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Abstract.  In this study, two beam-column elements based on the Elasto-Fiber element theory for reinforced 
concrete (RC) element have been developed and compared with each other. The first element is based on 
Elasto Fiber Approach (EFA) was initially developed for steel structures and this theory was applied for RC 
element in there and the second element is called as Fiber & Bernoulli-Euler element approach (FBEA). In 
this element, Cubic Hermitian polynomials are used for obtaining stiffness matrix. The beams or columns 
element in both approaches are divided into a sub-element called the segment for obtaining element stiffness 
matrix. The internal freedoms of this segment are dynamically condensed to the external freedoms at the 
ends of the element by using a dynamic substructure technique. Thus, nonlinear dynamic analysis of high 
RC building can be obtained within short times. In addition to, external loads of the segment are assumed to 
be distributed along to element. Therefore, damages can be taken account of along to element and 
redistributions of the loading for solutions. Bossak-α integration with predicted-corrected method is used for 
the nonlinear seismic analysis of RC frames. For numerical application, seismic damage analyses for a 4-
story frame and an 8-story RC frame with soft-story are obtained to comparisons of RC element according 
to both approaches. Damages evaluation and propagation in the frame elements are studied and response 
quantities from obtained both approaches are investigated in the detail. 
 

Keywords: Elasto-Fiber element; Fiber & Bernoulli-Euler element; seismic damage analysis;                       

dynamic substructure technique; Bossak-α method and predicted-corrected method 

 
 
1. Introduction 

 

In the last thirty years, researchers have made more effort for the numerical modeling of 

reinforced concrete (RC) structures and most of the state-of-the-art on this problem deals with two 

main approaches; lumped plasticity modeling (Anagnostoupoulos 1981,  Banon et al. 1981, Zeris 

and Mahin 1991, Isobe and Tsuda 2003) and distributed-inelasticity modeling (i.e., the so-called 

Fibre beam-column elements, FBCE) (Filippou and Issa 1988, Taucer et al. 1991, Carlson 1999, 

Li Y et al. 2011, http://opensees.berkeley.edu). In the first approach, nonlinear springs based on 

moment-rotation and force-displacement curves are used and nonlinear volume is assumed to be 

lumped in the specific location of the element (Anagnostoupoulos 1981, Banon et al. 1981, Zeris 

and Mahin 1991). In the second approach, the nonlinear behaviors of concrete and reinforcement 
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materials are separately calculated. This method is divided into two as approaches based on 

flexibility and rigidity. Taucer et al. (1991), developed a flexibility method for nonlinear dynamic 

analysis of reinforced concrete element. This method, based on Bernoulli-Euler hypothesis, 

includes biaxial bending and axial force conditions. Nonlinear behavior of concrete and steel are 

computed by using their uniaxial stress-strain relationships. Force-displacement interpolation 

functions are used for obtaining the element flexibility matrix. Element stiffness matrix is 

computed by inverse of flexibility matrix. Furthermore, Kawano et al. (1998), Ceresa et al. (2009), 

Lu et al. (2013) investigated the shear effect on reinforced concrete element. The methods based 

on rigidity are not preferred generally due to flexural deformation of RC element in intensity 

damage regions (Kawano et al. 1998). In the last time, the strain rate effects on response of 

reinforced concrete frames were investigated by Iribarren (2010). Formulation based on rigidity 

method is used for the solutions and a strain rate dependent material formulation was developed 

for both the concrete and steel constitutive response. Karaton (2013) used a method based on 

rigidity for nonlinear dynamic analysis of RC frames. A nonlinear dynamic substructure technique 

was developed for eliminating of flexural deformation of RC element in intensity damage regions. 

Elasto-Fiber Approach (EFA), used in this study was firstly developed for steel structures by 

Krishnan (2003). In the EFA based on rigidity, beam or column element was divided into sub-

elements called “segments”. The segment freedoms at internal region of the element were 

condensed by using static substructure technique to segment freedoms at the end of the element. 

