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Abstract.  In this paper, two approximate analytical methods have been applied to forced nonlinear 
vibration problems to assess a high accurate analytical solution. Variational Iteration Method (VIM) and 
Perturbation Method (PM) are proposed and their applications are presented. The main objective of this 
paper is to introduce an alternative method, which do not require small parameters and avoid linearization 
and physically unrealistic assumptions. Some patterns are illustrated and compared with numerical solutions 
to show their accuracy. The results show the proposed methods are very efficient and simple and also very 
accurate for solving nonlinear vibration equations. 
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1. Introduction 

 

Generally, nonlinear partial differential equations which occur in  physical phenomena are often 

too complicated to be solved exactly. And also if they have exact solutions, the required 

calculations may be too complicated to be practical, or it might be difficult to interpret the 

outcome. Recently, some promising approximate analytical solutions are proposed, such as: 

variational iteration method (Wazwaz 2007, He 1999b), homotopy perturbation method (He 1999c, 

Shou 2009) energy balance method (Ganji et al. 2009), max-min approach (Zeng 2009), amplitude 

frequency-formulation (Ren et al. 2011), parameter expansion method (Kaya et al. 2009). 

Variational approach (He 2007, Shahidi et al. 2011) and other methods (Bayat et al. 2011a, b, c, d, 

e, f, 2012a, b, 2013a, b, c, 2014a, b, c, Pakar et al. 2011, 2012a, b, 2013a, b, Filobello-Nino et al. 

2012, Behiry  et al. 2007, Qian et al. 2012, Javanmard et al. 2013).  

VIM is to construct correction functionals using general Lagrange multipliers identified 

optimally via the variational theory, and the initial approximations can be freely chosen with 

unknown constants. This method is the most effective and convenient one for both linear and 

nonlinear equations. This method has been shown to effectively, easily and accurately solve a large 

class of linear and nonlinear problems with components converging rapidly to accurate solutions.  
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(a) 

 
 

(b) 

Fig. 1 (a) Schematic view of a un damped structure under harmonic load, (b) The dynamic model of 

a un damped structure under harmonic load 

         

 
(a) 

 
(b) 

Fig. 2 (a) Hard spring stiffness nonlinear behavior, (b) Soft spring stiffness nonlinear behavior 

 

 

VIM was first proposed by He (1999b). The aim of this work is to employ VIM and PM to obtain 

the analytic solutions of strongly nonlinear oscillators equations, which arises in a number of 

different fields in natural science. 

The Fig. 1 shows the analytical model of a structure under harmonic load. Fig. 2 shows the 

spring’s behavior. In the present paper, we consider a nonlinear oscillator in the form (William et 

al. 2000) 

              
 2 3

0 cosnu u u F t       (1) 

With the initial condition: 

             
(0) , (0) 0u A u    (2) 

          

 

2. Basic idea of Variational Iteration Method (VIM) 
 

To clarify the basic ideas of VIM, we consider the following differential equation 
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               ( )Lu Nu g t   (3) 

Where L is a linear operator, N a nonlinear operator and g(t) an inhomogeneous term. 

According to VIM, we can write down a correction functional as follows 

                 
 1

0
( ) ( ) ( ) ( ) ( )

t

n n n nu t u t Lu Nu g d          (4) 

Where 𝜆 is a general Lagrange multiplier which can be identified optimally via the variational 

theory (He 2006).The subscript n indicates the nth approximation and nu  is considered as a 

restricted variation (He 2006), i.e., 0nu  . 

 

 

3. Basic idea of Runge-Kutta’s algorithm  
 

For such a boundary value problem given by boundary condition, some numerical methods 

have been developed. Here we apply the fourth-order RK algorithm to solve governing equations 

subject to the given boundary conditions. RK iterative formulae for the second-order differential 

equations are 

          

 

 

1 2( 1)

( 1) 1 3

3 4

2 ,
6

2 2 ,
6

i i

i i i

u u

t
u u t u h h

h h h

h

t
h




 

 


  

     
 



   (5) 

Where t is the increment of the time and h1, h2, h3 and h4 are determined from the following 

formulas 

           

 1

2 1

2

3 1 2

2

4 2 3
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, , ,
2 2 2

1
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2 2 4 2

1
, , , .
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h f t u u

t t t
h f t u u h

t t t
h f t u u t h u h

h f t t u tu t h u t h



   
    

 

   
      

 

 
         

 

 (6) 

The numerical solution starts from the boundary at the initial time, where the first value of the 

displacement function and its first-order derivative is determined from the initial conditions. Then, 

with a small time increment [ t ], the displacement function and its first-order derivative at the 

new position can be obtained using (5). This process continues to the end of time. 

