euler-Bernoulli beam that includes both internal and external 

damping, making the problem more practical, interesting, and challenging. 

Some research has used optimization methods to tailor the structural properties to obtain a 

targeted mode shape. Takezawa and Kitamura (2013) proposed a minimization problem using the 

least error between the eigenvector and target mode shape. The first and second eigenvector were 

considered. Numerical sensitivity and optimization analysis was used to solve the minimization 

problem. Maeda et al. (2006) proposed a topology optimization method for targeted design of 

structures with desired eigenfrequencies and mode shapes. The problem was motivated by the 

design of mechanical resonators and actuators. Rubio et al. (2011) mention that tailoring specified 
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modes is required for vibration problems. They used topology optimization and functionally 

graded material concepts to tailor user defined vibration nodes and solved the optimization 

problem using sequential linear programming. It is clear that the use of numerical optimization 

methods for modal tailoring is effective. However, there is a need for analytical closed form 

solutions to specific modal tailoring problems which can help to verify the optimization 

algorithms, prior to their use for design problems. 

Neuringer and Elishakoff (2001) used an analytical approach using Elishakoff’s method 

(Elishakoff 2005) to determine the mass and stiffness variations of an Euler-Bernoulli beam, given 

a prescribed polynomial mode shape, having an internal node. This prescribed mode shape 

satisfies all the boundary conditions of the beam. However, they considered only the 

inhomogeneous beam. They determined the elastic modulus (𝐸) and mass density (𝜌) of the beam 

as functions along the length of the beam (functionally graded materials) for the nodal placement, 

which poses considerable difficulty from a manufacturing point of view. 

In this paper, we determine the height and breadth variations of the beam as functions along the 

length of the beam while keeping the elastic modulus and density of the beam as constants. These 

beams can be easily manufactured using Computer Numerical Control (CNC) machines, thus 

adding considerable practical applicability to the problem of analytically imposing an internal 

node. Once we determine a suitable function for the design variables given a particular mode 

shape and other beam parameters, we study the effect of the location of the internal node on the 

design variables and also the deflections of the beam. Furthermore, we try to determine the bounds 

on the location of the internal node. Neuringer and Elishakoff (2001) carried out their 

mathematical formulations considering only the pinned-pinned boundary condition. In this paper, 

we explore six sets of different boundary conditions and discuss them in details. Since the assumed 

mode shape and the corresponding mass and stiffness distributions satisfy the governing 

differential equations in an exact manner, they also serve as closed form solution for these beams, 

which can be used as test functions for approximate methods such as Rayleigh-Ritz, Galerkin and 

FEM. We try to verify the utility of the derived functions as benchmark solutions, for the 

cantilever boundary condition. They can also be used to evaluate numerical modal tailoring 

algorithms. 

 

 

2. Mathematical formulation 
 

The dynamics of a non-uniform Euler-Bernoulli beam is governed by the following fourth 

order differential equation (Meirovitch 1986) 

𝜕2

𝜕𝑥2
*𝐸𝐼(𝑥)

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ + 𝑚(𝑥)

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
= 0                                        (1) 

where 𝐿 is the length of the beam, 𝐸𝐼(𝑥) is the flexural rigidity of the beam, 𝑚(𝑥) is the mass per 

unit length, and 𝑤(𝑥, 𝑡) is the transverse displacement of the beam at a position 𝑥 , at time 𝑡. 

Considering harmonic vibration, Eq. (1) yields 

𝑑2

𝑑𝑥2
(𝐸𝐼(𝑥)

𝑑2𝜙(𝑥)

𝑑𝑥2
) −𝑚(𝑥)𝜔2𝜙(𝑥) = 0                                         (2) 

where 𝜙(𝑥)  and 𝜔  denote the mode shape and frequency, respectively. We now determine a 
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prescribed polynomial second mode which satisfies all the boundary conditions of a given beam. 

Since the second mode has an internal node it is used for illustrating the mathematical approach 

which is generally applicable to other mode shapes. It is also possible to get the node at some pre-

selected point on the beam, subject to some bounds which we will reveal later in this paper. This 

prescribed second mode is sought as a fifth order polynomial function given by 

𝜙(𝑥) =  𝑐 + 𝑐 𝑥 + 𝑐2𝑥
2 + 𝑐 𝑥

 + 𝑐 𝑥
 + 𝑐 𝑥

                                        (3) 

Since Eq. (3) describes the second mode shape of a beam, it is tailored to form a node at an 

arbitrary position 𝑥 = 𝛼(0 < 𝛼 < 𝐿) . Using the four boundary conditions, one internal node 

condition 𝜙(𝛼)  =  0 and the normalization condition (in our case, mass normalization) we will 

have six equations, and that is why we consider the fifth order polynomial for the assumed mode 

shape. Our main objective is to determine a certain class of these prescribed polynomial second 

mode shape functions, for various boundary conditions, such that we get physically realizable 

variations of mass and stiffness. For our study, we take the mass distribution as a linear function of 

𝑥, and the stiffness variation as a fifth order polynomial in 𝑥, given by 

𝑚(𝑥) = 𝑎 (1 + 𝜂𝑥)                                                                 (4) 

𝐸𝐼(𝑥) =  𝑏 + 𝑏 𝑥 + 𝑏2𝑥
2 + 𝑏 𝑥

 + 𝑏 𝑥
 + 𝑏 𝑥

                                        (5) 

where 𝜂, 𝑎  and 𝑏𝑖 's are constants. Such a distribution is a good description of real structures. We 

put the expressions for mass and stiffness, given by Eqs. (4)-(5), and 𝜙(𝑥), given by Eq. (3), into 

Eq. (2), resulting in a polynomial equation with highest term of 𝑥6. For this polynomial equation 

to be satisfied for all values of 𝑥 (0 ≤ 𝑥 ≤ 𝐿), the coefficients of the constant, 𝑥, 𝑥2, 𝑥 , 𝑥 , 𝑥  

and 𝑥6  must be zero. Thus yielding a set of seven linear homogeneous equations in seven 

unknowns. 

