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Abstract.  Investigations of regular and chaotic vibrations of the autoparametric pendulum absorber 
suspended on a nonlinear coil spring and a magnetorheological damper are presented in the paper. 
Application of a semi-active damper allows controlling the dangerous motion without stooping of system 
and additionally gives new possibilities for designers. The investigations are curried out close to the main 
parametric resonance. Obtained numerical and experimental results show that the semi-active suspension 
may reduce dangerous motion and it also allows to maintain the pendulum at a given attractor or to jump to 
another one. Moreover, the results show that, for some parameters, MR damping may transit to chaotic 
motions. 
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1. Introduction 

 

The problem of undesired vibration reduction has been known since many years ago and 

becomes more attractive nowadays. The dynamic vibration absorbers (DVA) are special devices, 

consisting of masses suspended on springs and dampers. In the classical theory of DVA, the 

primary structure is modelled as a spring mass system. However, other dynamic vibration 

absorption models also have high interest in research and engineering application. In particular, the 

pendulum type systems can play an important role in many fields such as machinery, 

transportation and civil engineering. But, dynamic behavior of a pendulum absorber is 

significantly more complex than it is supposed by the widely used additional simple dynamical 

dampers. 

Systems with time-varying parameters belong to a very important class in the field of structural 

dynamics. Many mechanical engineering problems are described by differential equations with 

periodically changing parameters (Kapitaniak et al. 2013). Therefore, vibrations generated in such 

systems are called parametric vibrations. An autoparametric system represents a special class of 

nonlinear systems. Such system is composed of at least two subsystems (primary and secondary), 

i.e. at least two degrees of freedom model has to be considered. The secondary subsystem is 

coupled to the primary system in a nonlinear way, and moreover it may become a source of 
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internal parametric excitation. In such a case we deal with self-parametric vibrations called 

autoparametric. In autoparametric vibrations, a small excitation can produce a large response 

basically when the frequency of excitation is close to one of the natural frequencies of the system. 

In actual engineering problems, the loss of stability depends on frequency tuning of the various 

components of the system, and on the interaction between them.  

The mass-spring systems with an attached pendulum represent an interesting dynamical 

physical structure which is used in many mechanical and civil engineering applications. In a large 

number of problems it is used to diminish the vibration amplitudes (the dynamical vibration 

dampers). For example, the pendulum absorber is applied to helicopters as one of the vibration 

suppression devices of helicopters blades (Nagasaka et al. 2007). Moreover, special dampers 

working against earthquake are mounted in high buildings, mounted on bridges against river 

vortex or on high chimneys where they are designed to reduce vibration induced by the wind 

(Spencer and Sain 1997). Vibrations absorption of the dynamical dampers is possible in the system 

due to the pendulum swinging. Harmonically excited pendulum systems may undergo complicated 

dynamics, in particular if the pendulum and the oscillator are coupled by inertial resonance 

condition (Kecik and Warminski 2012a). It has been found that the system generates various type 

of motion, from simple periodic oscillation to complex dynamics including chaos and rotation of 

the pendulum (Kecik and Warminski 2012b). The presence of the coupling terms can lead to a 

certain type of instability which is referred as the autoparametric resonance. However, for some 

parameters the situation may worsen and the pendulum vibrations may increase dramatically, and 

then the protection of the structure is lost. 

The control of the pendulum motions without seems difficult because of inertial coupling both 

systems. Therefore, intelligent and adaptive material systems and structures have become very 

important in engineering applications. A new class of materials with promising applications in 

structural and mechanical systems is the magnetorheological (MR) dampers (Tang et al. 2004, 

Yoshioka et al. 2002). MR dampers are attractive elements in structural control which have 

capability to provide large controllable damping forces and may change their properties to 

accommodate varying loading conditions. Therefore, magnetorheological fluids devices are the 

most promising for control of vibrations and for the vibration isolation. Application of a smart 

damper to regular and chaotic dynamics control and also for reduction of the force transmitted on 

the ground is investigated in this paper.  