Thus, nonlinear dynamic analysis of high steel building can be obtained within short time 

(Krishnan 2003). This procedure requires nested loops of the element and structure that are 

obtained at the same time. But, external loads at internal element regions are lumped to ends of the 

element. These loads are not included in the element iterative solutions and redistribution of the 

element external loads is not taken into account due to the problem arising in the numerical 

solutions. Therefore, the redistribution of loads must be calculated for more realistic solutions of 

RC frames and the numerical problem must be overcome.  

Cubic Hermitian polynomials in Fiber&Bernoulli-Euler element approach (FBEA) are used for 

obtaining stiffness matrix and these polynomials are not sufficient due to flexural deformation of 

reinforced concrete material in heavy damage regions. Therefore, FBEA is not preferred for 

analyses of the RC structures (Kawano et al. 1998).  A dynamic substructure technique for FBEA 

was applied by Karaton (2013) for eliminating to the disadvantage of Cubic Hermitian 

polynomials. In this research, numerical results with experimental results of a reinforced concrete 

column are compared and effectiveness of the approach is investigated in details.      

The present research has been organized as (i) obtaining of constitutive models for RC frames 

according to EFA and FBEA, (ii) developing of nonlinear dynamic substructure technique for EFA 

and FBEA, (iii) applying of Bossak- method for the nonlinear dynamic analysis of frames, (iv) 

obtaining of seismic damage analyses for a 4-story frame and an 8-story RC frame with soft-story 

and comparing of the responses for both approaches and (v) results.  

 

 

2. EFA and FBEA for reinforced concrete beam-column elements   
 

2.1 Obtaining element stiffness matrices for EFA 
  

The strain distribution on a cross section of the beam is assumed to be uniform due to only 

axial forces and linear due to only bending according to the Bernoulli-Euler approach (Carlson 
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1999, Krishnan 2003, Lu et al. 2013, Karaton 2013). Furthermore, if a section is plane before 

bending, it is plane after bending and if the strain is assumed to be small, the incremental strain of 

a point on a cross-section in the axial direction can be written as 

 
seg

,ı,jn

seg

ij

n,
L

)dd('

L

udud
d


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






                                              (1) 

where dui and duj are the displacements of i and j ends of the a segment in the  (axial) direction, 

respectively. dϕi,ζ and dϕj,ζ are rotations of i and j ends of the a segment at about  axis, 

respectively. Lseg is segment length and η’ is also coordinate of a fiber/layer in η axis direction 

(Fig. 1). Thus, incremental normal stress of a fiber/layer in the  axis direction can be defined as 

n,n,Tn, dEd                                                                (2) 

where, ET,n is tangent elasticity modulus of nth fiber. Thus, axial force, Pξ and total bending 

moment, Mζ
 
are obtained as 
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where, nA is area of nth fiber. Furthermore, the internal shear forces, Qη
 
by using elasticity theory 

and material properties of the cross-section are defined as 

 




nfib

1n

n,sn,T AGQ

                                                        

 (4) 

where, As,n and GT,n is shear area and tangent shear modulus of nth fiber, respectively. ϕζ
 
is also 

rotation of the cross section relative to the chord. GT,n is obtained by using tangent elasticity 

module and Poisson ratio of the material. In Eq. (4), if shear strain is assumed constant as along 

the element to prevent to shear locking, shear forces by using rotations at i and j ends of element 

can be expressed as 

2
AGQ

,j,i

nfib

1n

n,sn,T




 
 



                                                     (5) 

Therefore, Elasto-Fiber element theory is modified by using Eq. (5) for section with the 

reinforced concrete (or composite). Incremental forms of Eqs. (3) and (5) can be written as 

n,

nfib

1n

nn,T dAEdP  


                                                      (6.a) 

n,

nfib

1n
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

                                                   (6.b) 
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These incremental relations in the matrix form, by using Eqs. (1) and (2), can be rewritten as 
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or 

    BCdF T                                                            (7.b) 

The B , vector for displacements and rotations of i and j ends of the segment can be rearranged 

as follow 
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or 

      dUSB 
                                                           

 (8.b) 