  =                                                                              (6) 

where   is given by Eq. (A.1), 𝑦 = (𝑘, 𝑏 , 𝑏 , 𝑏2, 𝑏 , 𝑏 , 𝑏 )
𝑇 and 𝑘 = 𝜔2. To obtain a non-trivial 

solution for 𝑦, the determinant of   must be zero, leading to a polynomial equation in 𝜂 and 𝑐𝑖 's, 

of the form 𝑓(𝜂, 𝑐 , . . . , 𝑐 ) = 0. Solving 𝑓(𝜂, 𝑐 , . . . , 𝑐 ) = 0 we will obtain the expression for 𝜂 

for which Eq. (6) will yield a non-trivial solution. We carry out our investigation for six different 

set of boundary conditions: cantilever, fixed-fixed, fixed-pinned, pinned-pinned, pinned-guided 

and fixed-guided. The different boundary conditions are shown in Table 1.  

 

 
Table 1 The different boundary conditions of a non-uniform Euler-Bernoulli beam, which has been used for 

the second mode tailoring problem 

Beam type Boundary conditions 

Cantilever 𝜙(0) = 𝜙′(0) = 𝜙′′(𝐿) = 𝜙′′′(𝐿) = 0 

Fixed-fixed 𝜙(0) = 𝜙′(0) = 𝜙(𝐿) = 𝜙′(𝐿) = 0 

Fixed-pinned 𝜙(0) = 𝜙′(0) = 𝜙(𝐿) = 𝜙′′(𝐿) = 0 

Pinned-pinned 𝜙(0) = 𝜙′′(0) = 𝜙(𝐿) = 𝜙′′(𝐿) = 0 

Pinned-guided 𝜙(0) = 𝜙′′(0) = 𝜙′(𝐿) = 𝜙′′′(𝐿) = 0 

Fixed-guided 𝜙(0) = 𝜙′(0) = 𝜙′(𝐿) = 𝜙′′′(𝐿) = 0 
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2.1 Cantilever (Fixed-free) beam 
 
Putting the boundary conditions of a cantilever beam, given in Table 1, along with the 

condition 𝜙(𝛼) = 0 (for the internal node), into Eq. (3), and then solving for the constants 𝑐𝑖 's, we 

get 

𝑐 = 0, 𝑐 = 0, 𝑐2 = −
2(10𝐿 𝛼 − 10𝐿 𝛼2 + 3𝐿2𝛼 )𝑐 

6𝐿2 − 4𝐿𝛼 + 𝛼2
,                                        

𝑐 =
2(10𝐿 − 5𝐿2𝛼2 + 2𝐿𝛼 )𝑐 

6𝐿2 − 4𝐿𝛼 + 𝛼2
, 𝑐 = −

(20𝐿 − 10𝐿2𝛼 + 𝛼 )𝑐 
6𝐿2 − 4𝐿𝛼 + 𝛼2

                     (7) 

Putting Eq. (7) into 𝑓(𝜂, 𝑐 , . . . , 𝑐 ) = 0 and solving, we obtain the expression for 𝜂, given by 

Eq. (A.2). Using Eq. (A.2), we can solve Eq. (6) to get the expressions for the coefficients 𝑏𝑖 's in 

terms of 𝛼 and 𝑘, from which we can get the final expressions for the mass 𝑚(𝑥) and stiffness 

𝐸𝐼(𝑥) variations. Now, for a uniform cantilever beam, the node location for the second mode is 

𝛼 = 0.783445𝐿. Now, suppose we want to move this location to 𝛼 = 0.69𝐿. The expressions for 

the assumed mode shape (normalized with respect to mass), mass and stiffness variations can be 

calculated as 

𝜙(𝑥) = −0.596661𝑥2 + 0.316098𝑥 − 0.0512863𝑥 + 0.00283851𝑥  

𝑚(𝑥) = (1 − 0.176981𝑥)𝑎  

       𝐸𝐼(𝑥) = (0.385116 + 0.136933𝑥 + 0.0190149𝑥2 − 0.0220786𝑥  

+0.00328421𝑥 − 0.000158019𝑥 )𝑘𝑎                                          (8) 

We thus see that the inverse problem is solved analytically. Fig. 1(a) shows the assumed mode 

shapes obtained for different node locations, and their corresponding mass and stiffness variations 

are given in Figs. 2(a)-2(b), respectively. From Fig. 1(a), we can observe that as the node locations 

𝛼 are shifted towards the fixed end, the amount of tip deflection increases, for a particular second 

mode frequency 𝜔 , if the system is excited at the second mode frequency. This might have 

important applications in the MEMS industry as mechanical resonators, where we can control the 

amount of tip deflection by tailoring the location of the internal node.  

