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Abstract.  The intentional buckling design of micro-films has various potential applications in engineering. 
The buckling amplitude and critical strain of micro-films are the crucial parameters for the buckling design. 
In the reported studies, the film parameters were regarded as deterministic. However, the geometrical and 
physical parameters uncertainty of micro-films due to manufacturing becomes prominent and needs to be 
considered. In the present paper, the probabilistic nonlinear buckling analysis of micro-films with uncertain 
parameters is proposed for design accuracy and reliability. The nonlinear differential equation and its 
asymptotic solution for the buckling micro-film with nominal parameters are firstly established. The mean 
values, standard deviations and variation coefficients of the buckling amplitude and critical strain are 
calculated by using the probability densities of uncertain parameters such as the film span length, thickness, 
elastic modulus and compressive force, to reveal the effects of the film parameter uncertainty on the 
buckling deformation. The results obtained illustrate the probabilistic relation between buckling deformation 
and uncertain parameters, and are useful for accurate and reliable buckling design in terms of probability. 
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1. Introduction 

 

The buckling behavior has been applied to micro-structure design and fabrication recently 

(Bowden et al. 1998), for example, the stretchable electronic circuit system (Lacour et al. 2003, 

Khang et al. 2006, Xiao et al. 2008). The stretchable electric structures have various potential 

applications such as flexible displays, electronic eye camera, controllable skin sensors and 

structural health monitoring devices (Ko et al. 2008, Lumelsky et al. 2001, Nathan et al. 2000). 

The mechanical properties of stretchable electric structures such as micro-films have been 

presented (Bowden et al. 1998, Lacour et al. 2003, Shaat et al. 2012), and the structural 

deformation has been studied based on the buckling analysis of beam models (Sridhar et al. 2002, 

Audoly and Boudaoud 2008, Yu and Sun 2012). The buckling designed film has much more elastic 
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stretchable capacity than the associated planar film. In general, an electric micro-film such as thin 

patch is bonded partially, for example, only at two opposite boundaries to a pre-elongated 

dielectric elastomeric substrate such as rubber polymer, and the other part of the micro-film is not 

bonded to the substrate. Then release the pre-tension deformation of the substrate so that the 

micro-film is compressed. A certain large pre-tension strain for the substrate will induce the micro-

film to buckle out of the substrate plane (as shown in Fig. 1). The substrate pre-tension strain, 

buckling amplitude and critical strain of micro-films are important parameters for the buckling 

design. 

Several buckling analysis of micro-films on substrates has been presented (Sridhar et al. 2002, 

Audoly and Boudaoud 2008, Jiang et al. 2007, Sato et al. 2008), and buckling amplitudes and 

critical stresses/strains have been calculated. A micro-film was modeled as a clamped-clamped 

elastic beam and analyzed according to the buckling or instability of linearly elastic beam axially 

compressed. In many studies, the buckled film shape was described approximately by 

trigonometric functions and the buckled film amplitude was obtained by minimizing total strain 

energy or simplified bending equation. In some study, the quadratic nonlinear strain was 

incorporated in the tension-compression energy (Song et al. 2009, Timoshenko and Gere 1985). 

The critical strain was constant and independent on the buckling deformation, and the buckling 

amplitude obtained was represented by the pre-tension strain for small buckling deformation. In 

fact, the critical strain of the buckling film induced by the released pre-tension strain of the elastic 

substrate and the buckled film shape and amplitude are coupled each other for the nonlinear 

buckling problem. As the pre-tension strain increases, the dependence of the buckled film shape on 

the axial compressive force or critical strain enhances. In other words, the coupling between the 

mechanical deformation and critical strain increases with the pre-tension strain. Recently, the 

asymptotic analysis based on the rigorous nonlinear differential equation for buckled micro-film 

deformation has been proposed (Zhao et al. 2010, Ying et al. 2012). However, for the micro-films, 

the effects of geometrical and physical parameters uncertainty in manufacturing on the buckling 

analysis and design become prominent and cannot be neglected (Ohlidal et al. 2011, Lal et al. 

2012, Cavdar 2013). Therefore, the probabilistic nonlinear buckling analysis of micro-films with 

uncertain parameters is necessary and useful for the buckled micro-film design and manufacture. 