Thus, segment tangent stiffness matrix, by using minimum potential energy principle, is 

obtained as the following 

          SCS
L

1
K T

T

n,seg

seg                                                        (9) 

The segment stiffness matrix is obtained by using areas, coordinates and tangent elasticity 

modulus of each fiber/layer (concrete/reinforcement) in each segment. Tangent elasticity modulus 

of each concrete/reinforcement can be calculated by using uniaxial stress-strain relationship of 

each material and linear superposition rule is used for different fiber material properties in the  
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Fig. 1 Concrete, steel fibers and global and local axis 

 

 

section (Fig. 1). However, concrete/reinforcement fibers may be damaged due to external loading 

and in order to obtaining a relationship between the damaged and undamaged case, damage 

intensity in each concrete and steel fiber is computed as follow (Légeron et al. 2005) 

n,O

n,T
n

E

E
1d                                                                (10) 

where, EO,n is undamaged elasticity module of nth fiber. dn, damage intensities are separately 

obtained under tensile and compressive stress for each fiber. ET,n, tangent elasticity module and 

GT,n, tangent shear module of nth fiber by using damage intensity can be written as 
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 (11.a) 
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However, total kinetic energy of particle velocities on the cross-section of an element 

throughout its neutral axis can be written as 





  dvv
2

1
T                                                            (12) 

where,  is mass density and vξ is particle velocity in , the axial direction (Fig. 1). If 

concrete/reinforcement fibers are used in Eq. (12), the mass matrices of an element on the local 

axis are obtained as 

        
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1

1
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T

seg dNANM                                            (13) 

where [N()]
 
is the element shape functions matrix and n is also mass density of nth fiber. 

Stiffness and mass matrices of a segment are transformed to global axes by using standard 

transformation matrix.  
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(a) concrete (b) steel 

Fig. 2 Stress-strain relationships for RC materials 

 

 
2.2 Obtaining element stiffness matrices for FBEA 

 

Differential form of Eq. (1), by using Bernoulli-Euler approach in the global axes, can be 

rewritten as 

 y
xd
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xd

ud
2

2

xx 
                                                          

 (14) 

where u and v are the displacement of the axial and vertical directions of element, respectively 

(Fig. 1). However, if cross section of element is divided with concrete/reinforcement fibers, this 

equation for each concrete/reinforcement in local axis can be rewritten as 
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where, dεξ,n
 
is incremental axial strain of a fiber on a segment in  local axis direction. Therefore, 

if the cubic Hermitian polynomials for transversal displacements and the linear shape functions for 

axial displacements are used (Chandrupatla and Belegundu 2002), then the Eq. (2) can be written 

as 
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where,  q  is displacement vector which include displacements and rotations of a segment.  B  is 

strain-displacement matrix. Incremental stress in each concrete/reinforcement can obtained as,  

    qB'1EdEd nn,Tn,n,Tn,                                           (17) 

where, ET,n 
is determined by using uniaxial stress-strain relationship of each fiber. Total strain 

energy of a segment can be also achieved as 
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where, LSeg
 
and ASeg are expressed to length and cross section area of segment, respectively. An is 

also area of a concrete/reinforcement fiber. Element stiffness matrix can be acquired by using 

minimum potential energy principle. The stiffness matrix of a segment can written as 
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In the FBEA, damages in each concrete/reinforcement fiber are calculated by using Eq. (10) 

and mass matrices of segment are obtained by using Eq. (13). 

 

2.3 Nonlinear dynamic substructures technique for stiffness and mass matrices  
 

The Gaus-Lobatto integration rule is generally used for obtaining element mass and stiffness 

matrices along to  local axis (Kawano et al. 1998, Ceresa et al. 2009, Iribarren 2010, Lu et al. 

