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Abstract.  The mechanical characteristics of materials are very essential in structural analysis for the 
accuracy of structural calculations. The estimation modulus of elasticity of concrete (Ec), one of the most 
important mechanical characteristics, is a very complex area in terms of analytical models. Many attempts 
have been made to model the modulus of elasticity through the use of experimental data. In this study, the 
neuro-fuzzy (NF) technique was investigated in estimating modulus of elasticity of concrete and a new 
simple NF model by implementing a different NF system approach was proposed. A large experimental 
database was used during the development stage. Then, NF model results were compared with various 
experimental data and results from several models available in related research literature. Several statistic 
measuring parameters were used to evaluate the performance of the NF model comparing to other models. 
Consequently, it has been observed that NF technique can be successfully used in estimating modulus of 
elasticity of concrete. It was also discovered that NF model results correlated strongly with experimental 
data and indicated more reliable outcomes in comparison to the other models. 
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1. Introduction 

 

The modulus of elasticity of concrete is one of the main parameters in estimating structural 

elements’ deformations. Ec must be determined correctly for the realistic analysis of structures. It 

can be accurately determined from tests of standard cylinder specimens by using well known 

sophisticated equipment. However, such a process is difficult and time-consuming. Since 

engineers need an easy way to determine the modulus of elasticity, researchers have tried to 

develop easy formulas to calculate it. Concrete is not a homogenous material, so its mechanical 

behavior is very complex and shows great variation. As a consequence, analytically determining 

concrete’s modulus of elasticity is also a challenging task; researchers tend to develop empirical 

formulas by using experimental data. Many formulas have been proposed to define a relationship 

between modulus of elasticity and various other properties of concrete. As reported by Li and Zeng 

(2007) many parameters such as concrete compression strength, type of aggregate, weight of 

concrete and cement type affect concrete’s modulus of elasticity. As observed however, it is not 

only concrete compression strength that affects concrete’s modulus of elasticity. For simple 

                                           

Corresponding author, Assistant Professor, E-mail: idrisbed@gmail.com 



 

 

 

 

 

 

İdris Bedirhanoglu 

calculations, researchers have tried to determine the modulus of elasticity very generally, only 

based on concrete compression strength. In terms of concrete strength, related studies can be 

divided into two categories: studies on normal strength and studies on high strength concrete. 

It is common knowledge that concrete types with different concrete strengths have different 

characteristics. Relationships proposed for normal strength concrete do not normally give 

acceptable results for high and/or low strength concrete. Some of the models proposed by different 

researchers and national building codes will be discussed. For normal weight concrete with a 

density of 2300 kg/cm
3
, the American Concrete Institute ACI 318 (2008) provides the following 

relationship for modulus of elasticity 

4.73c cE f'                                (1) 

in which f’c is the standard cylinder compression strength of concrete. However ACI Committee 

363 (1984) states that this equation overestimates the modulus of elasticity of concrete when the 

concrete has excessive compression strength, and states another equation for such high strength 

concrete (> 41 MPa) as follows 

9.632.3  cc 'fE                              (2) 

The Turkish code TS 500 (2000) provides Eq. (3) for normal strength concrete 

1425.3  cc 'fE                              (3) 

Wee et al. (1994) proposed the following relationship based on experimental data which has a 

range of cylinder strengths from 50 to 120 MPa 

3/1)(2.10 cc 'fE                               (4) 

and Attard and Stewart (1998) suggested Eq. (5) based on statistical analysis of experimental data, 

which has a range of cylinder strength from 20 to 120 MPa and was reported by Setunge (1993). 

5164.0)(3703.4 cc 'fE                             (5) 

In the above equations the units are in MPa and GPa for f ć and Ec, respectively. Noguchi et al. 

(2007) also proposed a practical equation to calculate elastic modulus. 

As we can see, different researchers and building codes (Li et al. 2007, ACI 318 2008, ACI 363 

1984, TS 500 2000, Wee et al. 1994, Setunge 1993, Attard and Stewart 1998, Noguchi et al. 2007) 

proposed a number of empirical equations to predict the modulus of elasticity of concrete. 

Regression analysis techniques have been used to establish most of these relationships. Recently, 

some techniques in artificial neural networks, fuzzy systems, and evolutionary computation have 

been successfully combined, and new techniques called soft computing or computational 

intelligence have been developed (Zadeh 1965, Zadeh 1973, Mamdani and Assillan 1975, Takagi 

and Sugeno 1985, Castellano 2000, Wang 1994, Shafahi 2003). These techniques are attracting 

more attention in several research fields because they tolerate a wide range of uncertainty. Use of 

Neural Network and Fuzzy Systems has been developed in a range of civil engineering 

applications in recent decades (Castellano 2000, Wang 1994, Shafahi 2003). Neuro-fuzzy systems, 

Adaptive Neuro Fuzzy Inference System (ANFIS) in particular, are an effective practice for data 
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processing in laboratory work (Lee 2003, Vahdani 2003, Shekarchizadeh et al. 2004, Demir 2005, 

Toprak 2009, Choi et al. 2009). But this system has been rarely employed for concrete.  

