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Abstract.  In the displacement based finite element analysis of composite beams that consist of two Euler-
Bernoulli beams juxtaposed with a deformable shear connection, the coupling of the displacement fields 
may cause oscillations in the interlayer slip field and reduction in optimal convergence rate, known as slip-
locking. In this study, the B-bar procedure is proposed to alleviate the locking effects. It is also shown that by 
changing the primary dependent variables in the mathematical model, to be able to interpolate the interlayer 
slip field directly, oscillations in the slip field can be completely eliminated. Examples are presented to 
illustrate the performance and the numerical characteristics of the proposed methods. 
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1. Introduction 

 

Composite beams that consist of two or more components juxtaposed with a shear connection 

are widely used in the design of bridges and buildings. The interlayer slip between the two 

components affects the behaviour of the beam significantly, especially the serviceability limit state 

response. The deflections depend primarily on the stiffness of the shear connectors and it cannot 

be determined accurately unless the interlayer slip between the two components is considered. The 

mathematical model for composite beams with flexible shear connectors was initially introduced 

in the seminal paper of Newmark et al. (1951), in which two Euler-Bernoulli beams are connected 

by assuming that vertical separation does not occur between the components. Subsequently, 

several displacement-based finite element formulations were developed based on Newmark’s 

model, which include the works of Arizumi et al. (1981), Daniels and Crisinel (1993), Ranzi et al. 

(2004), Ranzi and Bradford (2009), Dall’Asta and Zona (2002). However, for stiff interlayer 

connections, displacement-based finite element formulations may suffer from the so-called slip-

locking phenomenon because of the coupling between the displacement fields. In order to 

overcome the limitations of displacement-based finite element formulations, mixed and force-
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based finite element formulations were developed by Salari  et al. (1998), Ayoub and Filippou 

(2000), Ayoub (2005), Dall’Asta and Zona (2004a). The consistent interpolation strategy was used 

by Dall’Asta and Zona (2004b) to develop a locking-free displacement-based finite element 

formulation in which additional internal nodes were introduced. Erkmen and Bradford (2011a) 

used the kinematic interpolation strategy and assumed strain-mixed formulations to alleviate 

locking behaviour for stiff connections. Finite element formulations based on the exact solution of 

the homogenous form of the equilibrium equations can be found in Faella et al. (2002) and Ranzi 

et al. (2004). A proof of the “exactness” of nodal values for general non-homogenous loading 

cases is presented in Erkmen and Bradford (2011a). Similarities in the locking mechanisms in 

Timoshenko beams and composite beams analysed using Newmark’s model are also discussed in 

Erkmen and Bradford (2011a), while a mesh-free approach that eliminates slip-locking was 

recently developed by Erkmen and Bradford (2010b). A shear-deformable two-layer beam model 

with independent shear strains in both layers is analytically solved and a corresponding FE with 

“exact” stiffness matrix is developed in Nguyen et al. (2011a), where shear connection is modelled 

through a continuous relationship. An “exact” finite element solution for shear-deformable two-

layer composite beams with discontinuous shear connections is presented in Nguyen et al (2011b). 

A comparison between the two-layer composite beam models and a study of the hierarchy between 

these models can be found in Martinelli et al. (2012). 

The objective of this paper is to introduce efficient and simple displacement-based finite 

element formulations to alleviate the locking effects in the finite element analysis of composite 

beams. A finite element method based on the primary variable fields of Newmark’s formulation is 

proposed by using the B-bar procedure which was originally developed by Hughes and Tezduyar 

(1981) in order to eliminate shear locking in the finite element analysis of Mindlin plates. It is also 

shown that by changing the primary variable fields of Newmark’s mathematical model, slip-

locking can be completely eliminated in the analysis of composite beams. This approach was 

conveniently used for the nonlinear analysis of composite beams by Pi et al. (2006) and later for 

curved composite beams by Erkmen and Bradford (2009, 2010a,b, 2011b). Cho and Atluri (2001) 

used this approach in the context of Timoshenko beams to eliminate shear locking. Numerical 

examples are presented to illustrate the performance and the numerical characteristics of the 

proposed methods. 