2013). The element stiffness matrix is obtained by using cross section properties on the integration 

points. Therefore, the effects of shape functions on the solution are very important. In the resent 

years, methods based on flexibility have been developed due to this disadvantage of methods 

based on rigidity for static and dynamic analyses of RC element. But, static or dynamic 

substructure procedures to eliminate this disadvantage of rigidity methods are generally not 

preferred due to numerical difficultly. Krishnan (2003) had used a static substructure technique for 

the nonlinear dynamic analysis of steel structure and arising problems due to flexural behavior of 

elements were removed. However, this substructure procedure is required to condensation to end 

freedoms at ends element of element external loads; in this case, redistribution of external loads is 

not taken into account. This redistribution must be computed in solution techniques.    

In this study, a dynamic substructure technique is applied for the reinforced concrete frames. In 

this method, element is divided into segments and the freedoms of segment are condensed to the 

end freedoms at ends element. This procedure is used as the each element iteration in the iteration 

of frame structure. Freedoms at end and internal regions of element are called as external and 

internal freedoms, respectively (Fig. 3). The external and internal freedoms for stiffness matrices 

can be written as 
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Fig. 3 Segments, external and internal nodes for EFA and FBEA 
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where, [KEE] and [KII] are stiffness matrices which include external and internal freedoms, 

respectively (Krishnan 2003). {uE} and {uI}
 

are the displacement vectors referred by these 

freedoms. {FE} and {FI}
 
are also the external loads belonging to these freedoms. If applying the 

substructure procedure for Eq. (20), the external load and stiffness matrices of a frame element can 

be rewritten as 

     F,EEF,EE FuK                                                    (21.a) 

         IE
1

IIEIEEF,EE KKKKK


                                            (21.b) 

         I
1

IIEIEF,E FKKFF


                                             (21.c) 

However, if the Rayleigh method is used for obtaining element damping matrices, the damping 

matrix is defined as 
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where dam and dam are Rayleigh damping coefficients, with respect to mass and stiffness 

matrices, respectively (Bathe 1982). However, if substructure procedure for mass and damping 

matrices (Guyan 1965) are applied, then the mass and damping matrices for external freedoms of 

element can be obtained as 
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Global element stiffness, damping and mass matrices can be achieved and stiffness, damping, 

mass matrices and external load vector for the RC frames (or structure) can be calculated as 
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   




nelem

1k

F,EES KK ,       




nelem

1k

F,EES CC ,        




nelem

1k

F,EES MM ,    




nelem

1k

F,ES FF      (24) 

The dynamic equilibrium equation of the structure can be given as, 

               stat,Sttgr,SttESttESttES FFuKvCa 
 M            (25) 

where subscript gr and stat indicate that the quantity is related with ground acceleration and static 

loads. 

 

2.4 Bossak-α form of equation of motion 
 

The equation of motion for the RC frame is given in Eq. (25). In this study, the Bossak-α 

integration method, presented by Wood et al. (1980), is used for the solution of the equation in the 

time domain and time integration scheme of the method retains the Newmark method. The 

Bossak-α integration method is required to be modified to Eq. (25) in the time domain as follows 

              

      stat,Stgr,SBttgr,SB

ttres,SttSStSSBttSSB

FFF1

FvCaa1
















MM

                   

(26) 

where αB is the Bossak parameter, used for controlling the numerical dissipation. The Bossak 

parameter should be chosen as in Eq. (27) for unconditional stability and second-order accuracy 

2

1
B  ;           2B1

4

1
  ;  B

2

1
                                  (27) 

In this study, B  is selected as -0.10.  To solve the non-linear dynamic equation of motion for 

the RC frame, the Newton-Raphson method is used in conjunction with the predictor-corrector 

technique. Predicted displacement and velocity vectors for the time step t+t are obtained by 

using displacement and velocity vectors at the time step t, known. Thus, they can be calculated as 

        
ttS

2

tStSttS a21t
2

1
vtuu~





                                 (28.a) 

      
tStSttS a1tvv~ 





                                           (28.b) 

where   and   are Newmark’s coefficients. The displacement and velocity vectors (Miranda et 

al. 1989) of the RC frame can be written in terms of the predicted vectors shown in Eq. (28). The 

vectors can be defined as 

     
ttS

2

ttSttS atu~u






                                           

 (29.a) 

     
ttSttSttS atv~v







                                            
 (29.b) 

If these relations can be substituted into Eq. (26), a time marching algorithm can be applied as 

given in the Appendix.  
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Cross-section of the columns 

 

Cross-section of the beams 

Fig. 4 Finite element mesh, columns and beams cross-section properties of 4-story frame 

 
 
3. Numerical applications  

 

Seismic damage analyses for 4-story and 8-story RC frame with soft-story are investigated for 

the comparison of EFA and FBEA. Comparisons of both approaches with each other are 

performed for response quantities, damages evaluation and propagation in these frames.  