Assuming a cantilever beam with rectangular cross-section, the height  (𝑥) and breadth 𝑏(𝑥)  
variations can be calculated as 

 (𝑥) = √
12 𝜌 𝐸𝐼(𝑥)

𝐸 𝑚(𝑥)
                                                                 (9) 

𝑏(𝑥) = √
𝐸 𝑚(𝑥) 

12 𝜌  𝐸𝐼(𝑥)
                                                            (10) 

where 𝜌 is the uniform material density and 𝐸 is the elastic modulus of the beam. Taking 𝐿 = 5 m, 

𝜌 = 7840 kg/m
3
, 𝐸 = 2 x 10   Pa, 𝜔 = 11.6642 rad/s and 𝑎 = 1.8816, the height and breadth 

variations corresponding to two different internal node locations, 𝛼 = 0.69𝐿 and 𝛼 = 0.78𝐿, are 

shown in Figs. 2(c)-2(d), respectively. For plotting purpose, the origin is taken at the center of the 

cross-section at the base (𝑥 = 0). We can see the substantial difference in the beam shapes  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 1 The assumed mode shape variations for the beams, for different internal node locations and 

boundary conditions. (a) Cantilever; (b) Fixed-fixed; (c) Fixed-pinned; (d) Pinned-pinned; (e) Pinned-

guided; (f) Fixed-guided 

 

 

depending on the nodal placement. Conversely, the nodal point can be pre-selected by appropriate 

selection of the beam dimensions.  

 

2.2 Fixed-fixed beam 
 
Putting the boundary conditions of a fixed-fixed beam, given in Table 1, along with the  
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(a) (b) 

  
(c) (d) 

Fig. 2 Material property and geometry variations for the cantilever beam, for different internal node  

locations α. (a) Mass variation; (b) Stiffness variation; (c) Geometry variation for α=0.69L; (d) Geometry 

variation for α=0.78L 

 

 

condition 𝜙(𝛼) = 0 (for the internal node), into Eq. (3), and then solving for the constants 𝑐𝑖 's, we 

get 

𝑐 = 0, 𝑐 = 0, 𝑐2 = −𝐿2𝛼𝑐 , 𝑐 = 𝐿(𝐿 + 2𝛼)𝑐 , 𝑐 = −(2𝐿 + 𝛼)𝑐                   (11) 

Putting Eq. (11) into 𝑓(𝜂, 𝑐 , . . . , 𝑐 ) = 0 and solving, we obtain the expression for 𝜂, given by 

Eq. (A.3). Using Eq. (A.3), we can solve Eq. (6) to get the expressions for the coefficients 𝑏𝑖 's in 

terms of 𝛼 and 𝑘, from which we can get the final expressions for the mass 𝑚(𝑥) and stiffness 

𝐸𝐼(𝑥) variations. For a uniform fixed-fixed beam, 𝛼 = 0.5𝐿 for the second mode. Suppose, if we 

want to shift this to 𝛼 = 0.48𝐿. The expressions for the assumed mode shape (normalized with 

respect to mass), mass and stiffness variations can be found to be 

𝜙(𝑥) = −1.27924𝑥2 + 1.04471𝑥 − 0.264376𝑥 + 0.0213207𝑥  

𝑚(𝑥) = (1 − 0.12896𝑥)𝑎  

𝐸𝐼(𝑥) = (0.0810056 + 0.0461387𝑥 + 0.0125928𝑥2 − 0.0128587𝑥  

+0.00223751𝑥 − 0.000115143𝑥 )𝑘𝑎                                                (12) 
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(a) (b) 

  
(c) (d) 

Fig. 3 Material property and geometry variations for the fixed-fixed beam, for different internal node 

locations α. (a) Mass variation; (b) Stiffness variation; (c) Geometry variation for α=0.48L; (d) 

Geometry variation for α=0.52L 

 

 

Fig. 1(b) shows the assumed mode shapes, obtained for different node locations, and their          

corresponding mass and stiffness variations are given in Figs. 3(a)-3(b), respectively. Taking the   

same values as before, the height and breadth variations corresponding to two different internal     

node locations, 𝛼 = 0.48𝐿 and 𝛼 = 0.52𝐿, are shown in Figs. 3(c)-3(d), respectively.  

 

2.3 Fixed-pinned beam 
 
Putting the boundary conditions of a fixed-pinned beam, given in Table 1, along with the 

condition 𝜙(𝛼) = 0 (for the internal node), into Eq. (3), and then solving for the constants 𝑐𝑖 's, we 

get 

𝑐 = 0, 𝑐 = 0, 𝑐2 = −
𝐿2(4𝐿 − 3𝛼)𝛼𝑐 

3𝐿 − 2𝛼
, 

𝑐 =
𝐿(4𝐿2 + 4𝐿𝛼 − 5𝛼2)𝑐 

3𝐿 − 2𝛼
, 𝑐 =

(−7𝐿2 + 2𝐿𝛼 + 2𝛼2)𝑐 
3𝐿 − 2𝛼

                        (13) 
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Putting Eq. (13) into 𝑓(𝜂, 𝑐 , . . . , 𝑐 ) = 0  and solving, we obtain the expression for 𝜂, given by 