Reinforced concrete buildings built with low-strength concrete (f ć<10 MPa) are common in 

Turkey (Koru 2002, Bedirhanoglu 2009, Bedirhanoglu et al. 2010) as well as in other developing 

countries. On the other hand available formulas in the literature, especially the one given by TS 

500 (2000), for predicting elastic modulus of concrete does not give reasonable results particularly 

for low strength concrete. This study was carried out to develop a simple and practical model 

based on NF logic to estimate the elastic modulus of concrete including different concrete 

compression strength levels (i.e., low, normal and high strength). However, the models in the 

existing studies do not include all strength levels. Another aim is to show the usability of NF 

model for civil engineering studies, i.e., evaluating experimental data. 

 

 

2. Experimental data 
 

The test data used in the proposed NF model includes a wide range of compression strengths 

varying from 6.6 to 126 MPa. It should be noted that by using the formulas in the mentioned 

literature, concrete’s modulus of elasticity can usually be calculated for a certain range of 

compression strength. It was quite a challenge to collect the mentioned data. Some of the data, low 

strength concrete’s in particular (f ć≤15 MPa), was obtained from studies carried out at the Istanbul 

Technical University, Structural and Earthquake Eng. Lab. where the author has carried out 

extensive experimental work. It is important to use familiar and reliable data in the modeling 

process. The experimental data presented in Table 1 was used to develop the NF model while the 

experimental data presented in Table 2 was used to test the model. The data group includes 

experimental results those described in references (Oktar et al. 1984, Ozturan 1984, Cusson and 

Paultre 1997, Iravani 1996, Turan and Iren 1997, Yalcin 1997, Ilki 2000, Dahl 1992, Gesoglu et al. 

2002, Sengul et al. 2002, Watanabe et al. 2004, Demir 2004, Altun et al. 2004, Ilki et al. 2004, 

Yilmaz 2004, Karamuk 2005, Akgun 2005). Due to the fact that concrete’s modulus of elasticity in 

the proposed model was only calculated in terms of compression strength, the elastic modulus and 

compressive strength were taken from the data base for each data point. In some of the 

experimental studies the elastic modulus of each specimen was directly given by the researchers 

while in some of the experimental studies these values were obtained from the slope of the linear 

portion of the stress-strain curves given by researchers by using the procedure described in ACI 

318 (2008). According to ACI 318 (2008), Ec is defined as the slope of the line drawn from a stress 

of zero to a compressive stress of 0.45f ć. In this study for some of the specimens given in Table 1 

the elastic modulus was obtained from the stress-strain relationships per the slope of the line 

drawn from a compressive stress of 0.05 f ć to a compressive stress of 0.40f ć where the stress-

strain relationship is linear. It is quite a challenge and a lot of work to digitize stress-strain curves 

and define the modulus of elasticity. The following relationship proposed by Lydon and Balendran 

(1986) was used to estimate the static elastic modulus (Ec) from the dynamic elastic modulus (Ed) 

of normal strength concrete given by Ozturan (1984).  

Ec=0.83Ed                                 (6) 

More details relating to the experimental data can be found in the related references. 
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Table 1 Training and checking data* 

No Researcher f ć Ec (Exp.) No Researcher f ć Ec (Exp.) 