 
3.1 Nonlinear seismic analyses of a 4-story RC frame structure   
 

In this subsection, nonlinear seismic analyses of 4-story RC frame are obtained according to the 

EFA and FBEA. Material and cross-section properties of the beam and column belong to the frame 

are given in Table 1 and the finite element mesh and loading case are shown in Fig. 4 for both 

approaches. ACI 318-02 (2002) code is used for the material properties of concrete and steel. 

Exponential decreasing functions are used for the softening region of tensile and compressive 

strengths of the concrete and the bilinear kinematic hardening behavior are selected for nonlinear 

behavior of the steel in the two approaches (Fig. 2). Static loads and element masses are assumed 

as distributed to the element along. Displacement values obtained due to the static loads are being 

considered as the initial condition. For the seismic effect, a target spectrum acceleration curve has 

been selected according to Z1 type soil in the Turkish Regulation on Building in Disaster Areas,  
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Table 1 Material and cross section properties of the portal frame example 

Material 

Beam 

 

 

 

 

Columns 

Concrete 

Elasticity Mod. (Ec MPa) 25742.960 25742.960 

Comp. strength (fc, MPa) 30.00 30.00 

Tensile strength (ft, MPa) 2.74 2.74 

Mass density (, ton/m
3
) 2.4 2.4 

Poisson ratio
*
  0.15 0.15 

Steel 

Elasticity Modulus (Es MPa) 210000 210000 

Yield strength (fy, MPa) 420.0 420.0 

Tangent modulus (αt) 0.05 0.05 

Mass density (, ton/m
3
) 7.951 7.951 

Poisson ratio
*
  0.30 0.30 

*
This material property is only used for EFA 

 

 

TRBDA (2007) and a synthetic earthquake acceleration data has been produced by using the 

SeismoArtif program (http://www.seismosoft.com). Maximum amplitude of this acceleration data 

has been selected as 0.3 g. The time history graph of this synthetic acceleration data is shown in 

Fig. 5. This seismic load is applied to x (horizontal) direction of the frames. Nonlinear seismic 

analyses of the frame according to the both approaches are obtained by using damping with 

stiffness ratio.  

Horizontal (x) and vertical (y) displacement time history graphs of node 5 obtained from the 

nonlinear seismic analyses of the FBEA and the EFA are shown in Fig. 6(a) and 6(b), respectively. 

Horizontal displacement time amplitude values are approximately similar until 1.20 sec . 

Furthermore, a small phase difference appears between both methods after the 1.20 sec. Absolute 

maximum displacement values for horizontal direction obtained from the EFA and the FBEA are 

36.66 mm and 26.22 mm, respectively. Displacement amplitude values of the EFA are 

approximately 40% bigger than displacement values of the FBEA in horizontal direction. Vertical 

displacement values obtained from both approaches are similar until 1.20 sec. after this time, some 

different amplitude values are obtained for both approaches as horizontal displacement. Absolute 

maximum displacement values for vertical direction obtained according to the EFA and the FBEA 

are 0.49 mm and 0.42 mm, respectively. Absolute maximum displacement value of the EFA is 

approximately 17% bigger than the FBEA value in vertical direction. If these values are compared 

with horizontal displacement values, it may be seen that the said values were very small. These  
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Fig. 5 Time history graphs of synthetic acceleration 

 

 
(a) Horizontal 

 
(b) Vertical 

Fig. 6 Displacement time history graphs of the node 5 for EFA and FBEA 
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EFA FBEA 
 

 

t=1.00 sec. 

 

t=1.00 sec. 