Eq. (A.4). Using Eq. (A.4), we can solve Eq. (6) to get the expressions for the constants 𝑏𝑖 's in 

terms of 𝛼 and 𝑘, from which we can get the final expressions for the mass 𝑚(𝑥) and stiffness 

𝐸𝐼(𝑥) variations. For a uniform fixed-pinned beam, 𝛼 = 0.557496𝐿. Suppose, we want to move 

this node location to 𝛼 = 0.58𝐿. The expressions for the assumed mode shape (normalized with 

respect to mass), mass and stiffness variations can be calculated as 

𝜙(𝑥) = −0.554714𝑥2 + 0.392549𝑥 − 0.0874678𝑥 + 0.00622932𝑥  

𝑚(𝑥) = (1 + 0.767163𝑥)𝑎  

𝐸𝐼(𝑥) = (0.342794 + 0.181087𝑥 + 0.0601321𝑥2 − 0.00516956𝑥  

−0.0058626𝑥 + 0.000684967𝑥 )𝑘𝑎                                                 (14) 

Fig. 1(c) shows the assumed mode shapes, obtained for different node locations, and their 

corresponding mass and stiffness variations are given in Figs. 4(a)-4(b), respectively. Taking the 

same values as before, the height and breadth variations corresponding to two different internal 

node locations, 𝛼 = 0.52𝐿 and 𝛼 = 0.58𝐿, are shown in Figs. 4(c)-4(d), respectively.  

 

 

  
(a) (b) 

  
(c) (d) 

Fig. 4 Material property and geometry variations for the fixed-pinned beam, for different internal node 

locations α. (a) Mass variation; (b) Stiffness variation; (c) Geometry variation for α=0.52L; (d) 

Geometry variation for α=0.58L 
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(a) (b) 

  
(c) (d) 

Fig. 5 Material property and geometry variations for the pinned-pinned beam, for different internal 

node locations α. (a) Mass variation; (b) Stiffness variation; (c) Geometry variation for α=0.48L; (d) 

Geometry variation for α=0.52L 

 
 
2.4 Pinned-pinned beam 
 
Putting the boundary conditions of a pinned-pinned beam, given in Table 1, along with the 

condition 𝜙(𝛼) = 0 (for the internal node), into Eq. (3), and then solving for the constants 𝑐𝑖 's, we 

get 

𝑐 = 0, 𝑐 =
𝐿 𝛼2(−4𝐿 + 3𝛼)𝑐 
3(𝐿2 + 𝐿𝛼 − 𝛼2)

, 𝑐2 = 0, 𝑐 =
2𝐿(2𝐿 + 2𝐿2𝛼 + 2𝐿𝛼2 − 3𝛼 )𝑐 

3(𝐿2 + 𝐿𝛼 − 𝛼2)
, 

𝑐 =
(−7𝐿 − 7𝐿2𝛼 + 3𝐿𝛼2 + 3𝛼 )𝑐 

3(𝐿2 + 𝐿𝛼 − 𝛼2)
                                             (15) 

Putting Eq. (15) into 𝑓(𝜂, 𝑐 , . . . , 𝑐 ) = 0 and solving, we obtain the expression for 𝜂, given by 

Eq. (A.5). Using Eq. (A.5), we can solve Eq. (6) to get the expressions for the constants 𝑏𝑖 's in 

terms of 𝛼 and 𝑘, from which we can get the final expressions for the mass 𝑚(𝑥) and stiffness 

𝐸𝐼(𝑥) variations. For a uniform pinned-pinned beam, the node location for the second mode is 

𝛼 = 0.5𝐿. Suppose, we want to move this node to 𝛼 = 0.48𝐿. The expressions for the assumed 

mode shape (normalized with respect to mass), mass and stiffness variations can be found to be 
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𝜙(𝑥) = −0.692524𝑥 + 0.290151𝑥 − 0.0877022𝑥 + 0.00704246𝑥  

𝑚(𝑥) = (1 − 0.103282𝑥)𝑎  

𝐸𝐼(𝑥) = (0.204178 + 0.123432𝑥 − 0.0082004𝑥2 − 0.01152𝑥  

+0.00203263𝑥 − 0.0000922157𝑥 )𝑘𝑎                                      (16) 

Fig. 1(d) shows the assumed mode shapes, obtained for different node locations, and their 

corresponding mass and stiffness variations are given in Figs. 5(a)-5(b), respectively. Taking the 

same values as before, the height and breadth variations corresponding to two different internal 

node locations, 𝛼 = 0.48𝐿 and 𝛼 = 0.52𝐿, are given in Figs. 5(c)-5(d), respectively. 

 

2.5 Pinned-guided beam 
 
Putting the boundary conditions of a pinned-guided beam, given in Table 1, along with the 

condition 𝜙(𝛼) = 0 (for the internal node), into Eq. (3), and then solving for the constants 𝑐𝑖 's, we 

get 

𝑐 = 0, 𝑐 =
𝐿 𝛼2(−20𝐿2 + 25𝐿𝛼 − 8𝛼2)𝑐 

8𝐿 − 4𝐿𝛼2 + 𝛼 
, 𝑐2 = 0, 𝑐 =

2𝐿(10𝐿 − 5𝐿𝛼 + 2𝛼 )𝑐 
8𝐿 − 4𝐿𝛼2 + 𝛼 

, 

𝑐 = −
(−5𝐿2 + 𝛼2)2𝑐 
8𝐿 − 4𝐿𝛼2 + 𝛼 

                                                         (17) 