1 Akgun (2005) 6.9 14422 66 Turan et al. (1997) 22.1 21800 

2 Akgun (2005) 7.5 14034 67 Ilki et al. (2004) 22.6 21150 

3 Oktar et al. (1984) 8.2 13000 68 Ilki et al. (2004) 22.7 27800 

4 Yilmaz (2004) 8.7 7324 69 Turan et al. (1997) 22.9 26500 

5 Ilki et al. (2004) 9.1 14600 70 Sengul et al. (2002) 23.0 27700 

6 Yilmaz (2004) 9.6 5826 71 Karamuk (2005) 23.1 27637 

7 Ilki et al. (2004) 9.6 13400 72 Ozturan (1984) 23.2 23900 

8 Oktar et al. (1984) 9.6 16500 73 Ilki et al. (2004) 23.3 17650 

9 Ilki et al. (2004) 10.2 16300 74 Sengul et al. (2002) 23.3 25300 

10 Oktar et al. (1984) 10.5 20500 75 Sengul et al.  (2002) 23.4 31400 

11 Ilki et al. (2004) 11.3 12500 76 Ilki et al. (2004) 23.5 18250 

12 Yilmaz (2004) 11.9 7751 77 Ilki et al. (2004) 23.6 18500 

13 Oktar et al. (1984) 12.0 29400 78 Ilki et al. (2004) 23.6 20950 

14 Ilki et al. (2004) 12.3 13100 79 Ozturan (1984) 23.6 32100 

15 Oktar et al. (1984) 12.4 16500 80 Turan et al.  (1997) 23.7 27200 

16 Yilmaz (2004) 12.6 11525 81 Ilki et al. (2004) 23.8 21900 

17 Ilki et al. (2004) 12.9 15300 82 Sengul et al.  (2002) 23.9 27500 

18 Yilmaz (2004) 13.3 10405 83 Ozturan (1984) 23.9 30500 

19 Yilmaz (2004) 13.9 10156 84 Ilki et al. (2004) 24.2 20100 

20 Ilki et al. (2004) 13.9 16000 85 Ilki et al. (2004) 24.3 20700 

21 Ilki et al. (2004) 14.4 17000 86 Karamuk (2005) 24.7 27795 

22 Ilki et al. (2004) 14.4 18700 87 Turan et al.  (1997) 25.3 28100 

23 Oktar et al. (1984) 14.5 23000 88 Ilki et al. (2004) 25.3 18400 

24 Ilki et al. (2004) 15.3 18000 89 Ilki et al. (2004) 25.3 20250 

25 Karamuk (2005) 16.1 9311 90 Ozturan (1984) 25.8 28600 

26 Ozturan (1984) 16.2 23300 91 Ilki et al. (2004) 25.9 22050 

27 Ilki (2000) 16.4 15851 92 Turan et al.  (1997) 26.1 24900 

28 Ilki et al. (2004) 16.4 15850 93 Ilki et al. (2004) 26.3 18000 

29 Ozturan (1984) 16.9 20500 94 Turan et al.  (1997) 26.3 24000 

30 Ilki (2000) 17.0 18775 95 Turan et al.  (1997) 26.4 30000 

31 Ozturan (1984) 17.1 26300 96 Turan et al.  (1997) 26.4 26500 

32 Oktar et al. (1984) 17.7 31200 97 Ilki et al. (2004) 26.9 20700 

33 Ilki et al. (2004) 17.8 18450 98 Ozturan (1984) 27.1 24700 

34 Ilki (2000) 17.8 18448 99 Turan et al.  (1997) 27.1 23900 

35 Ozturan (1984) 17.9 18000 100 Turan et al.  (1997) 27.3 26500 

36 Turan et al (1997) 18.4 21900 101 Turan et al.  (1997) 27.4 27090 

37 Ilki et al. (2004) 18.5 19850 102 Ilki et al. (2004) 27.5 27400 

38 Ilki et al. (2004) 18.5 20650 103 Turan et al.  (1997) 27.7 25600 

39 Ozturan (1984) 18.5 30100 104 Ilki et al. (2004) 27.8 26951 

40 Oktar et al. (1984) 18.6 27100 105 Turan et al. (1997) 27.8 29100 

41 Ilki (2000) 18.8 18647 106 Turan et al. (1997) 27.8 26000 

42 Ilki et al. (2004) 19.1 19400 107 Turan et al. (1997) 27.8 25300 

43 Akgun (2005) 19.4 24108 108 Turan et al. (1997) 27.9 26200 
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Table 1 Continued 