 

 

2. Composite beam kinematics 
 

2.1 Displacements and strains 
 

The composite beam-column is composed of a top and a bottom Euler-Bernoulli beam which 

are referred to as layers 1 and 2. The composite cross-section is thus represented as A=A1+A2, 

where A1 and A2 are the cross-sections of layers 1 and 2, respectively as shown in Fig. 1(a). 

According to Newmark’s model, the strain diagram is determined uniquely by the curvature of the 

vertical deflection v
’’
 with respect to an arbitrary reference axis and the derivatives of the 

longitudinal displacements at the centroid of each layer w1
’
 and w2

’
 as shown in Fig. 1. Slip 

displacement between the two layers Γ can be obtained in terms of the slope of the vertical 

deflection v’ and the longitudinal displacements at the centroids of the layers w1 and w2. 

 1 1 1w y h v                                                               (1) 
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Fig. 1 Composite beam (a) cross-section, (b) displacements, (c) strains 

 

 

 2 2 2w y h v                                                              (2) 

and 

2 1w w hv                                                                (3) 

where h is the distance between the centroids of the beams, i.e., h=h2−h1, and prime (’) denotes the 

derivative with respect to longitudinal coordinate z. 

 

 

3. Finite element formulations 
 

3.1 Basic displacement based finite element formulation 
 

A displacement based finite element formulation can be developed by employing the total 

potential energy functional , i.e. 

1 2

2 2 21 1 1
1 1 2 22 2 2

d d d d d d ext

L A L A L b

E A z E A z x z                                      (4) 

where the first and second integrals are the elastic bending energies of the two Euler-Bernoulli 

beam components, the third integral is due to the elastic deformations of the shear connection 

where ρ is its elastic stiffness (force/length
3
) defined as the shear stress in longitudinal direction 

per unit slip, b is the width of the effective interface surface between the two beam components,  

and ext  is the work done by the external forces. In a displacement-based finite element  

formulation, the longitudinal displacement fields w1 and w2 and the derivative of the vertical 

displacement field v can be expressed using interpolation functions as 

1 1

2 2

( )

( ) ( )

( )

N

N

N

w z

w z z

v z



     
    

     
          

M 0 0 w

0 M 0 w B U

0 0 N v

                                 (5) 
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where M(z) and Z(z) are vectors of the interpolation functions for the longitudinal and the vertical 

displacement fields, respectively. In Eq. (5), BΓ(z) is the discrete interlayer slip matrix and U is the 

vector of nodal displacements composed of the vectors of nodal longitudinal displacements at the 

centroids of both beams wN1, wN2 and the vertical displacement vM, i.e. 

T T T T

1 2 N N NU w w v                                                       (6) 

By using Eqs. (1) to (3) and (5) in Eq. (4), the total potential energy functional can be written as 

T T T T1 1
2 2

( ) ( )d ( ) ( )dd d

L L

z z z z z z 

   
      

   
 U B DB U U B D B U FU                (7) 

in which ( ) ( )d z z
B B , F  is the energy equivalent nodal external load vector 

1 1

2 2

1 1 2 2

0 0

0 0

0 0

E A

E A

E I E I

 
 


 
  

D                                                (8) 

and 

2

1 1

1 1

h

b h

h h h



  
 

 
 
  

ρD                                                       (9) 

where I1 and I2 are the second moments of area of the beams about their horizontal principal axes 

passing through the centroids of each cross-section. From the first variation of the total potential 

energy functional, the weak form of the equilibrium equations is obtained as 

  b sK K U F                                                           (10) 

where Kb is the stiffness matrix associated with the bending and the axial deformations of the 

beam components and Ks is associated with the slip energy, i.e. 

T ( ) ( )d b d d

L

z z zK B DB                                                     (11) 

and 

T

s ( ) ( )d
L

z z z  K B D B                                                     (12) 

The simplest element that satisfies the compatibility conditions can be developed by using linear 

interpolations for the longitudinal displacements and a cubic interpolation for the vertical 

displacement, i.e. 