The purpose of this paper is to study possible dynamical phenomena of a coupled oscillator-

pendulum system for realistic data, and to present a method of semiactive reduction of dangerous 

vibrations, mainly the chaotic motions and rotation. We propose to use the magnetorheological 

damper, which is installed between the oscillator and the ground to provide controllable damping 

for the system. Application of a smart damper allows control dynamics without stopping of system 

(online control). It is shown numerically and experimentally that MR damping can efficiently 

reduce chaotic oscillations. Additionally by activation of MR damping the change of motion is 

possible. Moreover this concept can be applied to control the pendulum for energy generation 

(energy harvester (Horton and Wiercigroch 2008)).  

The paper is divided into five sections. Following the above introduction, where a brief survey 

of literature was given, the second section will describe the analytical model. In the third section 

the experimental laboratory rig is presented. In the four section the results of numerical 

simulations and experimental are discussed. The influence of MR damping is detailed studied. For 

the verification of real chaotic motion the advanced delay method is applied. The last section 

includes conclusions and the results of the conducted numerical simulations. 
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Fig. 1 Model of an autoparmetric pendulum vibration absorber with MR damper 

 

 

2. An autoparametric system with a magnetorheological damper 
 

2.1 Model of an autoparametric system (AS) 
 

The investigated AS is shown in Fig. 1. The mechanical structure consists of a pendulum and a 

body of mass suspended on a coil spring with linear or nonlinear characteristic and the MR 

damper. The dimensionless damping coefficient of pendulum is assumed viscous. The body of 

mass is subjected to a harmonic vertical excitation by linear spring. 

The autoparametric system, presented in Fig. 1, that includes the magnetorheological damper, 

taken from the work (Kecik and Warminski 2011) 

    3 2
1 , sin cos cos ,dFX X X X X X q               (1) 

  2 1 sin 0.X         (2) 

The function Fd describes the nonlinear magnetorheological oscillator damping (explained in 

next subsection), 2 denotes damping coefficient of the pendulum,  is nonlinearity of oscillators 

spring. Parameters μ and  describe pendulum parameters (the mass and length as function of 

natural frequency and static displacement), while q and  identify parameters of excitation (the 

amplitude and frequency, respectively). If the parameter =0, we get a linear oscillators spring. 

Due to coupling of both coordinates, X and , by inertial term, the system is strongly nonlinear. 

Particular strong interactions between vibration modes occur if the natural frequency of the 

oscillator is twice higher than the pendulum frequency. Therefore, the resonance 1/2 is studied. A 

detailed description of the system and derivation of the dimensional equations and their 

transformation into dimensionless form can be found in (Warminski and Kecik 2009). An 

analytical solution of Eqs. (2.1)-(2.2) by harmonic balance method (HBM) is presented in 

(Warminski and Kecik 2012b). 
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Fig. 2 Attitude of MR damper in force-velocity curve 

 

 

2.2 Model of MR damper 
 

Damping of the oscillator is studied in two variants, as linear viscous and nonlinear 

magnetorheological. Our concept on nonlinear damping is realized by application of the 

magnetorheological damper(MRD). A smooth function of modified Binghams model, to describe 

of MR damper behavior is proposed. In dimensionless form the dynamic force Fd of MR damper 

is expressed as 

)tanh(),(_ 2131 SeXeXXXdF                          (3) 

where: 1 means viscous damping parameter, i.e., the slope of linear part of Eq. (3), 3 indicates 

dry friction, i.e., height of hysteretic loop, e1 describe the slope shape of dry friction and e2 denotes 

the width of hysteretic loop.  

The influence of parameters of Eq. (3) on the hysteretic loop effect in Fig. 2 is presented. This 

proposed model consists of a combination of viscous damping (1) and a Coulomb friction (3). If 

the parameter 3 equals zero, then the magnetorheological dampers working as classical viscous. 

 

2.3 Laboratory pendulum-like system 
 

The experiment of the studied two-degree-of-freedom model is performed on a specially 

prepared test stand presented in Fig. 3(a) and schematically in Fig. 1. The laboratory rig is 

composed of the pendulum (1), with possibility of full rotation, attached to an oscillator mounted 

(2) to a base by a linear or nonlinear spring (5) and a damper. The applied can be oil (11) viscous 

(linear, (12)) or magnetorheological (RD 1097-01, Fig. 3(b) (4)). Motion of the system is 

generated by a motor (6), and a mechanism which changes rotation of the motor into translational 

motion. The frequency of the vertical oscillations is controlled by inverter (10). Amplitude of 

kinematical excitation is fixed by a pitch of a drive shaft (7).  