Putting Eq. (17) into 𝑓(𝜂, 𝑐 , . . . , 𝑐 ) = 0 and solving, we obtain the expression for 𝜂, given by 

Eq. (A.6). Using Eq. (A.6), we can solve Eq. (6) to get the expressions for the constants 𝑏𝑖 's in 

terms of 𝛼 and 𝑘, from which we can get the final expressions for the mass 𝑚(𝑥) and stiffness 

𝐸𝐼(𝑥) variations. For a uniform pinned-guided beam, 𝛼 = 0.666667𝐿. Now, suppose we want to 

move the node location to 𝛼 = 0.56𝐿. The expressions for the assumed mode shape (normalized 

with respect to mass), mass and stiffness variations can be calculated as  

𝜙(𝑥) = −0.579998𝑥 + 0.16204𝑥 − 0.0381901𝑥 + 0.00240705𝑥  

𝑚(𝑥) = (1 − 0.173596𝑥)𝑎  

𝐸𝐼(𝑥) = (0.412504 + 0.19444𝑥 − 0.0281992𝑥2 − 0.0142899𝑥  

+0.00299386𝑥 − 0.000154996𝑥 )𝑘𝑎                                          (18) 

Fig. 1(e) shows the assumed mode shapes, obtained for different node locations, and their 

corresponding mass and stiffness variations are given in Figs. 6(a)-6(b), respectively. Taking the 

same values as before, the height and breadth variations corresponding to two different internal 

node locations, 𝛼 = 0.56𝐿 and 𝛼 = 0.68𝐿, are shown in Figs. 6(c)-6(d), respectively. From Fig. 

1(e), we can observe that by shifting the internal node location towards the pinned end, the 

deflection at the guided end of the beam increases, if the system is excited at the second mode 

frequency. 

 

2.6 Fixed-guided beam 
 

Putting the boundary conditions of a fixed-guided beam, given in Table 1, along with the  
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(a) (b) 

  
(c) (d) 

Fig. 6 Material property and geometry variations for the pinned-guided beam, for different internal 

node locations α. (a) Mass variation; (b) Stiffness variation; (c) Geometry variation for α=0.56L; (d) 

Geometry variation for α=0.68L 

 

 

condition 𝜙(𝛼) = 0 (for the internal node), into Eq. (3), and then solving for the constants 𝑐𝑖 's, we 

get 

𝑐 = 0, 𝑐 = 0, 𝑐2 =
𝐿2𝛼(−20𝐿2 + 25𝐿𝛼 − 8𝛼2)𝑐 

2(−2𝐿 + 𝛼)2
, 𝑐 =

2𝐿(5𝐿 − 5𝐿𝛼2 + 2𝛼 )𝑐 
(−2𝐿 + 𝛼)2

, 

𝑐 =
(−25𝐿 + 20𝐿2𝛼 − 2𝛼 )𝑐 

2(−2𝐿 + 𝛼)2
                                                   (19) 

Putting Eq. (19) into 𝑓(𝜂, 𝑐 , . . . , 𝑐 ) = 0 and solving, we obtain the expression for 𝜂, given by 

Eq. (A.7). Using Eq. (A.7), we can solve Eq. (6) to get the expressions for the constants 𝑏𝑖 's in 

terms of 𝛼 and 𝑘, from which we can get the final expressions for the mass 𝑚(𝑥) and stiffness 

𝐸𝐼(𝑥) variations. For a uniform fixed-guided beam, 𝛼 = 0.716806𝐿. Suppose, we want to move 

the node to 𝛼 = 0.63𝐿. The expressions for the assumed mode shape (normalized with respect to 

mass), mass and stiffness variations can be found to be 

𝜙(𝑥) = −0.720588𝑥2 + 0.433239𝑥 − 0.0794862𝑥 + 0.00462594𝑥  

𝑚(𝑥) = (1 − 0.16011𝑥)𝑎  
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(a) (b) 

  
(c) (d) 

Fig. 7 Material property and geometry variations for the fixed-guided beam, for different internal node 

locations α. (a) Mass variation; (b) Stiffness variation; (c) Geometry variation for α=0.63L; (d) 

Geometry variation for α=0.72L 

 

 

𝐸𝐼(𝑥) = (0.239388 + 0.0971021𝑥 + 0.0167046𝑥2 − 0.0187686𝑥  

+0.00299181𝑥 − 0.000142956𝑥 )𝑘𝑎                                            (20) 

Fig. 1(f) shows the assumed mode shapes, obtained for different node locations, and their 

corresponding mass and stiffness variations are given in Figs. 7(a)-7(b), respectively. Taking the 

same values as before, the height and breadth variations corresponding to two different internal 

node locations, 𝛼 = 0.63𝐿 and 𝛼 = 0.72𝐿, are shown in Figs. 7(c)-7(d), respectively. Here also we 

can observe from Fig. 1(f), that by shifting the location of the internal node towards the fixed end, 

the deflection at the guided end of the beam increases, if the system is excited with the second 

mode frequency.  

 

 

3. Validation of derived functions using p-version finite element method 
 

The finite element is one of the most popular methods used for the vibration analysis of beams. 