 

 

4. Application  
 

In this section, VIM has been applied to the mentioned problem. 

 

4.1 Application of variational iteration method 
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Supposing that the angular frequency of Eq. (1) is ω, we have the following linearized equation 

            
2 0u u    (7) 

So we can rewrite Eq. (1) in the form 

             
2 ( ) 0u u g u     (8) 

Where    2 2 3

0( ) cosng u u u F t        

Applying the variational iteration method, we can construct the following functional equation 

           
 2

1
0

( ) ( ) ( ) ( ) ( ( ))
t

n n n n nu t u t u u g u d     
     (9) 

where g is considered as a restricted variation, i.e., 0g  . Calculating variation with the respect 

to un, and noting that ( ) 0ng u  , we have the following stationary conditions 

            

2( ) ( ) 0

( ) 0

1 ( ) 0

t

t





    

 

 





  



 

 (10) 

The lagrangian multiplier can there be identified as 

              

1
sin ( )t  


   (11) 

Substituting the identified multiplier into Eq. (9) results in the following iteration formula 

             
 

t

nnn dtFuu''uttutu
0

0
32

1 ))cos()()()()(sin(
1

)()( 


 (12) 

Assuming its initial approximate solution has the form 

             0 ( ) cos( )u t A t  (13) 

and substituting Eq. (13) into Eq. (1) leads to the following residual 

                
2 2 3 3

0 0( ) cos( ) cos( ) cos ( ) cos( )nR t A t A t A t F t           (14) 

By the formulation (12), we have 

            
 1 0

0

1
( ) cos( ) ( )sin

t

u t A t R t d   


    (15) 

In order to ensure that no secular terms appear in u1, resonance must be avoided. To do so, the 

coefficient of cos( )t in Eq. (14) requires to be zero 

            

 2 3

04 3 41

2

nA A A F

A

 


 
  (16) 

Therefore 
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 2 3

0

0

4 3 41
( ) cos

2

nA A A F
u t A t

A

   
 
  
 

 (17) 

We obtain the following approximate period: 

             

 2 3

0

2

4 3 41

2

n

T
A A A F

A



 


 
 

(18) 

So, from Eq. (15), and Eq. (16) we have the following first-order approximate solution 

       

 
 2 3

042 3

0

1 2 3

0

4 3 4
( 1 )4 3 41 1

( ) cos
2 9 4 3 4

n

n

n

A A A F
A tA A A F

Au t A t
A A A F

 
 

 

 
    
  
    
 

 (19) 

And so on, in the same way the rest of the components of the iteration formula can be obtained. 

 

4.2 Application of Perturbation Method (PM) 
 

To solve Eq. (1) by means of Perturbation Method, we consider the following process. First we 

change the Eq. (1) to following form 

             
 2 3

0 cos 0nu u u F t        (20) 

We can assume that the solution of Eq. (22) can be written as a power series in u, as following 

            
2 3

0 1 2 3( ) ( ) ( ) ( ) ( ) ...u t u t u t u t u t        (21) 

Substituting Eq. (21) in to Eq. (20) and rearranging the resultant equation based on powers of 

μ-terms, one has 

             
 0 2

0 0 0: cosnu u F t      (22) 

            
1 2 3

1 1 0: 0nu u u     (23) 

           
2 2 2

2 2 0 1: 3 0nu u u u      (24) 

           
3 2 2 2

3 3 0 2 0 1: 3 3 0nu u u u u u      (25) 

u(t) may be written as follows by solving the Eq. (22) and Eq. (23),With the initial condition 

u(0)=A=1 

           

 
   