 

 

t=5.00 sec. 

 

 

t=5.00 sec. 
 

 
t=10.00 sec. 

 

t=10.00 sec. 

0.2 0.4 0.6 0.8 1.00.0  

Fig. 7 Accumulated tensile damage zones of the 4-story frame according to EFA and FBEA 
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response differences for between both approaches are the result of reduction of shear strength due 

to damage in EFA.  

Accumulated tensile damage cases obtained for both approaches are given in Fig. 7. Eq. (10) 

(Légeron et al. 2005) is used for the computation of tensile and compressive damages in both 

approaches. But compressive damages regions are not given due to small damaged/undamaged 

regions. Tensile damage zones for the EFA and FBEA are generally obtained at the upper parts of 

beams at the beam-column join region and at the lower parts of the mid region of the beams until 

the time=1.00 sec. Furthermore, an additional damage zone at lower parts of first-floor columns 

occurs for the both approach. Tensile damage intensities of beam obtained according to FBEA are 

some bigger than EFA. This case is clearly shown at time=5.0 sec. Damage intensities in beams 

and columns are some increased after this time. It is not seen a variety in the damage regions and 

an important increment in damage intensities until time=10.0 sec. 

Accumulated tensile damage zone shapes and regions obtained from both approaches in 

columns are more similar. Some differences in damage regions of beams are obtained due to shear 

effect. Therefore, it might be said that some differentiations may be occurred for response 

quantities, damage regions and their intensities. But both approaches may be used for the 

numerical analysis of RC frames. However, a numerical dissipation for all solutions is not seen. 

Bossak- integration with predicted-corrected method is successfully used for the nonlinear 

seismic analysis of RC frames. 

 
 

Table 2 Material and cross section properties of 8-story RC frame 

Material 

 

Beam 

 

 

Columns 

Concrete 

Elasticity Mod. (Ec MPa) 25742.960 25742.960 

Comp. strength (fc, MPa) 30.00 30.00 

Tensile strength (ft, MPa) 2.74 2.74 

Mass density (, ton/m
3
) 2.4 2.4 

Poisson ratio
*
  0.15 0.15 

Steel 

Elasticity Mod. (Es MPa) 210000 210000 

Yield strength (fy, MPa) 420.0 420.0 

Tangent modulus (αt) 0.05 0.05 

Mass density (, ton/m
3
) 7.951 7.951 

Poisson ratio
*
  0.30 0.30 

*
This material property is only used for EFA 
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Fig. 8 Finite element mesh of 8-story RC frame with soft-story 

 
 
3.2 Nonlinear dynamic analyses of an 8-story RC frame structure with soft-story 
 

In this numerical application, nonlinear seismic analyses of an 8-story RC frame structure with 

soft-story are obtained according to the both approaches. The material and section properties of the 

beam and column are given in Table 2 and the finite element mesh and loading case are also 

shown in Fig. 8. ACI 318-02 (2002) code is used for the material properties of concrete and steel. 

In this study, the same functions (Fig. 4) in the previous example for uniaxial stress-strain 

relationships for the concrete and reinforced bars in the EFA and FBEA are selected. Static loads 

and displacements are considered as the initial conditions. Element masses and loads of the beams 

are assumed to be distributed along to element length. The synthetic acceleration-time graph 

shown in Fig. 5 is used for the seismic analysis and it is the effect on the horizontal direction of the 

RC frame structure.  

Horizontal (x) and vertical (y) displacement time history graphs of node 9 obtained from 

nonlinear dynamic analyses are shown in Fig. 9. Horizontal and vertical displacement time 

amplitude values are approximately similar until time 1.05 sec. Furthermore, a small phase 

difference appears between both methods after this time, this phase difference is clearly seen after 
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approximately time=5.5 sec. for both directions. Absolute maximum displacement values for 

vertical direction obtained from the EFA and the FBEA are 130.92 mm and 104.91 mm, 

respectively. Furthermore, absolute maximum displacement values for vertical direction obtained 

from the EFA and the FBEA are 3.15 mm and 3.01 mm, respectively. Displacement amplitude 

values of the EFA in horizontal and vertical directions are approximately 25% and 5% bigger than 

displacement values of the FBEA, respectively. These response differences of between both 

approaches are due to EFA, including shear damage.  