44 Ozturan (1984) 19.4 30300 109 Turan et al. (1997) 28.0 30800 

45 Ozturan (1984) 19.6 23100 **110 Ilki (2000) 28.2 16922 

46 Akgun (2005) 19.9 24421 223 Wee et al. (1994) 94.0 46300 

47 Akgun (2005) 20.0 29472 224 Gesoglu et al.  (2002) 94.0 48300 

48 Turan et al (1997) 20.6 23900 225 Sengul et al. (2002) 94.5 46100 

49 Altun et al (2004) 20.7 28250 226 Gesoglu et al. (2002) 95.2 50800 

50 Altun et al (2004) 21.0 28400 227 Wee et al. (1994) 95.3 45200 

51 Ilki et al. (2004) 21.1 18500 228 Sengul et al. (2002) 95.3 47400 

52 Altun et al. (2004) 21.1 28400 229 Sengul et al. (2002) 95.3 51100 

53 Ozturan (1984) 21.2 26500 230 Wee et al. (1994) 96.2 46600 

54 Ilki (2000) 21.3 19911 231 Wee et al. (1994) 96.6 46500 

55 Ilki et al. (2004) 21.4 19900 232 Gesoglu et al. (2002) 97.6 49300 

56 Altun et al (2004) 21.4 29000 233 Gesoglu et. al. (2002) 97.7 47000 

57 Oktar et al. (1984) 21.4 37000 234 Gesoglu et al. (2002) 99.7 47600 

58 Ilki (2000) 21.6 18715 235 Gesoglu et al. (2002) 102.0 48800 

59 Ilki et al. (2004) 21.6 18700 236 Wee et al. (1994) 102.1 46100 

60 Ilki et al. (2004) 21.6 20050 237 Wee et al. (1994) 102.8 46700 

61 Altun et al (2004) 21.6 29250 238 Wee et al. (1994) 104.2 46300 

62 Ilki et al. (2004) 21.7 28400 239 Sengul et al. (2002) 104.5 50600 

63 Ilki et al. (2004) 21.7 17250 240 Wee et al. (1994) 106.3 48400 

64 Ozturan (1984) 21.8 20900 241 Wee et al. (1994) 119.9 49100 

65 Ilki et al. (2004) 22.0 17750 242 Wee et al. (1994) 125.6 50900 

*Note: All the units are in MPa. 

**Note: Due to size limitation the data from 111 to 223 were removed from the table. 

 
Table 2 Test data results* 

No Researcher f ć Ec (Exp.) Ec (NF) Ec (Wee) 
Ec (Attard 

and Setunge) 

Ec (ACI 318 

- ACI 363) 

Ec 

(TS 500) 

1 Akgun (2005) 7.2 13632 13383 19696 12113 12692 22721 

2 Yilmaz (2004) 9.4 7452 14945 21519 13893 14494 23959 

3 Oktar et al. (1984) 9.5 14000 15022 21603 13977 14579 24017 

4 Karamuk (2005) 10.4 11745 15642 22254 14635 15244 24474 

5 Yilmaz (2004) 13.1 9504 17465 24014 16467 17087 25741 

6 Ilki et al. (2004) 13.7 9200 17874 24383 16860 17482 26012 

7 Ilki et al. (2004) 13.8 10700 17947 24448 16930 17552 26060 

8 Yilmaz (2004) 14.4 8596 18359 24810 17319 17943 26329 

9 Ilki et al. (2004) 15.3 18650 18958 25322 17877 18501 26712 

10 Ilki et al. (2004) 17.0 18800 20058 26227 18876 19502 27400 

11 Ozturan (1984) 18.0 28800 20694 26732 19442 20068 27789 

12 Ozturan (1984) 20.9 23900 22489 28096 21001 21624 28858 

13 Oktar et al. (1984) 21.5 37000 22852 28363 21310 21932 29070 

14 Altun et.al. (2004) 22.1 29500 23200 28615 21605 22226 29272 

15 Ilki et al. (2004) 22.1 16150 23212 28624 21615 22236 29278 

16 Ilki (2000) 22.6 21169 23530 28853 21884 22504 29462 
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Table 2 Contined 