In the present paper, the effects of parameter uncertainty on the nonlinear micro-film buckling 

are taken into account. Firstly, for a buckled micro-film with nominal parameters, the nonlinear 

differential equation for buckling deformation is derived based on the elastic stress-strain relation 

and forces equilibrium. The asymptotic solution to the nonlinear equation is given to determine the 

nonlinear buckled amplitude and critical strain, in which the first and second approximate 

solutions are obtained respectively by solving the corresponding linear equation and applying the 

least-square method. Then, the film parameters such as span length, thickness, elastic modulus and 

compressive force are regarded as random variables. The mean values, standard deviations and 

variation coefficients of the buckling amplitude and critical strain are estimated by using the 

probability densities of uncertain parameters. Finally, numerical results are given to show the 

effects of the film parameters uncertainty on the buckling deformation such as buckling amplitude 

and critical strain. 

 

 

2. Nonlinear buckling equations for micro-film with nominal parameters 
 

An elastic planar micro-film with nominal parameters has the original length of lor. Under  
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Fig. 1 Buckled micro-films on elastomeric substrate (Xiao et al. 2008) 

 
 

 

 

 

 

 

 

 

 

Fig. 2 Buckled film as a flexual clamped-clamped beam 

 

 

compressive forces along length due to releasing the substrate pre-tension deformation, the film is 

buckled with span l, as shown in Fig. 2. The so-called pre-tension strain for the buckled film is 

defined as 

or

or

b
l

ll 
                                  (1) 

The buckled film includes compression and bending deformations. If only the bending 

deformation is returned, the film with only compression has length l0. Then the compressive strain 

of the buckled film is 
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P

l
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where Pr is the compressive force in buckling state, E is the elastic modulus and EA is the effective 

compressive rigidity. The change of distance between two ends of the film due to only bending is 
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where v(x) is the buckling deformation or deflection and superscript “” denotes the derivative 

operation with respect to x. Let the x-direction displacement be u(x). The nonlinear strain for the 

buckled thin film is obtained as (Timoshenko and Gere 1985) 

y 

x Pr Pr 
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l 
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where (x) is the rotation angle. 

The axial force and bending moment on each cross section of the buckled film can be calculated 

by using Eq. (4) and the stress-strain relation. Then the differential equations for displacements u 

and v can be derived based on the forces equilibrium and moments equilibrium of the film. 

Eliminating displacement u yields the nonlinear differential equation for deflection v. This 

equation with cubic nonlinearity in the dimensionless form is 
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where superscript “” denotes the derivative operation with respect to z, and 
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in which EI is the effective bending rigidity. The boundary conditions for the buckled film with 

two ends fixed on the substrate corresponding to Eq. (5) are 
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Governing Eq. (5) and boundary conditions in Eq. (7) constitute a nonlinear buckling problem of 

the thin film. In small deflection, Eq. (5) can be reduced to the classical buckling equation as given 

in the classical mechanics of materials. 

 

 

3. Buckling amplitude and critical strain for micro-film with nominal parameters 
 

The asymptotic technique in dynamics can be applied to the film buckling problem to 

determine the deflection w (Ying et al. 2012). The asymptotic solution to Eq. (5) is expressed as 

 10 www                                 (8) 

where the first approximate solution w0 and the second approximate solution w1 are, respectively 
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in which B, B1 and B2 are constants. The expressions of w0 and w1 are determined by the 

corresponding linear differential equations. According to the least-square method, constants B1 and 

B2 satisfy the algebraic equations 
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The substitution of expressions (8)-(10) into Eq. (3) yields the algebraic equation for constants B 
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Based on Eqs. (11), (12) and (14), constants B, B1, B2 and then the buckled film deflection w 

depend on the compressive force Pr (by 0) and pre-tension strain b. The buckled film amplitude 

dependent on b and 0 or Pr is 

 21)0( BBBw                           (15) 

The buckling critical strain is obtained by the existence of non-zero perturbation to Eq. (5) as 
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which is expressed through the buckled film amplitude or constants B, B1 and B2. In small 

deflection, only the first approximate solution w0 is meaningful so that the critical strain in Eq. 

(16) is a constant (4π
2
/λ

2
) which is consistent with the classical results (Song et al. 2009, 

Timoshenko and Gere 1985). 