Accumulated tensile damage cases obtained for both approaches are given in Fig. 10. But 

compressive damages regions are not given due to small damaged/undamaged regions. Tensile 

damage zones for EFA and FBEA are obtained at upper parts of the beams at beam-column join 

 

 

 

(a) Horizontal 

 

(b) Vertical 

Fig. 9 Displacement time-history graphs of node 9 for EFA and FBEA 
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EFA FBEA 
 

 
t=1.00 sec. 

 

 
t=1.00 sec. 

 

 
t=5.00 sec. 

 

 
t=5.00 sec. 

 

 
t=10.00 sec. 

 

 
t=10.00 sec. 

0.2 0.4 0.6 0.8 1.00.0  

Fig. 10 Accumulated tensile damage zones of the 8-story frame with soft-story for EFA and FBEA 
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regions and at the lower parts of the mid region of beams until the time=1.00 sec. Furthermore, an 

additional damage zone at lower parts of first-floor columns occurred for the both approaches. 

Tensile damage intensities in the beam obtained according to FBEA are some bigger than EFA. 

This case is shown clearly at time=5.0 sec. Later on, damage intensities in beams and columns 

increased. Accumulated damage zone shapes and regions obtained from both approaches are 

generally more similar. Therefore, it might be said that some differentiations that may occur for 

response quantities, damage regions and their intensities and numerical dissipation are not seen for 

all solutions; both approaches may be used for the numerical analysis of RC frames. But shear 

effect should be included for nonlinear dynamic analysis of the frames. 

 
 
4. Conclusions 
 

In this study, two beam-column elements based on the Elasto-Fiber element theory for 

reinforced concrete (RC) element have been developed and compared with each other. The first 

element is based on Elasto Fiber Approach (EFA) was initially developed for steel structures and 

this theory was applied for RC element in there. And the second element is called as 

Fiber&Bernoulli-Euler element approach (FBEA). In this element, Cubic Hermitian polynomials 

are used for obtaining stiffness matrix. The beams or columns element in both approaches are 

divided into a sub-element called the segment for obtaining element stiffness matrix. The internal 

freedoms of this segment are dynamically condensed to the external freedoms at the ends of the 

element by using a dynamic substructure technique. Thus, nonlinear dynamic analysis of high RC 

building can be obtained within short times. In addition to, external loads of the segment are 

assumed to be distributed along to element. Therefore, damages can be taken account of along to 

element and redistributions of the loading for solutions. Bossak- integration with predicted-

corrected method is used for the nonlinear seismic analysis of RC frames. For numerical 

application, seismic damage analyses for a 4-story frame and an 8-story RC frame with soft-story 

are obtained to comparisons of RC element according to both approaches. Damages evaluation and 

propagation in the frame elements are studied and response quantities from obtained both 

approaches are investigated in the detail.  

In the response quantities, absolute amplitude values of displacement of the EFA in horizontal 

and vertical directions of top nodes of both frames are generally bigger than displacement values 

of the FBEA. These response differences between both approaches are due to EFA including shear 

damage.  

Accumulated tensile damage regions obtained for both approaches are observed at upper parts 

of the beams at the beam-column join regions and at the lower parts of the mid region of the 

beams; an additional damage zone at lower parts of first-floor columns occurs for the both 

approaches. Damage intensities in the beam especially obtained from FBEA are some bigger than 

EFA. These differences between both approaches are due to EFA including shear damage. 

Accumulated damage zone shapes and regions obtained from both approaches are generally more 

similar. But EFA must be preferred for more realistic results.  

Therefore, it might be said that some differentiations may occur for response quantities, 

damage regions and their intensities. Numerical dissipation of all solutions is not seen and Bossak-

 integration with predicted-corrected method can be used for the nonlinear seismic analysis of 

RC frames 
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Appendix 
 

Time marching algorithm 

 

The algorithm applied to Eq. (26) is as follows 

1. Compute integration parameters 

21
t

1
A


 ;          

t
A2




                                                  (30) 

2.  
ttSu


,  

ttSv


 and  
ttSa


are known; set global iteration counter, i=1. 

