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Abstract.  Perfectly matched layers are employed in time harmonic analysis of dam-foundation systems. 
The Lysmer boundary condition at the truncation boundary of the PML region has been incorporated in the 
formulation of the dam-foundation FE model (including PML). The PML medium is defined in a way that 
the formulation of the system can be transformed into time domain. Numerical experiments show that 
applying Lysmer boundary conditions at the truncation boundary of the PML area reduces the computational 
cost and make the PML approach a more efficient technique for the analysis of dam-foundation systems. 
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1. Introduction 

 

The reliable simulation of processes in which wave propagations are involved is an interesting 

subject for physicists and engineers. Particularly, in analyzing dam-foundation systems, one has to 

deal with elastic waves propagating in a semi-infinite medium (Fig. 1). In numerical models of 

such systems, the near-field part of the foundation adjacent to the dam body (with probable 

nonlinear behavior) is often discretized by commonly used finite elements. Meanwhile, through 

decades of investigations, many approaches such as Lysmer boundary conditions (Lysmer and 

Kohlemeyer 1963), hyperelements (Lotfi et al. 1987), infinite elements (Kim and Yun 2000, Yun et 

al. 2000), rational boundary conditions (Feltrin 1997), Dirichlet to Neuman mappings (Givoli 

1999), the boundary element method (Yazdchi et al. 1999), the scaled boundary element method 

(Song and Wolf 2000), discontinuous Galerkin methods (Park and Tassoulas 2000, Park and Antin 

2004) and high order non-reflecting boundary conditions (Givoli 2004) have been presented for 

taking into account the propagation of elastic waves towards infinity in the analysis. Nevertheless, 

researches still continue in order to find methods for applying the radiation condition as 

completely and efficiently as possible. The present study is focused on utilizing perfectly matched 

layers in the time harmonic dynamic analysis of dam-foundation rock systems. 

A perfectly matched layer is an absorbing layer which can absorb propagating waves perfectly 

if it is defined properly. Berenger (1 9 9 4 )  introduced perfectly matched layers for solving  
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Fig. 1  A typical dam-foundation rock system containing the dam body, the near-field part of the 

foundation, the semi-infinite foundation rock 

 

 

unbounded electromagnetic problems with the finite-difference time-domain method. Petropoulos 

(1998) investigated the effect of truncating the PML medium by local boundary conditions to solve 

unbounded electromagnetic problems. Hasting (1996) seems to be the first researcher who used 

perfectly matched layers in problems including elastic waves. He split potential functions 

corresponding to primary and secondary waves and utilized a finite-difference time-domain 

(FDTD) approach to solve the resultant equations in 2D domains. Chew et al. (1997) introduced a 

change of variables to transform Maxwell’s equations in PML media into ordinary-looking 

Maxwell’s equations in a complex coordinate system. They indicated that many existing closed-

form solutions can be easily mapped into solutions in these complex coordinate systems. Chew 

and Liu (1996) employed complex coordinates to define perfectly matched layers and showed that 

the resultant medium could absorb propagating waves. Using complex coordinates, Liu (1999) 

developed perfectly matched layers (PML) in cylindrical and spherical coordinates in time domain. 

Issac Harari et al. (2000) presented a finite element formulation to use PML in time harmonic 

analysis of acoustic waves in exterior domains. Collino and Tsogka (2001) indicated how to 

establish a PML model using the split-field approach for a general hyperbolic system. They 

implemented their theory in the linear elastodynamic problem in an anisotropic medium. Zeng et 

al. (2001) extended the PML approach to truncate unbounded poroelastic media for numerical 

solutions using a finite-difference method. They adopted the method of complex coordinates to 

formulate PMLs for poroelastic media. Zheng and Huang (2002) developed anisotropic PMLs for 

elastic waves in Cartesian, cylindrical and spherical coordinates. Their formulation avoided field 

splitting and could be used in the FEM directly, and in the FDTD method too. Becache et al. 

(2003) investigated well-posedness and stability of using perfectly matched layers for anisotropic 

elastic waves from a theoretical point of view. Basu and Chopra (2003) defined perfectly matched 

layers by employing complex coordinates to solve time harmonic elastodynamic equations by 

finite element implementation. Furthermore, they transformed the frequency domain equations  
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Fig. 2 Dam-foundation FE model, the dam body and the near-field part of the foundation discretized 

by solid finite elements, the far-field part of the foundation rock is discretized by PML finite elements 

 

 

into time domain and presented an approach to solve the resultant equations (Basu and Chopra 

2004, Basu 2004). Khazaee and Lotfi employed perfectly matched layers in the dynamic analysis 

of dam-reservoir systems. They introduced proper boundary conditions into the formulation of the 

PML area in the reservoir. Their results show that the PML approach is a very efficient method for 

the time harmonic and transient analysis of dam-reservoir systems if boundary conditions of the 