785



 

 

 

 

 

 

Korak Sarkar and Ranjan Ganguli 

Most of the early works have used the Hermite cubic polynomial as shape functions, which is 

known as the h-version finite element method (Udupa and Varadan 1990). This method works well 

for uniform beams, but for non-uniform beams a large number of elements are require for the 

convergence of results. Hence in later years new types of finite element methods were developed 

which uses only one element like the p-version (Hodges and Rutkowski 1981), Fourier-p super 

element (Gunda et al. 2007) and spectral methods (Vinod et al. 2007). 

The 𝐸𝐼(𝑥) variations, derived for the various distributions of mass per unit length 𝑚(𝑥), can be 

used as test functions for checking the validity of these beam finite element methods, by 

comparing the known fundamental frequency 𝜔 and mode shape 𝜙(𝑥) with that derived from the 

numerical code. In our case, we use the p-version of the finite element introduced by Hodges and 

Rutkowski (1981). This method is very popular, not only because is it highly efficient in handling 

non-uniform structures, but also because it reduces the order of the eigenvalue problem to a great 

extent, since it uses increased order of the polynomial basis for convergence of results. A detailed 

formulation of the method is given by Sarkar and Ganguli (2013), the only difference being the 

expression for the axial tension force term 𝑇(𝑥). For rotating beams it is 𝑇(𝑥) = ∫ 𝑚(𝑥)Ω2𝑥𝑑𝑥
𝐿

𝑥
, 

where 𝛺 is the rotating speed for the rotating beam. For our case 𝑇(𝑥) = 0. 

As an example, we take the mass and stiffness variations derived for the cantilever boundary 

condition, shown in Figs. 2(a)-2(b), respectively, and put them into the p-version finite element 

method to obtain the second mode shape and frequency. The results are then compared with the 

assumed mode shape 𝜙(𝑥) and frequency 𝜔. The reason for finding the second mode frequency is 

that our assumed mode shape has an internal node present, and hence it represents the second 

elastic mode of a cantilever beam. The results for the mode shape comparisons are shown in Fig. 

8. All the mode shapes have been mass normalized. The second mode frequency yielded by p-

FEM, for different positions of the internal nodes, came as 11.6642 rad/s, which is the same as 

assumed in Section 2.1. Thus we can see that the test functions, for the cantilever beam, give back 

the same frequency 𝜔 and mode shape 𝜙(𝑥) as we had assumed in the Section 2.1. Indirectly, it 

also checked the correctness of the derived functions. 

 

 

 

Fig. 8 Comparison of the assumed fundamental mode shapes and mode shapes obtained from p-FEM, 

for the case of a cantilever second mode, for different positions of the internal node α. “*”denotes mode 

shapes obtained from the p-FEM, continuous lines denotes the assumed mode shapes 
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Table 2 The bounds on the location of the internal node (𝛼), for different boundary conditions, along with 

the values of 𝛼 for corresponding uniform beams and η=0. All values are given as a fraction of the total 

beam span 

Beam type Bounds on the internal node α 
α location for corresponding 

uniform beam 
α for which η=0 

Cantilever 0.644294 < 𝛼 < 0.806105 0.783445 0.769396 

Fixed-fixed 0.458307 < 𝛼 <  0.541693 0.5 0.5 

Fixed-pinned 0.496157 < 𝛼 <  0.593685 0.557496 0.550426 

Pinned-pinned 0.442801 < 𝛼 <  0.557199 0.5 0.5 

Pinned-guided 0.518617 < 𝛼 <  0.708167 0.66667 0.646348 

Fixed-guided 0.574623 < 𝛼 <  0.735808 0.716806 0.690983 

 

 
4. Bounds on the location of the internal node 
 

Till now we have seen that it is possible to shift the location of the internal node of the second 

mode of an Euler-Bernoulli beam, having different boundary conditions, by appropriately varying 

the mass and stiffness of the beam. But one question that immediately arises - can the location of 

the internal node be shifted to anywhere along the length of the beam? The obvious answer is no. 

This leads us to investigate the bounds on the locations of the internal node for all the given set of 

boundary conditions. 

In formulating the problem for the six different boundary conditions, we have seen that for non-

trivial solutions to exist, there arises a specific relation between the constant 𝜂 and the internal 

node location 𝛼, given by Eqs. (A.2)-(A.7). But the constant 𝜂 cannot be less than −1, otherwise 

the mass variation will become negative, which is not allowable from a physical point of view. 

Hence, we have 

𝑚(𝑥) > 0 ∀ 𝑥, 0 ≤ 𝑥 ≤ 𝐿 ⇒ 𝜂 > −1                                            (21) 

Thus, imposing the condition given by Eqn. (21), on the 𝜂 expressions derived for the different 

boundary conditions, we can get a bound on the values of the internal node 𝛼. The calculation is 

done by a simple MATHEMATICA code, and the results for the different boundary conditions are 

presented in Table 2.  

Another interesting observation that we can make from Figs. (2), (3), (4), (5), (6) & (7), is that 

for a particular location of the internal node, the mass distribution becomes constant, that is the 

value of 𝜂  becomes zero. Thus, the values of the corresponding 𝛼 's for which 𝜂 = 0 , can be 

calculated using Eqs. (A.2)-(A.7), respectively, and the results are tabulated in Table 2, along with 

the location of the internal node for the corresponding uniform beams. 