17 Ilki et al. (2004) 22.9 26300 23704 28978 22030 22650 29563 

18 Turan et al. (1997) 23.4 26300 23986 29179 22267 22886 29725 

19 Ozturan (1984) 24.2 33600 24446 29503 22652 23269 29988 

20 Turan et al. (1997) 25.7 25700 25323 30112 23381 23993 30486 

21 Ilki et al. (2004) 26.7 20650 25868 30486 23832 24441 30793 

22 Oktar et al. (1984) 26.7 37400 25868 30486 23832 24441 30793 

23 Turan et al. (1997) 27.0 27200 26035 30600 23970 24578 30887 

24 Ozturan (1984) 27.3 32900 26201 30713 24107 24714 30981 

25 Turan et al. (1997) 27.5 25200 26290 30773 24180 24786 31031 

26 Ilki et al. (2004) 28.2 16900 26695 31047 24514 25118 31259 

27 Turan et al. (1997) 29.4 33000 27339 31477 25043 25643 31619 

28 Ozturan (1984) 30.3 35900 27822 31799 25441 26036 31890 

29 Turan et al. (1997) 31.4 30400 28398 32179 25913 26505 32212 

30 Sengul et al. (2002) 32.5 34400 28963 32551 26378 26965 32528 

31 Ilki et al. (2004) 33.3 18300 29367 32816 26712 27295 32754 

32 Ozturan (1984) 35.0 35600 30209 33365 27407 27983 33227 

33 Sengul et al. (2002) 35.6 32400 30501 33554 27649 28222 33391 

34 Oktar et al. (1984) 35.6 46500 30501 33554 27649 28222 33391 

35 Ozturan (1984) 36.6 39300 30979 33866 28047 28616 33662 

36 Ilki et al. (2004) 37.3 29500 31286 34065 28304 28869 33836 

37 Sengul et al. (2002) 42.0 38000 33419 35455 30113 28416 35062 

38 Yalcin (1997) 43.9 29129 34219 35982 30809 28897 35534 

39 Ozturan (1984) 47.7 29600 35727 36992 32159 29830 36446 

40 Cusson (1993) 55.7 45050 38496 38948 34832 31673 38250 

41 Gesoglu et al. (2002) 62.2 45400 40362 40414 36883 33084 39632 

42 Wee et al. (1994) 63.2 41800 40616 40629 37188 33293 39837 

43 Wee et al. (1994) 65.8 40800 41237 41179 37970 33831 40363 

44 Sengul et al. (2002) 66.3 43100 41979 41283 38119 33933 40463 

45 Gesoglu et al. (2002) 66.5 46800 42400 41324 38178 33974 40503 

46 Wee et al. (1994) 73.9 41600 43770 42804 40316 35440 41939 

47 Gesoglu et al. (2002) 77.2 47100 44348 43432 41236 36071 42556 

48 Sengul et al. (2002) 77.8 39600 44451 43544 41401 36184 42666 

49 Gesoglu et al. (2002) 84.5 45300 45554 44760 43206 37419 43875 

50 Wee et al. (1994) 84.8 47200 45602 44812 43285 37473 43928 

51 Wee et al. (1994) 85.9 44300 45774 45005 43574 37671 44122 

52 Gesoglu et al. (2002) 86.9 46100 45929 45179 43835 37849 44297 

53 Gesoglu et al. (2002) 87.2 41100 45975 45231 43913 37902 44349 

54 Gesoglu et al. (2002) 87.5 48500 46021 45283 43991 37956 44401 

55 Wee et al. (1994) 87.6 44500 46036 45300 44017 37973 44418 

56 Gesoglu et al. (2002) 87.9 43000 46082 45352 44095 38027 44470 

57 Wee et al. (1994) 90.2 44400 46427 45744 44687 38431 44866 

58 Wee et al. (1994) 91.7 46000 46646 45996 45069 38692 45122 

59 Wee et al. (1994) 93.6 47100 46918 46312 45549 39020 45443 

60 Gesoglu et al. (2002) 96.7 53200 47347 46818 46322 39548 45959 

61 Wee et al. (1994) 100.6 45800 47861 47439 47277 40199 46597 

*Note: All the units are in MPa. 
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3. Fuzzy inference system 
 

Fuzzy set theory, introduced by Zadeh (1965, 1973) in 1965 and 1973, is a mathematical tool 

for translating abstract concepts found in natural language into computable entities. Such entities 

are called fuzzy sets. Fuzzy sets represent vague descriptions of objects, i.e., tall, small, cold, and 

bright. Mathematically, a fuzzy set A is represented by a membership function defined on a domain 

X, called the universe of discourse, given by 

: [0,1]A x                                 (7) 

in in which A is the fuzzy label or linguistic (value) term describing the variable x. As an extension 

to Boolean logic, μA(x) represents the grade of membership of x belonging to the fuzzy set A. It is 

clear that the definition of fuzzy sets is non-unique to the nature of language, but it is very context-

dependent and user-specific. On specifying a membership function μA(x) in its present context the 

vague fuzzy label A is precisely defined. Hence fuzzy sets can be thought to be accurately 

measuring the inherent vagueness of language. The properties of these fuzzy sets play an important 

role in the modeling capabilities of the fuzzy system, and for a model to be truly transparent these 

sets should sensibly represent terms that describe the input and output variables. Fuzzy sets form a 

key methodology for representing and processing uncertainty. As such, fuzzy sets constitute a 

powerful approach not only to deal with incomplete, noisy or imprecise data but also to develop 

data models that provide better, more efficient and more refined results than traditional modeling 

techniques. A fuzzy system approximates an unknown mapping by inference from a set of 

humanly understandable statements or rules such as 

IF temperature is cold THEN set output of the heater to high 

IF temperature is warm THEN set output of the heater to zero            (8) 

describing a typical relationship between room temperature and the desired output of the heater 

(Fig. 1). To cover the complete graph of the mapping being approximated, a collection of such 

rules known as the rule base is utilized. Hence, fuzzy systems represent the imprecision found in 

real-world problems using IF-THEN rules expressed in a natural language. 

The basic structure of a fuzzy system, as described by Mamdani and Assillan (1975), is shown 

in Fig. 2. Depending on the particular form of the consequent proposition in fuzzy rules, two 

categories of fuzzy systems can be identified, Mamdani and Assillan (1975) fuzzy systems and 

Takagi-Sugeno (TS) (1985) fuzzy systems (Castellano 2000). Takagi and Sugeno’s fuzzy inference 

system has been successfully applied to many practical problems. The advantage of this fuzzy 

logic system is that it provides a compact system equation. As a result, parameter estimation and 

order determination methods such as NF algorithms, the most famous ANFIS, or neuro-adaptive 

 

 
 

 

 

 

 
 

 
 

Fig. 1 Typical fuzzy sets defined for a variable 
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Fig. 2 The basic schema of a fuzzy system 

 

 

learning techniques can be developed to estimate system parameters. These techniques provide a 

method for the fuzzy modeling procedure to learn information about a data set, in order to compute 

membership function parameters that best allow the associated fuzzy inference system to track 

given input/output data (Matlab, Wang 1994). In this study, the well known adaptive algorithm 

called ANFIS was used, with the aid of Matlab Fuzzy Logic Toolbox, to train a data set to 

determine the relationship between the compressive strength and elasticity modulus of unconfined 

concrete. 