 ( ) 1 z z L z LM                                                    (13) 
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and 

2 3 2 3 2 3 2 3

2 3 2 2 3 2

3 2 2 3 2
( ) 1

       
              

       

z z z z z z z z
z z

L L L L L L L L
N           (14) 

and the vector of nodal displacements U can be written as 

T

1 1 2 2(0) ( ) (0) ( ) (0) (0) ( ) ( )w w L w w L v v v L v L U               (15) 

This element will be referred as the Basic Element (BE) herein. It has been reported in 

Dall’Asta and Zona (2004) that for stiff shear connection, BE suffers from slip-locking which is 

due to the fact that the discrete slip and the curvature expressions are coupled in the BE 

formulation, i.e., the discrete slip expression Γ=<−1 +1 h>BΓU becomes 

 
2

2

6
(0) 1 ( ) ( ) (0) ( ) (0)

2

z z L h z
L v L v v L v z

L L L L

    
              

     
            (16) 

where Γ(0) and Γ(L) are nodal slip values, i.e. 

2 1(0) (0) (0) (0)w w hv                                                    (17) 

and 

2 1( ) ( ) ( ) ( )L w L w L hv L                                                  (18) 

In the limiting case of    (zero slip), i.e., Γ=0, requires the vanishing of the last term in 

Eq. (16) which imposes a constant value for the curvature v’’=N’’(z)vN. Locking behaviour due to 

this mechanism and the performance of the BE formulation are illustrated in section 4.  

 

3.2 Finite element formulation based on the B-bar procedure 
      

B-bar procedure (Hughes and Tezduyar 1981) provides a very easy way of modifying the basic 

finite element formulation since only the B matrices used in the stiffness matrix derivations are 

changed in the existing finite element analysis codes. In order to eliminate the last term in the slip 

expression of the basic composite beam finite element formulation in Eq. (16), the matrices BΓ(z) 

and Bd(z) in Eqs. (11) and (12) can be directly modified as 

1

2

3

( ) ( )

( ) ( ) ( )

( ) ( )

a

a

b

z a z

z z a z

z a z



 
 


 

  

M 0 T

B 0 M T

0 0 N T

                                     (19) 

and 

1

2

3

( ) ( )

( ) ( ) ( )

( ) ( )

b

d b

b

z b z

z z b z

z b z

 
 
 
 

  
 

M 0 T

B 0 M T

0 0 N T

                                   (20) 
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where 

( ) 1 1
2 2

a

L L
z  T                                                    (21) 

and 

( ) 1 1 1
2 2

b

L L z z
z

L L

 
     

 
T                                        (22) 

and  1 1 1 2 2 1 13 2b E I E I L E A  ,  2 1 1 2 2 2 23 2b E I E I L E A  , b3=−3/L, a1=h/(2L), 

a2=−6/L. By substituting Eqs. (19) and (20) into Eq. (7), the potential energy functional becomes 

1 2

2 2 21 1 1
1 1 2 22 2 2

d d d d d d ext

L A L A L b

E A z E A z x z                                      (23) 

where 

1 11 0 dy h   B U                                                      (24) 

2 20 1 dy h   B U                                                     (25) 

and 

    1 1 h    B U                                                       (26) 

It should be noted that, the potential energy functional in Eq. (23) should be variationally 

consistent in order to be used after the B-bar modifications (e.g., Simo and Hughes 1986, Prathap 

and Babu 1992). Variational consistency of the total potential energy functional in Eq. (23) can be 

verified by using the Hu-Washizu principle which is a systematic way of formulating assumed 

strain finite element formulations including the B-bar procedure (e.g., Simo and Hughes 1986). 

Thus, the Hu-Washizu functional can be written as 

     

1 2

1 2

2 2 21 1 1
1 1 2 22 2 2

1 1 1 1 2 2 2 2

d d d d d d

d d d d

L A L A L b

ext

L A A b

E A z E A z x z

E A E A x z

  

      

   

 
        

  

     

   

                (27) 

in which the fourth term vanishes for the B-bar modifications introduced in Eq. (19) and (20) i.e. 

     
1 2

1 1 1 1 2 2 2 2d d d d 0
L A A b

E A E A x z      
 

       
  
                          (28) 

where discrete strain and slip expressions are as in the Basic Element formulation, i.e., 

1 11 0 dy h   B U , 
2 20 1 dy h   B U  and 1 1 h   B U . It can be verified that 

the potential energy functional introduced in Eq. (23) is variationally consistent. This element will 
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be referred to as the B-bar element BBE1. Alternatively, Eq. (28) can also be satisfied by selecting 

b1=b2=b3=0 and this element will be referred herein as BBE2. The performances of BBE1 and 

BBE2 are illustrated in section 4. 