Detailed description and more information about experimental setup, modeling of MR damper 

and measures apparatus are presented in (Kecik 2012). The spring which connects the oscillator 

and the base is considered in two variants, linear or nonlinear with different soft or hard stiffness 

characteristics. Nonlinearity of springs has been reached by designing of a special shape of 

springs: barrel shape and spiral hourglass helical shape. For data acquisition and for control the  
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(a) General view (b) MR damper RD1097-01 

Fig. 3 The laboratory rig of an autoparametic system 

 

 

DasyLab system is used. The angle of rotation’ of the pendulum and the displacement X of the 

oscillator are measured by encoder (3) and sensor (14). Additional sensor (8) mounted on the 

foundation of an autoparametric system allows measure the force transmitted in the foundation. 

Additional masses of the pendulum (9) and the oscillator (13) allows change the mass of an 

autoparametric system. The magnetorheological damper RD 1097-01 is suitable for light structure 

suspensions and isolation applications. The functional parameters of the damper listed by the 

manufacturer take values: maximum force 100 N for current 1A and piston velocity 51 mm/s, 

stroke 25 mm, response time 25 ms. The force in the passive-off-mode 0A is about 9N. 

 

 

3. Chaos control by MR damping 
 

3.1 Influence magnetorheological damping on chaotic motion 
 

The presence of chaos in physical systems is very common and is a key feature of nonlinear 

systems. The parameters of an autoparametric system can be tuned in such a way that a small 

perturbation of initial conditions transits its response to dangerous motion, like a chaotic 

dynamics. If the pendulum plays a role of a dynamical absorber, this kind of motion is unwanted. 

This paper proposes to use a MR damper as a tool which fast and easily may prevent dangerous 

dynamics or in specific situations. 

The autoparametric system with an attached pendulum exhibits the resonance behaviour near 

the frequency =1. In Fig. 4(a), near the main parametric resonance, the three chaotic regions are 

discovered (called as: I, II and III). The bifurcation diagram presents solutions obtained for ten 

various (random) initial conditions of the pendulum. This is done because of such systems 

coexisting solution are possible. 
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(a) Bifurcation diagram (b) Largest Lyapunov exponents 

Fig. 4 The bifurcation diagram and Lyapunov exponent 

 

   
(a) =0.7 (b) =1.1 (c) =1.32 

Fig. 5 Strange attractors in the set of chaotic regions 

 

 

For the same set of data a few solution may exist depending on initial conditions. Therefore, all 

bifurcation diagrams for ten random initial condition of the pendulum are done. The initial 

conditions of the oscillator (displacement and velocity) are fixed and equal zero. The chaotic 

regions are identified by positive value of largest Lyapunov exponent Fig. 4(b). In these analyses 

the following parameters are used: 1=0.3054, 2=0.1, μ=14.686, =0.134, q=2.324, =0, e1=10 

and e2=0. 

Additionally, in these regions, the strange attractors have been done Fig. 5. Shape of strange 

attractors we can observe in Fig. 5(a)-I chaotic region, Fig. 5(b)-II chaotic region, and Fig. 5(c)-III 

chaotic region. Comparing the attractors set we can see that the pendulum motion reaches the 

highest velocity in the widest second chaotic region, however the smallest velocity is obtained in 

the first chaotic zone. In each in these attractors occurs both swinging and rotation of the 

pendulum. 
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(a) =0.7 (b) =1.1 (c) =1.32 

Fig. 6 Influence MR damping on three chaotic regions 

 

 

Introducing MR damping during first chaotic region I (=0.7), we can observe that this 

irregular motion can be eliminate for 3=0.25, Fig. 6(a), while for the second chaotic region (II) 

this value is higher and equals 3=0.3, Fig. 6(b) and for third region 3=0.2 Fig. 6(c). However, 

the new chaotic region near the MR damping 3 =0.75, can be appear (Fig. 6(b)). This denotes that 

introducing MR damping can lead to a new chaotic behaviour. It follows that the rotation motions 

of the pendulum changed into chaos.  