 

3.1 NF modeling 
 

NF modeling refers to the way of applying various learning techniques developed in the neural 

network literature to fuzzy modeling or to a fuzzy inference system (FIS). NF hybrid systems 

combine the advantages of fuzzy systems, which deal with explainable and understandable explicit 

knowledge, and neural networks which deal with acquirable (through the learning procedure) 

implicit knowledge. Neural network learning provides a good way to adjust the expert’s 

knowledge and automatically generate additional fuzzy rules and membership functions to meet 

certain specifications and reduce design time and costs. The details on adaptive networks are 

described by Jang (1993, 1995). In this section, a novel architecture and learning procedure is 

introduced for the FIS. FIS uses a neural network learning algorithm to generate a set of fuzzy if-

then rules from the stipulated input–output pairs with appropriate membership functions (MFs). 

One of the procedures of developing a FIS through the framework of adaptive neural networks is 

known as the ―Adaptive Neuro Fuzzy Inference system (ANFIS)‖ (Alturki and Abdennour 1999). 

As the name suggests, ANFIS combines the fuzzy qualitative approach with neural network 

adaptive capabilities to achieve a desired performance (Brown and Harris 1994). 

 
3.2 ANFIS architecture 
 
Adaptive Network-Based Fuzzy Inference Systems are fuzzy Sugeno models inserted into the 

framework of adaptive systems to facilitate learning and adaptation. This framework makes fuzzy 

models more systematic and less reliant on expert knowledge. In order to present the ANFIS 

architecture, a two-fuzzy rule will be considered based on a first order Sugeno model 
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Fig. 3 Anfis architecture 
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(9) 

A probable ANFIS architecture implementation of these two rules is shown in Fig. 3. Note that 

circles indicate fixed nodes whereas squares indicate adaptive nodes (the parameters are changed 

during adaptation or training). In the following presentation, Ol,i denotes the output of node i in 

layer 1. 

Layer 1: All the nodes in this layer are adaptive nodes. The output of each node i is the 

membership degree of the input for the fuzzy membership function represented by the node 
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                           (10) 

Ai and Bi can be any appropriate fuzzy sets in parameter form. For example, if the Gaussian 

membership function (MF) is used then the membership degree can be derived as 

2

( )

i

i

i

x c

a

A x e

 
 
                               (11) 

in which ai and ci, are the parameters for the MF. 

Layer 2: The nodes in this layer are fixed (not adaptive). They are labeled M to indicate that 

they play the role of a simple multiplier. The outputs of these nodes are given by 

2, ( ) ( )
i ii i A BO w x x    i=1, 2                       (12) 

The output of each node in this layer represents the firing strength of the rule, 

Layer 3: Nodes in this layer are also fixed nodes. They are labeled N to indicate that they 

perform a normalization of the firing strength from the previous layer. The output of each node is 

given by 

1
3,

1 2

i i

w
O w

w w
 


         i=1, 2                      (13) 

M N w2 w2 
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Layer 4: All the nodes in this layer are adaptive nodes. The output of each node in this layer is 

simply the product of the normalized firing strength, in a first order polynomial form (for a first 

order Sugeno model) 

4, ( )i i i i i i iO w f w p x q y r              i=1, 2                (14) 

in which, pi, qi and ri are design parameters (referred to as consequent parameters since they deal 

with the then-part of the fuzzy rule). 

Layer 5: This layer has only one node labeled S to indicate that it performs the function of a 

simple summer. The output of this single node is given by 

5,

i i

i
i i i

i i

i

w f

O w f
w

 





          i=1, 2                  (15) 

The ANFIS architecture is not unique. Some layers can be combined and still produce the same 

output. In this ANFIS architecture, there are two adaptive layers (Layers 1 and 4). Layer 1 has two 

modifiable parameters (ai and ci) pertaining to the input MFs. These parameters are called premise 

parameters. Layer 4 also has three modifiable parameters (pi, qi and ri) pertaining to the first order 

polynomial. These parameters are called consequent parameters as mentioned earlier. The task of 

the training or learning algorithm for this architecture is to tune all the modifiable parameters to 

make the ANFIS output match the training data. If these parameters are fixed, the output of the 

network becomes 

1 1
1 2 1 1 2 2 1 1 1 1 2 2

1 2 1 2

( ) ( )
w w

f f f w f w f w p x q y r w p x q y r
w w w w

         
 

 

1 1 1 1 1 1 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )w x p w y q w r w x p w y q w r                  (16) 

and this is a linear combination of the modifiable parameters. Therefore, a combination of gradient 

descent and the least-square method can easily identify the optimal values for the parameters pi, qi 

and ri. However, if the MFs are not fixed and are allowed to vary, then the search space becomes 

larger and, consequently, the convergence of the training algorithm becomes slower (Vahdani 

2003). 