 

3.3 Finite element formulation by changing the primary variables 
     

In order to eliminate the oscillations in the slip field, the primary variables can be changed in 

order to consider the slip field as an independent variable so that the slip field can be directly 

interpolated, and the coupling between the discrete slip and the curvature can be avoided. For this 

purpose, the beam axis is assumed to be attached to the second component and the strain 

expression can be obtained by using the Euler-Bernoulli beam kinematics as 

                                              2 w yv                                                                  (29) 

On the other hand, by considering the shift in the strain due to slip gradient as shown in 

Fig.1(c), the strain expression for the first component can be written as 

                                              1 w yv                                                                 (30) 

Thus, the primary variables are the longitudinal displacement of the selected axis that is 

attached to the second component w , the vertical displacement field v  and the interlayer slip  . 

By using linear interpolation for the longitudinal displacement and slip fields, and cubic 

interpolation for the vertical displacement field, from Eqs. (19) and (20), the strains for both 

components can be written as 

                        1

'( ) '( )
1

''( )

N

N

N

z z
y

z


 
   

    
   

 

w
M 0 M

v
0 N 0

Γ

                                   (31) 

and 

                           2

'( )
1

''( )

N

N

N

z
y

z


 
   

    
   

 

w
M 0 0

v
0 N 0

Γ

                                       (32) 

and the slip field can be interpolated as 

                                                  ( ) Nz M Γ                                                               (33) 

where 
T (0) ( )N w w Lw , 

T (0) (0) ( ) ( )N v v v L v L v  and 
T (0) ( )N L  Γ . By 

substituting Eqs. (31)-(33) into Eq. (7) and using the vector of nodal displacements based on the 

changed primary fields, i.e., 
T T T T

N N NV w v Γ , the total potential energy functional can be 

written as 

T T T T T T T1 1 1
1 1 1 2 2 22 2 2
( ) ( )d ( ) ( )d ( ) ( )d

L L L

z z z z z z z b z z      V B D B V V B D B V V B B V FV   (34) 
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where 

1 1

1 1

1 1

x

x x

A S
E

S I

 
  

 
D                                                       (35) 

2 2

2 2

2 2

x

x x

A S
E

S I

 
  

 
D                                                      (36) 

1

'( ) 0 '( )
( )

0 ''( ) 0

z z
z

z

 
  
 

N M
B

M
                                            (37) 

2

'( ) 0 0
( )

0 ''( ) 0

z
z

z

 
  
 

N
B

M
                                                (38) 

and 

0 0 0

( ) 0 0 0

0 0 ( )

z

z



 
 


 
  

B

M

                                                     (39) 

in which Sx1, Ix1, Sx2 and Ix2 are the first and second moments of area of each component of the 

beam with respect to the reference axis attached to the second component. From the first variation 

of the total potential energy functional, the weak form of the equilibrium equations can be 

obtained as 

 1 2   K K K V F                                                      (40) 

where 1K and 2K are the stiffness matrices associated with the bending and the axial deformations 

of the beam components and K is associated with the slip energy i.e. 

T

1 1 1 1( ) ( )d
L

z z z K B D B                                                      (41) 

T

2 2 2 2( ) ( )d
L

z z z K B D B                                                     (42) 

and 

T T( ) ( )d
L

z b z z   K B B                                                   (43) 

In the limiting case of ρ→∞, the oscillations are eliminated in the slip field because the 

vanishing of the slip field (Γ=0) does not impose any constraints other than Γ(L)=0 and Γ(0)=0 as 

opposed to the basic finite element formulation. This element will be referred to as the Direct Slip 

interpolation Element (DSE) herein. The performance of DSE is illustrated in the following 

section.  
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4. Applications 
 

     The performances of the developed elements DSE, BBE1 and BBE2 are illustrated in this 

section. In all cases the total span of the beam is taken as L=10 m. The top component of the cross-

section has a modulus of elasticity of E1=26×10
3
 MPa. The width and the thickness of the 

rectangular top section (Fig. 1(a)) are Bd=600 mm and td=15mm, respectively. The modulus of 

elasticity of the bottom component is E2=200×10
3
 MPa. The overall height, flange width, flange 

thickness and web thickness of the bottom I-section are Dg=412 mm, Bg=200 mm, tf=12 mm and 

tw=8 mm, respectively. The beam axis is selected at the centroid of the bottom component. 