Analysis, of all figures presented in Fig. 6, conclusion can be drawn, that the second chaotic 

region in the most dangerous. This result from the fact that in second chaotic region has a higher 

angular velocity of pendulum and it is the widest. Therefore, seems that dynamics of this region is 

difficult to reduce and eliminate. To improve and control the dynamics in chaotic regions, the 

magnetorheological damping seems promising. But, applied MR absorption to reduce of 

dangerous motion should be earlier studied and checked. 

 
3.2 Experimental verification of the bifurcation diagram 
 

Chaotic behaviour is defined just as sensitive dependence on initial conditions and 

characterizes randomness of solutions and unpredictability. Existence of chaos can be found in 

many numerical simulations and experimental tests. Usually, in most cases, the analysis of 

experimentally observed chaotic behaviour is confined to numerical simulations of appropriate 

mathematical models. However, showing that a mathematical model exhibits chaotic behaviour is 

no proof that chaos is also present in the corresponding experimental system. To show 

convincingly that an experimental system behaves chaotically, chaos has to be identified directly 

from the experimental data. For this purpose, the different methods are used to identify 

experimentally observed chaos are applied. The most popular is the maximal Lyapunov exponent 

which is an effective chaos indexes (Abarbanel 1996). Besides, the classical Lyapunov exponents, 

Poincare maps and phase space, novel methods based on the nonlinear signals analysis, like 

recurrence plots (RP) or recurrence quantification analysis (RQA) are used recently (Kecik and 

Warminski 2010). A reconstructed bifurcation diagram, as shown in Fig. 7(a) made by apply step 

by step of fixed excitation frequency at =0.02. The experimental research based on the angular 

velocity of the pendulum signals. This choice of signal makes the analysis easier because in the  
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(a) Bifurcation diagram (b) Lyapunov exponent 

Fig. 7 Experimental bifurcation diagram and Lyapunov exponent obtained from experimental time series 

 

  
(a) Reconstructed attractor (b) Recurrence plot 

Fig. 8 Results of delay method 

 

 

velocity domain the rotation of the pendulum is eliminated. This research discovered only two 

chaotic regions, identified by estimation of largest Lyapunov exponent Fig. 7(b) and additionally 

confirmed by reconstructed attractor Fig. 8(a) and recurrence plot Fig. 8(b). It should be noted, that 

Lyapunov exponent gives good results with numerical simulation, if zero value will be shifted up 

(the orange line in Fig. 8(b)). For the analyzed results the zero is shifted to the value equals 0.18. 

This probably comes from the noise included in the analyzed experimental signals and 

disturbances. 

Therefore, to confirm chaotic motion, the reconstructed attractor is done. The attractor 

reconstruction is carried out using a time series analysis application (Kantz and Schreiber 1999).  
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(a) Experimental influence of MR damping, for =0.7 (b) Time histories of the pendulum, for =0.7 

Fig. 9 Control of chaos by MR damper in on-off method 

 

 

This software for time series analysis based on the theory of nonlinear deterministic dynamical 

systems. The reconstructed attractor consists of swinging and rotation of the pendulum, too 

(similar to numerical attractor). 

In order to undertake attractor reconstruction, the time delay (d) is calculated using the mutual 

information method (AMI), providing important information about reasonable delay times, while 

the false neighbors (FNN) statistics applied for estimating the embedding dimension. An exact 

mathematical description of these functions is given in Refs. (Hegger and Kantz 1999, Kantz and 

Schreiber 1999). The reconstructed attractor in Fig.8a is presented. The numerical (Fig. 5a) and 

experimental attractors have similar shape, arrangement, and dimension. The reconstructed 

recurrence diagram gives similar results as Lyapunov exponent.  

Additionally, from the real chaotic signal recurrence diagram was done Fig. 8(b). The diagram 

shows different line, much shorter and dashed. The distance between diagonal lines is various 

because this motion includes components of rotation and oscillation. These results characterize 

typical chaotic behavior of dynamic systems. 