 
 
4. Construction of the NF model 
 

In practice, there are always different sources of uncertainty such as vagueness and ambiguities 

and/or errors in calculating concrete’s modulus of elasticity. Fuzzy models can describe knowledge 

in a descriptive human-like manner in the form of simple rules using linguistic variables. This is 

the main advantage of fuzzy models. Once the fuzzy subsets of compressive strength and the linear 

equations for the modulus of elasticity are determined by ANFIS in Sugeno Type Fuzzy Systems, 

it is possible to estimate concrete’s modulus of elasticity from a given concrete strength. 

Triangular-type MFs were used for both the input and output to develop the model in the simplest 

and most practical form. It should be noted that special care has been made to ensure that the 

model is the simplest possible. At the beginning, between three to ten fuzzy sets were chosen for  

258



 

 

 

 

 

 

A practical neuro-fuzzy model for estimating modulus of elasticity of concrete 

3 3855* 433553cy f   

Membership degree 

0.6097 

6.8 

0.3894 

125.6   

30 

66.40

3 

125.5 66.22 6.89 

f ’c (MPa) 

f ’c (MPa) 

f ’c (MPa) 

1 
High 

1 

Normal 

66.13 6.87 

1 

Low 

2 3918* 217817cy f   

1 4164* 15567cy f   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4 Membership functions for compressive strength 

 
Table 3 Fuzzy rules 

Rules Antecedent  Consequent 

1 IF fc is LOW THEN 

THEN 

y1=4164*fc−15567 

2 IF fc is NORMAL y2=3918*fc−217817 

3 IF fc is HIGH y3=3855*fc−433553 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Fired rules and corresponding membership degrees for f ć=30 MPa 
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the input MFs. After training each model (to get the simplest one), the best model was selected 

corresponding to three fuzzy sets for the input MFs and three rules governing the system. The 

modeler’s experience was used, in addition to the training process, to determine the MFs, i.e., 

similar MFs were removed from the model in accordance with instructions from the modeler.  

The resulting fuzzy subsets for the input (f ć, MPa) are shown in Fig. 4. The available data was 

obtained from tests of 303 standard cylinder specimens randomly divided into two subgroups. 242 

of them were used for model training, while the remainders (61 of 303) were used for model 

testing (validation). Rules relating to the proposed model concrete’s modulus of elasticity are 

shown in Table 3. These rules and the related fuzzy sets of MFs are shown in Fig. 5. 

 

 

5. Flow chart 
 

Elastic modulus can be calculated from concrete strength in three simple steps which are 

calculation of rules and membership degrees and finally elastic modulus. For better clarifying 

these steps (flow chart) were given as follow: 

 

1—Rule outputs; 

y1=4164.7*
'

cf -15567 

y2=3918.4901*
'

cf -217817.3293 

y3=3855.8152
'

cf -433553.9011 

2—Membership degrees (Fig. 5) and result; 

Mlow = (66.13-
'

cf )/(66.13-6.87)   : Low membership function 

Mnormali=(
'

cf -6.899)/(66.22-6.899)  : Increasing branch of normal membership function 

Mnormald=(125.5-
'

cf )/(125.5-66.22)  : Decreasing branch of normal membership function 

Mhigh=(
'

cf -66.4)/(125.6-66.24)   : High membership function 

3-Result, Ec 

If  6.87<
'

cf && 
'

cf <66.22 

  Ec = (Mlow*y1+Mnormali*y2)/(Mlow+Mnormali) 

else if 66.13<=fc && fc <=66.22 

     Ec=(y1*Mnormali)/(Mnormali) 

else if  66.22<=fc && fc <=66.4 

     Ec=(y2*Mnormald)/(Mnormald)  

else  if  fc>=66.4 && fc<=125.6 

    Ec=(y3*MHigh+y2*Mnormald)/(MHigh+Mnormald) 

end 

         end 

         end 

Please note that this flow chart can be adapted in any computer program easily. It should also 

be note that this type step-by-step calculation has not been given in other studies on modeling of 

elastic modulus with fuzzy or NF approaches. Generally only information on the modeling process 

was given such as in references Demir (2005), Aydin et al. (2006). In reference Aydin et al. (2006) 
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two different models has been formed for normal and high strength concrete separately. 