 

 

4. Probabilistic analysis of buckled micro-film deformation 
 

In practice, the geometrical and physical parameters of the micro-film are uncertain due to 

manufacturing. Let the film span length (l), thickness (h), elastic modulus (E) and compressive 

force (Pb=Pr/b, b is the film width) be random variables with probability densities p(l), p(h), p(E) 

and p(Pb), respectively. These random variables are independent of each other generally (Lal et al. 

2012). Then the mean values and mean square values of the buckled amplitude and critical strain 

are expressed as 
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where E[.] denotes the expectation operation. The standard deviations of the buckling amplitude 

and critical strain can be estimated further by using Eqs. (17)-(20). The influences of the parameter 

uncertainty on the buckling amplitude and critical strain increase with the standard deviations. In 

the deterministic case, mean square value (18) or (20) is equal to the square of mean value (17) or 

(19), and its standard deviation is equal to zero. For the random parameters with the Gaussian 

distribution, the probability densities are 

]
2

)(
exp[

π2

1
)(

2

2

l

l

l

l
lp








                         (21) 

]
2

)(
exp[

π2

1
)(

2

2

h

h

h

h
hp








                         (22) 

]
2

)(
exp[

π2

1
)(

2

2

E

E

E

E
Ep








                        (23) 

]
2

)(
exp[

π2

1
)(

2

2

Pb

Pbb

Pb

b

P
Pp








                       (24) 

where exp[.] denotes the exponential function, l, h, E, Pb are the mean values and l, h, E, 

Pb are the standard deviations of the film span length, thickness, elastic modulus and compressive 

force, respectively. The mean values and standard deviations of the buckling amplitude and critical 

strain (17)-(20) can be calculated by using the probability densities of uncertain parameters (21)- 
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(a) Mean value (wA) (b) Standard deviation (wA) 

Fig. 3 Mean value and standard deviation of the buckled amplitude varying with the ratio (l/l)       

of standard deviation to mean value of the film span length (l) 
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(a) Mean value (c) (b) Standard deviation (c). 

Fig. 4 Mean value and standard deviation of the buckling critical strain varying with the ratio (l/l)    

of standard deviation to mean value of the film span length (l) 
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(a) Mean value (wA) (b) Standard deviation (wA) 

Fig. 5 Mean value and standard deviation of the buckled amplitude varying with the ratio (h/h) of 

standard deviation to mean value of the film thickness (h) 

 

 

(24) to determine the influence of parameter uncertainty on the film buckling. 

Consider a micro-film with nominal length lor=20m, width b=4m, thickness h=50nm and 

elastic modulus E=200GPa. Let the buckled film span length l=16m. The buckled deflection, 

amplitude and critical strain of the film with nominal parameters have been given in the reference 

(Ying et al. 2012). For the micro-film with uncertain parameters, the film span length (l), thickness 

(h), elastic modulus (E) and compressive force (Pb) are regarded as random variables with Gaussian 

probability densities (21)-(24), respectively. Numerical results on the statistics of the buckled film 

amplitude and critical strain are shown in Figs. 3-10. Figs. (a) and (b) depict the mean values and 

standard deviations, respectively. The insets in Figs. (a) plot the mean values normalized by the 

nominal values, while those in Figs. (b) plot the standard deviations normalized by the mean values. 
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(a) Mean value (c) (b) Standard deviation (c) 

Fig. 6 Mean value and standard deviation of the buckling critical strain varying with the ratio (h/h)   

of standard deviation to mean value of the film thickness (h) 

 

 

As the ratio of standard deviation to mean value, i.e., the variation coefficient, of the buckled 

film span length (l) increases, Fig. 3(a) illustrates the nonlinear reduction of the mean buckling 

amplitude while Fig. 4(a) illustrates the nonlinear heightening of the mean critical strain. Figs. 3(b) 

and 4(b) show respectively the standard deviations of the buckling amplitude and critical strain 

linearly increasing with the variation coefficient of the span length. From the insets of Figs. 3(b) 

and 4(b), it can be concluded that the dispersion of the buckling amplitude and critical strain is 

more prominent than that of the span length. Fig. 5 illustrates the relatively small change of the 

mean value and standard deviation of the buckling amplitude compared to the variation coefficient 

of the film thickness (h). Fig. 6 shows the mean value and standard deviation of the critical strain 

varying with the variation coefficient of the film thickness similar to Fig. 4. The large dispersion of 

the critical strain induced by the thickness uncertainty is observed from the inset. As the variation 

coefficient of the elastic modulus (E) increases, Fig. 7(a) illustrates the small decrease of the mean 

buckling amplitude while Fig. 8(a) illustrates the small increase of the mean critical strain. Figs. 