The experimental influences of MR damping on the chaotic behavior is shown in Fig. 9(a). It is 

observed, that the MR damping, near value of 30.15 causes eliminate of chaotic motion. This 

result is similar to the numerical results, presented in Fig. 6(a). The experimental time histories -

angular velocity of the pendulum, without MR damping (chaos) is marked as the black line and in 

Fig. 9(b) is shown. The response of the vibration absorber with activation MR damping (3=0.3, 

for time >500) is marked as the red line. Note, that reduction of the amplitude vibration and 

change chaotic into periodic motion occurs later (600). This is due to the inertial coupling both 

subsytems (the pendulum and oscillator) and delay equipment effects. 

 

3.3 Change of dynamics by MR damper 
 

The autoparametric systems are very sensitive for initial and working conditions. Therefore, 

even a very small and temporary change in working conditions or slight disturbance may influence  
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(a) Basins of attractions (b) experimental time histories of the pendulum 

Fig. 10 Basins of attractions for 3=0 and time histories with impulse activation of MR damper (b) 

 

 

on obtained response. Additionally, in this type of nonlinear systems, the existences of two or more 

solutions are possible. Dynamics control of an autoparametric structure is very important to keep 

the pendulum at a given, wanted attractor, or if necessary change it. For this purpose, the MR 

damper is used. 

Fig. 10(a) shows basins of attractions for two sets of initial conditions of the pendulum, that is, 

its angular displacement () and angular velocity (d/d). The diagram indicates more than one 

coexisting attractor for the same set of parameters. For each attractor, the set of initial conditions 

leading to long-time behaviour is plotted in corresponding colours. Attractor no. 1 (dark grey 

colour) and no. 2 (pink colour) represent negative (clockwise direction) or positive rotation of 

pendulum, respectively. The attractor no. 3 (blue colour set of initial conditions) represents a 

chaotic motion consist of a swings and rotation of pendulum. This kind of motions is represented 

by chaotic attractor, in Fig. 4(a), and by blacked colour in Fig. 3(a), confirmed by positive value of 

Lyapunov exponent (Fig. 3(b)). This example emphasises a very important aspect of the existence 

of possible multiple solutions in nonlinear structures. This observation has practical meaning in 

engineering and physical problems. 

Fig. 10(b) shows experimental time histories of pendulum with impulse MR damping activated 

(3=0.3). We observe that impulse turn on of MR damper (value 3=0.5, activation lasts 10) 

causes change kind of motion (jump one attractor into another). The response of systems depends 

on moment (actual initial conditions of pendulum) in which MR damper is turn on. The obtained 

results, shows that nonlinear suspension with MR damper can be used as special protective 

systems in dynamical dampers or harvesting energy systems. 

Additionally, after proper tuning of the system the response can be modified from chaotic to 

periodic motion and vice versa. It has been confirmed experimentally that the simple open loop 

technique, allows for an easy control of the system response. The more complex method of control 

in closed loop alghotim based on the angular velocity and angular displacement dedicated to 

change solution between chaos-rotation-swings is presented in (Kecik et al. 2014).   
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4. Conclusions 
 

The paper presented the numerical and experimental study of the autoparametric system with 

applied MR damper. The chaotic regions are discovered in numerical simulations and confirmed 

on the special laboratory system. Identification of experimental time series based on delay method 

(recurrence diagram, reconstructed attractor, estimation Lyapunov exponent). Additionally, the 

experimental diagram was done. To control of dynamics, the MR damper mounted in suspension 

is proposed. This solution doesn’t reduce the effectiveness of vibration absorption effect. 

Activation of the MR damper allows for easy an open loop control of the system. Obtained results 

show, that the application of nonlinear damper may be an effective method of elimination of the 

chaotic motion, or if necessary to change one attractor into another. Moreover, by applying simple 

open-loop control, it is possible to fit on-line the structure response to the frequency and amplitude 

of external excitation. This suggests that MR damper can be used as special device in engineering 

applications as a system of dangerous motion preventive or as special control dynamics device of 

harvesting energy applications. However, for some parameters the magnetorheological damping 

may transit the pendulum from rotation to chaotic motions (Fig. 6). The future work is planned, to 

use MR damper together with shape memory spring (SMA spring) and apply a closed loop control 

to prepare a smart dynamical absorber. 
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