Analyses were undertaken for two different connection stiffness parameters ρ=0.1 N/mm
3
 

(αL=2.973) and ρ=100 N/mm
3
 (αL=94.016). The effective intersection surface width between the 

two components is taken as b=150 mm based on which the dimensionless connection stiffness 

parameter can be calculated as (Dall’Asta and Zona 2004) 

2

1 1 2 2 1 1 2 2

1 1 h
b

E A E A E I E I
 

 
   

 
                                        (44) 

The results are compared with those based on the discrete strain gap method developed in 

(Erkmen and Bradford 2011a) and denoted herein as DE which can also be considered as a special 

case of the B-bar procedure in which B  matrix in Eq. (19) was replaced with 

1 1
0 0 0 0 0 0

2 2

1 1
0 0 0 0 0 0

2 2

1 1
0 0 0 0 0 0

L L



 
 
 
 
 
 


 
  

B                                          (45) 

and b1=b2=b3=0 were used in Eq. (20). The exact solutions are also obtained based on the finite 

element procedure developed in (Erkmen and Bradford 2011a) and denoted herein as EE which 

provides benchmark data for comparison purposes. It should also be noted that the element BBE2 

developed herein is identical with AE given in (Erkmen and Bradford 2011a). However, by 

directly replacing B with B the static condensation step can be prevented. 

 

4.1 Simply supported beam 
 

For the simply supported case (i.e., v(0)=w2(0)=v(L)=0) the beam is subjected to a 5kN  vertical 

mid-span load. Analyses were made for one-, two- and four-element models. Fig. 2 shows the 

vertical deflections at the centroid of the bottom component, the interlayer slip, and the curvatures 

based on four-element solutions. The convergence rates (i.e., p in ||e||en=Ch
p
 where C is an 

arbitrary constant and h is the element size) of the elements are shown in log-log scale in Figs. 3 

(a) and (b). The effect of the shear connection stiffness on the error in the total strain energy is 

shown in Fig. 4. From Fig. 2 (a), it can be verified that for the flexible shear connection (ρ=0.1 

N/mm
3
) deflections based on the BE, BBE2, DSE and DE are close to the exact solution EE. Only,  
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Fig. 2 Analysis results for the simply supported beam 

 

 

BBE1 depicts a softer behaviour than the exact solution. The mid-span values based on BE, BBE1, 

BBE2, DSE, DE and EE are 2.075 mm, 2.197 mm, 2.075 mm, 2.064 mm, 2.080 mm and 2.079 

mm, respectively. On the other hand as shown in Fig. 2(b), for the stiff shear connection (ρ=100 

N/mm
3
) BE depicts a stiffer behaviour than the exact solution EE due to locking effects. The mid-

span values for the stiff connection case based on BE, BBE1, BBE2, DSE, DE and EE reduce to 

1.791 mm, 1.873 mm, 1.856 mm, 1.823 mm, 1.854 mm and 1.878 mm, respectively. The effects of 

locking can also be observed from the slip results. In Fig. 2(c), quadratic slip results based on BE  
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Fig. 3 Accuracy and convergence rate for the simply supported beam 
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Fig. 4 Energy error versus connection stiffness based on four elements 

 

 

as well as linear slip results based on elements  BBE1, BBE2, DSE and mid-values of the constant 

slip based on element DE are accurate for the flexible shear connection case. The effects of 

locking can be observed from the oscillations in the slip results of BE, BBE1 and BBE2 for the 

stiff shear connection case (ρ=100 N/mm
3
) in Fig. 2(d). On the other hand, results of DE and DSE 

are very accurate as they follow the exact curve. It should be noted that the results of the B-bar 

elements BBE1, BBE2 and DE always intersect at a point that is very close to the exact solution as 

can be verified from Fig. 2(d) which suggests the existence of a superconvergent point for the B-

bar procedure. Locking effects can also be observed from the comparison of the curvature results 

in Figs. 2 (e) and (f) as the curvature based on elements BE, BBE1, BBE2 tend to become constant 

within an element which causes the inter-element dislocation. On the other hand, curvature results 

based on DE and DSE are accurate in both stiff and flexible connection cases while results of DSE 

are the most accurate and very close to the exact solution.  