3. Predict response at t+Δt 

   
ttS

i

ttS u~u
 

                                                          (31a) 

   
ttS

i

ttS v~v
 


                                                        

 (31b) 

   0a
i

ttS 


                                                             (31c) 

4. Set element counter, nel=1 

5. Set element iteration counter, j=1.  

Subtract incremental displacement vector of external joints from global displacement vectors 

    i

ttS
j

ttE uSUBu
 


                                                     (32) 

6. Compute the element stiffness, mass, damping matrices and element external and internal force 

vectors, 

7. Compute iterative and incremental displacement vectors of internal joints 

             i

ttE
j

ttIE
1j

ttres,I
1j

ttgr,I
j

ttII
1j

ttI uKFFKu  















                  
 (33.a) 

      1j

ttI
j

ttI
1j

ttI uuu







                                                  (33.b) 

8. Check for convergence of iteration process   1j

ttIu


  (Euclidian norm of the unbalanced 

internal displacement vector at time step t+Δt and element iteration j) using an element 

displacement tolerance (Tolelem). 

a) If     Tolelemuu

1j

1m

m

ttI
1j

ttI 








   , convergence is achieved.  

Set 

    1j

ttItI uu



  ,     1j

ttItI vv



   and     1j

ttItI aa



                            (34a) 
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          j
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ttEE
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j

ttII

1j

ttII
j

ttEI

j

ttIE

1j

ttII
j

ttEI

j

ttIE

1j

ttII
j

ttEI
j

ttEE
j

ttF,EE

KKMKK

KKM

MKKMM



































                (34d) 

 

          

      

           j

ttIE

1j

ttII
j

ttII

1j

ttII
j

ttEI

j

ttIE

1j

ttII
j

ttEI

j

ttIE

1j

ttII
j

ttEI
j

ttEE
j

ttF,EE

KKCKC

KKC

CKKCC



































                   (34e) 

       

       



















nelem

1k

j

ttF,ES

nelem

1k

j

ttF,EES

nelem

1k

j

ttF,EES

nelem

1k

j

ttF,EES

FF,MM

CC,KK





                              (34f) 

b) If global convergence is not achieved; set j=j+1 and return to step 5. 

9. Compute the effective dynamic stiffness matrix and the vector of unbalanced forces 

         i
ttS

i

ttS2S1B

i

ttS KCAA1K̂





 M                                  (35.a) 

          

           1i

ttS
i

ttS

i

tSB

1i

ttSBS

stat,S

1i

ttres,Stgr,SBttSB
1i

ttS

vCaa1

FFFF1F























 











M

                    (35.b) 

where   i
ttSK   and   1i

ttres,SF



  are the tangent stiffness matrix and the incremental restoring force 

vector of external joints on the global axis of the structure, respectively, which are assembled from 

the element contributions. 

10. Solve for incremental displacements in the global axis 

       1i

ttS
1i

ttS

i

ttS FuK̂










                                                     (36) 

11. Update displacement, velocity and acceleration vectors 

      1i

ttS
i

ttS
1i

ttS uuu










                                   (37.a) 
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        
ttS

1i

ttS2ttS
1i

ttS u~uAv~v
 










                                   
 (37.b) 

      
ttS

i

ttS1
1i

ttS u~uAa
 






                                          
 (37.c) 

12. Check for convergence of the iteration process   1i

ttSF



  (Euclidian norm of the unbalanced 

force vector at time step tt    and global iteration i) using a force tolerance (Tolglo).  

a) If     lolgToFF

1i

1n

n

ttE
1i

ttE 








   , convergence is achieved.  

Set      1i

ttStS uu





 ,              1i

ttStS vv





     and            1i

ttStS aa





  

b) If global convergence is not achieved; set i=i+1 and return to step 4. 

13. Set t=t+t and return step to 2.  
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