7(b) and 8(b) show respectively the standard deviations of the buckling amplitude and critical 

strain linearly increasing with the variation coefficient of the modulus. Fig. 9 illustrates the 

influence of the compressive force (Pb) uncertainty similar to the modulus uncertainty on the 

buckling amplitude. Fig. 10 shows the influences of the compressive force uncertainty on the 

critical strain. It is observed from Fig. 10(a) that the mean critical strain almost keeps constant for 

the uncertain compressive force with the ratio Pb/Pb <0.04, or it has the relative stability. Fig. 

10(b) illustrates the significant influence of the compressive force uncertainty on the dispersion of 

the critical strain. To summarize, the uncertainty of the span length, elastic modulus and the 

compressive force has remarkable influences on the mean value and standard deviation of the 

buckling amplitude while the influence of the film thickness can be omitted. The uncertainty of the 

compressive force almost has not the influence on the mean critical strain, while the uncertainty of 

the four parameters induces the prominent dispersion of the critical strain. 

The asymptotic technique establishes the accurate procedure to determine the buckling shape 

and the critical strain, while the probabilistic parametric sensitivity analysis provides the 

evaluation of the influence of the crucial parameters on the dispersion of buckling deformation. On  
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(a) Mean value (wA) (b) Standard deviation (wA) 

Fig. 7 Mean value and standard deviation of the buckled amplitude varying with the ratio (E/E)          

of standard deviation to mean value of the elastic modulus (E) 
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(a) Mean value (c) (b) Standard deviation (c) 

Fig. 8 Mean value and standard deviation of the buckling critical strain varying with the ratio (E/E)  

of standard deviation to mean value of the elastic modulus (E) 

 

 

the basis of the above analysis, the probabilistic design method can be directly established for the 

buckling deformation problem. For the buckling strength problem, the axial strain of the thin film 

includes the compressive strain and the bending strain, and the maximal strain can be derived 

through the asymptotic solution in Eq. (8) and the critical strain in Eq. (16) as 

     2 2 2

max 1 2 1 2 1 22π 4 9 25 4π 9 25B B B B B B B B B               (25) 

The statistics of the maximal strain induced by the uncertain parameters are evaluated through 

the probabilistic analysis similar to the above procedure. And then, the probabilistic reliability 

method can be adopted to select the film parameters to guarantee the strength requirement. The  
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(a) Mean value (wA) (b) Standard deviation (wA) 

Fig. 9 Mean value and standard deviation of the buckled amplitude varying with the ratio        

(Pb/Pb) of standard deviation to mean value of the compressive force (Pb) 
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(a) Mean value (c) (b) Standard deviation (c) 

Fig. 10 Mean value and standard deviation of the buckling critical strain varying with the ratio              

(Pb/Pb) of standard deviation to mean value of the compressive force (Pb) 

 

 

proposed design method for micro-films can be regarded as the probabilistic version of the 

classical design based on the strength of material (Song et al 2009). 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

5. Conclusions 
 

The probabilistic nonlinear buckling analysis of micro-films with uncertain parameters has 

been developed. The nonlinear differential equation and its asymptotic solution for the buckling 

deformation of a micro-film with nominal parameters have been given. The dependences of the 
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Probabilistic analysis of micro-film buckling with parametric uncertainty 

buckled film shape and amplitude on pre-tension strain and the critical strain on buckling 

amplitude have been determined analytically. The influences of the uncertainty of the film 

parameters such as span length, thickness, elastic modulus and compressive force on the buckling 

amplitude and critical strain have been estimated based on the probabilistic analysis and illustrated 

with numerical results in terms of mean values, standard deviations and variation coefficients. The 

analysis and results obtained are useful for accurate buckling film design in terms of probability, 

and it can be regarded as a useful supplement to the classical design method based on the strength 

of material. Moreover, the proposed analysis method is applicable to the micro-film buckling for 

various boundary conditions under small and middling pre-strains. 
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