From Figs. 3 (a) and (b) it can be verified that the average slopes for the flexible connection 

case for elements BE, BBE1, BBE2 and DE are 2.12, 1.96, 1.89 and 2.66 respectively. These 

slopes change to 1.18, 2.13, 2.16 and 1.03, respectively for the stiff connection case. The 

convergence rate of element DSE is only slightly affected by the connection stiffness since the 

average slope of the curve 1.86 for the flexible connection case reduces slightly to 1.51 for the stiff 

connection case. However, the accuracy of the element DSE improves slightly for the stiff 

connection case.  
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Fig. 5 Analysis results for the cantilever beam 

 

 

The favourable effect of the connection stiffness on the behaviour of element DSE can be 

verified from Fig. 4 as it shows that the energy error reduces when the connection stiffness is 

increased which also has the greatest accuracy for αL=94.016. It can also be observed from Fig. 4 

that the error in elements BE, BBE2 and DE increases for stiffer connections. The developed 

element DSE shows an excellent performance since in the stiff connection case the oscillations are 

prevented and the energy error is not affected adversely. The B-bar element BBE2 also has a 

superior performance to BE. 
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Fig. 6 Accuracy and convergence rate for the cantilever beam 
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Fig. 7 Energy error versus connection stiffness based on four elements 

 

 

4.2 Cantilever beam 
      

The second example is that of a cantilever beam-column (i.e., v(0)=v’(0)=w1(0)=w2(0)=0) 

subjected to a 10kN vertical load acting at the tip. Finite element analyses were made for one-, 

two- and four-element models. Fig. 5 shows the vertical deflection, longitudinal slip and the 

curvatures based on the four-element finite element model. The convergence and accuracy 

performances of the elements with different connection stiffnesses based on the energy norm are 

given in Fig. 6. The effect of the shear connection stiffness on the error in the total strain energy is 

shown in Fig. 7. Similarly to the simply supported case, all elements provide sufficiently accurate 

results for the flexible connection; however for stiff shear connection element BE shows severe 

oscillations in the slip values, and the accuracy of the results diminish. Fig. 5(d) shows that the slip 

results for elements BBE1 and BBE2 also oscillate for the stiff connection; however the 

intersection-point values are accurate. 

The average slopes for the flexible connection case for elements BE, BBE1, BBE2, DE and 

DSE are 2.21, 1.90, 2.08, 2.35 and 1.39, respectively which change to 2.24, 3.08, 2.80, 2.08 and 

1.17 respectively for the stiff connection case; as shown in Figs. 6 (a) and (b).  

Fig. 7 shows that formulation DSE is not affected by the connection stiffness while the error in 

elements BE, BBE2 and DE are only slightly increased for stiffer connections. The developed 

element DSE again depicts excellent behaviour for the cantilever beam case. 
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Fig. 8 Analysis results for the propped cantilever 

 

 

4.3 Propped cantilever beam 
      

The last example is that of a cantilever beam which is propped at its mid-span (i.e., 

v(0)=v’(0)=w1(0)=w2(0)=v(L/2)=0) and subjected to a 0.5kN/m vertical uniformly distributed load 

and 5kN vertical point load at the free end. Finite element analyses were made for two-, four- and 

eight-element models. The deflections and curvatures are shown in Fig. 8. Fig. 9 shows the 

convergence and accuracy performance of each element based on flexible and stiff connection  
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Fig. 9 Accuracy and convergence rate for the propped cantilever 
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Fig. 10 Energy error versus connection stiffness based on four elements 

 

 

cases. Fig. 10 shows the dependence of the energy error on the connection stiffness. From Fig. 