 

 

6. Design example 
 

Concrete’s modulus of elasticity can be calculated easily from concrete’s compressive strength. 

For example, here is a set of step by step calculations for a given concrete strength: 

1. Locate the concrete strength f ć, say, for instance 30 MPa, on the horizontal axis of Fig. 5. It 

is possible to find the fuzzy subsets containing this value and the corresponding membership 

degrees by taking the intersection points. Fired rules and corresponding membership degrees were 

given in Fig. 5 in detail. For the current value, two rules fired (low and normal) and corresponding 

membership degrees are μlow(30)=0.6097, μnomal(30)=0.3894, and μhigh(30)=0. Zero membership 

degree shows that this rule does not fired. Compute the firing strength of each rule, wi, 

corresponding to the degrees of membership (Fig. 5), 

w1=μlow(30)=0.6097 

w2= μnomal(30)=0.3894 

w3= μhigh(30)=0 

2. Calculate the rules which were given in Table 3 (values of the consequent part), yi 

y1=4164*
'

cf -15567=109374,  

y2=3918*
'

cf -217817=-100262.62,  

y3=3855*
'

cf -433553=-317879. 

3. Finally, the weighted average (simply sum of membership degrees times the corresponding 

rules’ values divided by sum of membership degrees) from Eq. (15) is obtained to produce the 

final output for concrete’s modulus of elasticity with compressive strength of 30 MPa, 

,30

0.6097*109374 0.3894*100262.62
27668

0.6097 0.3894

i i

i

c

i

i

w y

E
w


  






 MPa. 

 

 

7. Performance evaluation of the NF model 
 

The results of the NF model were compared with the experimental data and results of the other 

models as presented in Table 2. Fig. 6 shows the performance of the models in predicting the 

modulus of elasticity against the data from 303 standard cylinder specimens. As can be seen in this 

figure, the NF model matched the data well in all ranges of compressive strength. The scatter 

diagrams of the predicted and measured Ec for all the models are shown in Fig. 7 and the NF 

model clearly matches experimental data better than other models. In order to evaluate the 

performance of the generated NF model some statistical indexes were also used, namely the error 

measures root mean square error (RMSE), the relative error, and the average of the ratio of 

predicted to experimental results. Here, for the best model, the RMSE value should be the lowest, 

the relative error should have the smallest percentage and the average of ratio of predicted to 

experimental results should be the nearest to one. As can be seen in Table 4, the prediction 

accuracy of the NF model in terms of all indices is better for the validation data group than for the 

training data group, which indicates good generalization capabilities for the NF model. 
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Fig. 6 Relationship between compressive strength and modulus of elasticity for all models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 7 Comparison of the predicted and experimental values of Ec for (a) ACI 318 and ACI 363 (b) 

Wee at al. (c) TS 500 (d) Attard and Setunge (e) NF model in training data (f) NF model in test data 
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Table 4 Evaluation the performance of the models 

Models 

Performance of the model 

Training and check data Test data 

Relative error Average RMSE Relative error Average RMSE 

NF 0.143 1.051 4.360 0.201 1.064 5.783 

Wee 0.240 1.208 6.173 0.302 1.228 6.935 

Attard and Setunge 0.146 0.980 4.784 0.207 0.991 6.573 

ACI 318 - ACI 363 0.185 0.955 6.409 0.245 0.963 7.895 

TS 500 0.266 1.228 6.693 0.333 1.253 7.539 

 

 

8. Conclusions 
 

In this study, a simple NF Model was derived for predicting concrete’s modulus of elasticity 

and verified with experimental results. The well known learning algorithm, ANFIS, was used to 

obtain the model parameters. In order to evaluate the performance of the proposed model, various 

statistical evolutionary criteria were used. Comparison with the experimental data and other 

models available in the literature shows that concrete’s modulus of elasticity can be more 

accurately estimated from compressive strength of concrete with the developed NF model. In 

addition, unlike other fuzzy models the developed NF model can be easily adapted in any 

structural analysis process (i.e. finite element analysis and sectional analysis to obtain moment-

curvature relationship) to estimate concrete’s modulus of elasticity. It should be noted that one of 

the greatest obstacles of such models developed by using fuzzy logic, neural network or neuro-

fuzzy approaches is the difficulty to put the model into practical use for engineering purposes. 

Many parameters that may affect concrete’s modulus of elasticity, i.e. aggregate type, unit 

weight, cement type, water-cement ratio etc., can easily be taken into account by adding related 

rules to the corresponding NF model. It should be noted that the model can easily be calibrated and 

modified by adding more data points. In addition, by implementing experimental data the model 

can be modified for similar uses in different areas, i.e. estimating the elastic modulus of steel fiber 

reinforced concrete or FRP (fiber reinforced polymer) confined concrete. 
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