 

 

4. Conclusions 
 

In this paper, we have given an analytical approach for tailoring the second mode of an Euler- 

Bernoulli beam, having different boundary conditions. The approach allows pre-selection of a 

nodal location in the beam for the second mode. We assume a certain mode shape function 𝜙(𝑥), 
having an internal node at 𝑥 = 𝛼, which satises all the given boundary conditions. We then assume 

the mass distribution 𝑚(𝑥) to vary linearly with 𝑥 and the flexural stiffness 𝐸𝐼(𝑥) to vary as a fifth 
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order polynomial in 𝑥. Putting 𝜙(𝑥), 𝑚(𝑥) & 𝐸𝐼(𝑥) into the governing differential equations, and 

arguing that since solution must exist for all values of x, we form seven linear equations in seven 

unknowns. Invoking the conditions for non-trivial solutions, we determine the relation between the 

mass slope 𝜂 and internal node 𝛼, from which we can get the final expressions for the mass and 

flexural stiffness variations. 

The variations of the mass and stiffness distributions corresponding to different locations of the 

internal node have been shown, for six different sets of boundary conditions. We also concluded 

that by shifting the location of the internal node we can change the degree of deflection of the 

beam when excited with a frequency 𝜔. Hence, if we assume the second natural frequency as 𝜔, 

then we can tailor the mass and stiffness variations accordingly, for a particular location of the 

node. Hence these results also serve as simple closed-form solution to the governing differential 

equation of the beam, which can be used as test functions for validating numerical methods of 

vibration tailoring. We used the derived functions for the cantilever boundary condition, to validate 

the p-version finite element method, thus proving the utility of the derived functions as benchmark 

solutions.  Furthermore, we also calculated the bounds on the location of the internal node for the 

different type of beams. Thus, the results can be used to tailor Euler-Bernoulli beams having a 

prescribed second mode shape with a particular node location, corresponding to the second natural 

frequency 𝜔. 
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Appendix A 
 
     The expression for   in Eq. (6) is given by 

 =

(

 
 
 
 

−𝑎 𝑐 24𝑐 12𝑐 4𝑐2 0 0 0
−𝜂𝑎 𝑐 − 𝑎 𝑐 120𝑐 72𝑐 36𝑐 12𝑐2 0 0
−𝜂𝑎 𝑐 − 𝑎 𝑐2 0 240𝑐 144𝑐 72𝑐 24𝑐2 0
−𝜂𝑎 𝑐2 − 𝑎 𝑐 0 0 400𝑐 240𝑐 120𝑐 40𝑐2
−𝜂𝑎 𝑐 − 𝑎 𝑐 0 0 0 600𝑐 360𝑐 180𝑐 
−𝜂𝑎 𝑐 − 𝑎 𝑐 0 0 0 0 840𝑐 504𝑐 

−𝜂𝑎 𝑐 0 0 0 0 0 1120𝑐 )

 
 
 
 

        (A. 1) 

 

The derived expression for 𝜂, for cantilever (fixed-free) boundary condition, is given by 

𝜂 = −(80(129600000𝐿 7 − 734400000𝐿 6𝛼 + 1884600000𝐿  𝛼2 − 2920800000𝐿  𝛼            

+3059000000𝐿  𝛼 − 2289200000𝐿 2𝛼 + 1263450000𝐿  𝛼6 − 528820000𝐿  𝛼7           

+177950000𝐿9𝛼8 − 55682000𝐿8𝛼9 + 19344500𝐿7𝛼  − 7112000𝐿6𝛼             

+2260100𝐿 𝛼 2 − 546000𝐿 𝛼  + 94175𝐿 𝛼  − 10962𝐿2𝛼  + 783𝐿𝛼 6 − 27𝛼 7))/            

(8343000000𝐿 8 − 46602000000𝐿 7𝛼 + 118098000000𝐿 6𝛼2            

−180894000000𝐿  𝛼 + 187344250000𝐿  𝛼 − 138649500000𝐿  𝛼             

+75393450000𝐿 2𝛼6 − 30368400000𝐿  𝛼7 + 8836312500𝐿  𝛼8 − 1541595000𝐿9𝛼9            

−146090000𝐿8𝛼  + 282425000𝐿7𝛼  − 153446625𝐿6𝛼 2 + 55651750𝐿 𝛼              

  −14415875𝐿 𝛼  + 2635500𝐿 𝛼  − 324945𝐿2𝛼 6 + 24570𝐿𝛼 7 − 891𝛼 8)   (A. 2) 

The derived expression for 𝜂, for fixed-fixed boundary condition, is given by 

𝜂 =  

−71040𝐿 + 118400𝐿 𝛼 + 62400𝐿 𝛼2 − 12800𝐿2𝛼 − 43200𝐿𝛼 + 17280𝛼 

34473𝐿6 − 45266𝐿 𝛼 − 33650𝐿 𝛼2 − 9440𝐿 𝛼 + 11700𝐿2𝛼 + 12744𝐿𝛼 − 7128𝛼6
   (A. 3) 