2 2

0 0
0 2 2 2 2

cos( ) cos( )
( )

n n

n n

t F F t
u t

   

   

  
  

  
 (26) 
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And we have 

 

 4 3 2 2 3 4 6 4 2 10 12

0 0 0

4 2 4 6 2 2 2 2 6 2 8 8 2

0 0 0 0 0

4 6 8 2 8 4 10

1

2 6 3

0 0

6 6 8

cos ( )
2205 567 2298 590 45

32

1098 2160 1080 771 1629

186 225 1955 590 153

2820 195
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) n

n n n n n

n n n n n

n n n n

n n

t
F F F

F F F F F

F F F

u t
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        

         

       

   
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3 1
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8 3

3 1
( - ) ( )( ) cos (
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3

t
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n d zl

t F t
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F t

F F

           
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 
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
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 3 )n t  
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0 0
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3 1 1 1
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 

 

 

 

 

 

 

 

 

 

 

 

 

(27) 

In the same manner, the rest of components were obtained using the Maple package. 

According to the Perturbation, we can conclude that 

                0 1( ) ( ) ( ) ...u t u t u t    (28) 

 
 

5. Results and discussions 
 

In order to assess the accuracy of the variational iteration method and perturbation method, the 
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results are compared with the numerical solution using Runge-Kutta’s algorithm. 

The Table 1 is the point value of the problem per different time in comparison of numerical 

solution. It can be seen from the table that the results are very close together in a period of motion. 

Figs. 3 to 5 are the time history and phase plan of the problem for different cases. It is obvious 

that the motion of the problem is periodic and it is a function of initial condition.  

Fig. 6 is a sensitive analysis of the problem in which we have considered the amplitude, μ and 

frequency. By increasing the amplitude and μ, the frequency of the system is increased and its top 

point is when the amplitude and μ are in their maximum value. Perturbation method and 

variational iteration method are compared with numerical solution and they have an excellent 

agreement. The variational iteration method is able to solve high nonlinear problem is we choose 

or obtain the weight factor or the general Lagrange multiplier 𝜆� correctly. 

 

 
Table1 Comparison of time history response of VIM, PM, RKM 

Time VIM PM RKM 

0 1 1 1 

0.2 0.8428 0.8446 0.8463 

0.4 0.4206 0.4218 0.4227 

0.6 -0.1338 -0.1335 -0.1337 

0.8 -0.6461 -0.6468 -0.6481 

1 -0.9554 -0.9570 -0.9589 

1.2 -0.9642 -0.9664 -0.9684 

1.4 -0.6699 -0.6723 -0.6736 

1.6 -0.1650 -0.1669 -0.1672 

1.8 0.3918 0.3909 0.3917 

2 0.8254 0.8259 0.8276 

2.2 0.9995 1.0014 1.0034 

 

 

(a) 
 

(b) 

Fig. 3 The comparison of the variational iteration solution with the perturbation solution and 

numerical solution, (a) time history response (b) phase plan for F0=1, μ=0.1, ωn=3, A=0.5 
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(a) 

 
(b) 

Fig. 4 The comparison of the variational iteration solution with the perturbation solution and numerical 

solution (a) time history response (b) phase plan for F0=1, μ=0.1, ωn=3, A=1 

 

 
(a) 

 
(b) 

Fig. 5 The comparison of the variational iteration solution with the perturbation solution and numerical 

solution (a) time history response (b) phase plan for F0=1, μ=0.1, ωn=3, A=5 

       

 
Fig. 6 Sensitivity analysis of frequency 
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6. Conclusions 
 

In this paper, we studied forced nonlinear vibration problem through variational iterational 

method (VIM) and perturbation method. Variational iteration method which does not require small 

parameters, whereas the perturbation technique dose. The result shows that the variational 

iterational method can give much better analytical approximation for nonlinear oscillators 

equations than perturbation methods solutions. This mainly because this technique is base on 

general weighted residual methods. The weight factor or the general Lagrange multiplier 𝜆�can be 

determinate by variational theory; the more exact 𝜆�is, the more it leads to rapid convergence to 

exact and numerical solutions. The variational iterational method could be a strong mathematical 

tool for solving high nonlinear equations. 
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