8(a), it can be verified that for the flexible shear connection deflections based on the BE, BBE2, 

DSE and DE are close to the exact solution EE. Only, BBE1 depicts a softer behaviour than the 

exact solution similar to the simply supported case. The tip values based on BE, BBE1, BBE2, 

DSE, DE and EE are 8.706 mm, 9.637 mm, 8.707 mm, 8.572 mm, 8.729 mm and 8.737 mm, 

respectively. On the other hand as shown in Fig. 8(b), the tip deflection values change to 7.092 

mm, 7.366 mm, 7.246 mm, 7.707 mm, 7.645 mm and 7.859 mm, respectively for the stiff 

connection case. Fig. 8(d) shows that oscillations that occur in stiff connection due to locking in 

element BE are circumvented when elements DE and DSE are used. Also, the slip values at the 

intersection points of elements BBE1, BBE2 are very close to the exact results.  

The average slopes for the convergence rates for the flexible connection case for elements BE, 

BBE1, BBE2, DE and DSE are 2.23, 1.86, 1.90, 0.36 and 1.95, respectively which change to 2.68, 

2.91, 3.05, 2.47 and 1.59, respectively for the stiff connection case as shown in Figs. 9 (a) and (b). 

Fig. 10 shows that element DSE is not affected by the connection stiffness and therefore shows 

excellent performance. 

 

4.4 Curvature-locking with direct slip interpolation element 
 

In the conventional finite element formulation BE curvature-locking is associated with slip-
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locking as a stiff connection imposes a constant value on curvature as discussed herein. When 

element DSE is used, slip-locking is completely eliminated for stiff connections. However, the 

curvature can still have the tendency to become constant within the element, and thus DSE is 

prone to curvature-locking (without accompanying oscillations in the slip field). For instance, 

when the average strain at the centroid of the second (bottom) component approaches zero due to 

the fact that the second component is significantly more rigid than the first (top) component and 

the shear connection is stiff, i.e., Γ’→0, the strain at the centroid of the second component can be 

expressed by using Eq. (29) as 

2 0w h v                                                                (46) 

Since linear interpolation is used for axial deflection w, Eq. (46) constrains the curvature to be a 

constant term. Curvature-locking in the case of a rigid second component can be avoided however, 

by selecting the arbitrary axis to pass through the centroid of the second component, i.e., h2=0 and 

vice versa. Similarly, when one of the components is significantly rigid in comparison to the other, 

it does not cause curvature-locking when elements BE, DE, BBE1 or BBE2 are used, since Eq. (1) 

and/or Eq. (2) is used to express the strains at the centroids of the components and thus, the strains 

at the centroids are not affected by the curvature. The curvature-locking behaviour with element 

DSE is created by shifting the axis to the centroid of the top component instead of the bottom 

component as used in the previous cases since the top component is the softer component. In this 

case, the results based on the element DSE are shown as DSE_t in Figs. 8 (b), (d) and (f). From 

Fig. 8 (d) it can be verified that the slip behaviour of DSE_t matches with that of DSE, hence slip-

locking does not occur; however the inter-element curvature jumps become significant as the 

curvature tends to become constant in each element as shown in Fig. 8(f). Curvature-locking in the 

case of the analysis with DSE_t also causes stiffer behaviour for the beam in comparison to the 

analysis with DSE, as can be observed from Fig. 8(b). 

 

 

5. Conclusions 
 

The displacement-based finite element formulation founded on a linear interpolation of the 

longitudinal displacement fields and the cubic interpolation of the vertical displacement field 

suffers from locking when used for the analysis of composite beam-columns consisting of two 

Euler-Bernoulli beams juxtaposed with a deformable shear connection. The main problem with the 

conventional displacement-based formulation is that for stiff connections the nodal values of slip 

may be totally erroneous and severe oscillations occur in the slip field. In this study, the 

displacement based finite element formulation was modified by using the B-bar procedure which 

is a very easy way of modifying the basic finite element formulations since only the B matrices 

used in the stiffness matrix derivations are changed in the existing finite element analysis code. 

Examples have shown that slip values based on B-bar elements coincide at a point. These 

intersection points provide very accurate slip results at the element level which suggests the 

existence of a super-convergent point for the B-bar procedure. By changing the primary variables, 

to be able to interpolate the slip field directly, an efficient finite element was also developed which 

completely eliminates the oscillatory slip behaviour and degradations in the accuracy for stiff shear 

connections. It was shown that the element developed by changing the primary variables may still 

suffer from curvature-locking, however by proper selection of the beam axis curvature locking can 

be alleviated.  
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