The derived expression for 𝜂, for fixed-pinned boundary condition, is given by 

𝜂 = −(320(−2𝐿 + 𝛼)2(77679𝐿9 − 362502𝐿8𝛼 + 611847𝐿7𝛼2 − 431880𝐿6𝛼               

+81082𝐿 𝛼 − 6452𝐿 𝛼 + 86596𝐿 𝛼6 − 81216𝐿2𝛼7 + 28080𝐿𝛼8 − 3456𝛼9))/               

(55190808𝐿 2 − 298001808𝐿  𝛼 + 641850372𝐿  𝛼2 − 701769480𝐿9𝛼                

+404906750𝐿8𝛼 − 121263668𝐿7𝛼 + 21954633𝐿6𝛼6 + 21437998𝐿 𝛼7               

−58309060𝐿 𝛼8 + 52463400𝐿 𝛼9 − 23165568𝐿2𝛼  + 5125248𝐿𝛼  − 456192𝛼 2)   (A. 4) 

The derived expression for 𝜂, for pinned-pinned boundary condition, is given by 

𝜂 = −(20(7672𝐿 7 + 46032𝐿 6𝛼 + 8668𝐿  𝛼2 − 333335𝐿  𝛼                 

−317555𝐿  𝛼 + 846457𝐿 2𝛼 + 839737𝐿  𝛼6 − 1261667𝐿  𝛼7                
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−890775𝐿9𝛼8 + 1214845𝐿8𝛼9 + 370557𝐿7𝛼  − 688293𝐿6𝛼  + 18603𝐿 𝛼 2                

+188595𝐿 𝛼  − 49005𝐿 𝛼  − 15498𝐿2𝛼  + 8262𝐿𝛼 6 − 972𝛼 7))/                 

(85171𝐿 8 + 511026𝐿 7𝛼 + 225591𝐿 6𝛼2 − 3150739𝐿  𝛼 − 3583555𝐿  𝛼  

+7068461𝐿  𝛼 + 8927306𝐿 2𝛼6 − 9339499𝐿  𝛼7 − 9604699𝐿  𝛼8                 

+8101030𝐿9𝛼9 + 4463541𝐿8𝛼  − 3368349𝐿7𝛼  − 1026444𝐿6𝛼 2 − 6129𝐿 𝛼                   

+987795𝐿 𝛼  − 310824𝐿 𝛼  − 102384𝐿2𝛼 6 + 62451𝐿𝛼 7 − 8019𝛼 8)            (A. 5) 
The derived expression for 𝜂, for pinned-guided boundary condition, is given by 

𝜂 = −(20(−5𝐿2 + 𝛼2)2                  

(48900000𝐿 9 − 391250000𝐿 7𝛼2 + 366812500𝐿 6𝛼 + 553400000𝐿  𝛼                   

−870000000𝐿  𝛼 − 71662500𝐿  𝛼6 + 695450000𝐿 2𝛼7 − 296600000𝐿  𝛼8                  

−172118750𝐿  𝛼9 + 177876500𝐿9𝛼  − 29350000𝐿8𝛼  − 24472000𝐿7𝛼 2                  

+14047500𝐿6𝛼  − 2406840𝐿 𝛼  − 275025𝐿 𝛼                    

+194056𝐿 𝛼 6 − 36030𝐿2𝛼 7 + 3132𝐿𝛼 8 − 108𝛼 9))/                   

(18800953125𝐿2 − 147948812500𝐿22𝛼2 + 128533156250𝐿2 𝛼                   

+248988306250𝐿2 𝛼 − 344144687500𝐿 9𝛼 − 114628978125𝐿 8𝛼6                  

+355622531250𝐿 7𝛼7 − 71640558125𝐿 6𝛼8 − 165701200000𝐿  𝛼9                  

+95341557500𝐿  𝛼  + 21440472500𝐿  𝛼  − 33688599500𝐿 2𝛼 2                  

+7799345000𝐿  𝛼  + 2084708250𝐿  𝛼  − 1382213250𝐿9𝛼                    

+441740275𝐿8𝛼 6 − 243289500𝐿7𝛼 7 + 110922225𝐿6𝛼 8 − 23176900𝐿 𝛼 9                  

−374990𝐿 𝛼2 + 1229700𝐿 𝛼2 − 262845𝐿2𝛼22 + 24570𝐿𝛼2 − 891𝛼2 )              (A. 6) 
The derived expression for 𝜂, for fixed-guided boundary condition, is given by 

𝜂 = −(160(−10𝐿 + 15𝐿2𝛼 − 7𝐿𝛼2 + 𝛼 )2                 

(1528125𝐿  − 7131250𝐿  𝛼 + 13531875𝐿9𝛼2 − 13470000𝐿8𝛼                  

+7420000𝐿7𝛼 − 2199500𝐿6𝛼 + 494500𝐿 𝛼6 − 341800𝐿 𝛼7                 

+227500𝐿 𝛼8 − 77360𝐿2𝛼9 + 12960𝐿𝛼  − 864𝛼  ))/                  

(18800953125𝐿 8 − 142257625000𝐿 7𝛼 + 486435062500𝐿 6𝛼2                      

−995259512500𝐿  𝛼 + 1358358687500𝐿  𝛼 − 1304124375000𝐿  𝛼                       

+904362862500𝐿 2𝛼6 − 456797400000𝐿  𝛼7 + 164814030000𝐿  𝛼8                      

−36505250000𝐿9𝛼9 − 2245522000𝐿8𝛼  + 8036044000𝐿7𝛼                        

−5355076700𝐿6𝛼 2 + 2301922400𝐿 𝛼  − 690268800𝐿 𝛼                        

+142894720𝐿 𝛼  − 19471680𝐿2𝛼 6 + 1572480𝐿𝛼 7 − 57024𝛼 8)                      (A. 7) 
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