PML domain are included (Khazaee and Lotfi 2014). Katsibas and Antonopoulos (2004) 

implemented a FDTD-PML technique to solve stress-velocity acoustic equations. They derived 

general PML equations governing both lossless and lossy media. Moreover, they used the stretched 

coordinates idea to introduce further dissipation into the PML area. Appelo and Kreiss (2006) 

utilized the formulation of a modal PML to the equations of linear elasticity. They indicated that 

their PML model has better stability properties than previous split-field models. Harari and 

Albocher (2006) conducted a parametric study on PML used in time harmonic analysis of 

elastodynamics in an unbounded region by the finite element method and presented some 

guidelines for choosing PML parameters. Ma and Liu (2006) presented an easy implementation of 

perfectly matched layers (PML) in the explicit finite element method by using the one-point 

integration scheme.  Zhen et al. (2009) introduced auxiliary variables to divide the PML wave 

equation in the frequency domain into two parts: normal terms and attenuated terms.  Using the 

auxiliary variables, they avoided convolution operations in equations after transforming them into 

time domain and utilized the finite difference method to propose a novel numerical 

implementation approach for PML absorbing boundary conditions with simple calculation 

equations, small memory requirements, and easy programming. Liu et al. (2009) utilized the 

Crank−Nicolson scheme together with several algorithms to calculate the first-order spatial 

derivatives of the SH wave equations. Furthermore, they investigated how the absorbing boundary 

width and the algorithms affect the PML results of a homogeneous isotropic medium and a multi-

layer medium with a cave. Kim and Pasciak (2012) developed a Cartesian perfectly matched layer 
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for solving Helmholtz equation on an unbounded domain in 2D space. Lancioni (2011) compared 

the performance of the PML approach and high order non-reflecting boundary conditions in a one 

dimensional dispersive problem and expressed their merits and drawbacks. 

In the analysis of a dam-foundation rock system by perfectly matched layers, the near-field part 

of the foundation rock is discretized by common finite elements and a PML region is modeled to 

absorb waves propagating towards infinity (Fig. 2). In previous studies on employing PML in the 

dam-foundation rock systems, no boundary conditions are adopted at the external boundary of the 

PML domain (Basu 2004). In the present study, the Lysmer boundary condition at the truncation 

boundary of the PML region has been incorporated in the formulation of the dam-foundation FE 

model (including PML). Several numerical experiments are carried out and the effect of applying 

Lysmer boundary conditions at the truncation boundary of the PML area is investigated. 

 

 

2. The formulation of dam-foundation rock systems 
 

The “added motion” formulation that is commonly used for soil-structure systems is adopted 

for the analysis of the dam-foundation rock system (Wilson 2002). If the nodes on the dam-

foundation interface are identified with superscript “c” and the other nodes of the dam body and 

the foundation rock are identified with superscript “s” and “f”, respectively (Fig. 2), the equation 

of motion of the system in terms of absolute displacements can be expressed as follows 

0

U

U

U

KK0

KKK

0KK

U

U

U

CC0

CCC

0CC

U

U

U

MM0

MMM

0MM







































































































f

c

s

fffc

cfcccs

scss

f

c

s

fffc

cfcccs

scss

f

c

s

fffc

cfcccs

scss













      (1) 

in which M, C and K are mass, damping and stiffness matrices and U
 
is the vector of nodal 

absolute displacements. The mass, damping and stiffness at the interface nodes are the sum of 

parts corresponding to the structure and the foundation rock and are given by 

f
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cccc MMM                                                           (2a) 

f
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s
cccc CCC                                                             (2b) 

f
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s
cccc KKK                                                            (2c) 

Absolute displacements can be expressed in terms of the free-field motion and relative 

displacements to apply ground motions to the system, thus 
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where free-field and relative displacements are identified with superscript “ff” and “r” 

respectively. Eq. (1) can now be written as 
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If the free-field displacement ff
cU  is constant on the dam-foundation rock interface, the vector 

ff
sU is the rigid motion of the dam body. Therefore, we have 
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Furthermore, the dynamic equilibrium of the foundation rock results in 

0
U

U

KK

KK

U

U

CC

CC

U

U

MM

MM




















































ff
f

ff
c

fffc

cf
f
cc

ff
f

ff
c

fffc

cf
f
cc

ff
f

ff
c

fffc

cf
f
cc








                     (6) 

Thus, the Eq. (4b) can be simplified by utilizing Eqs. (5) and (6) 
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If the excitation is assumed to be harmonic )e)(,e)(( i
gi

1

g
i

gg
tt tt 




avaa  , displacements 

will be harmonic too. Substituting the harmonic term 
tt ie)( UU  in Eqs. (4) and (7), one can  

express the equation of motion of dam-foundation systems under harmonic excitations as below 
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where J is a matrix which applies the ground acceleration to nodes of the model and the interaction 

matrix. In the analysis of a half-plane foundation, one can truncate the foundation at a distance far 

enough from the dam body, discretize the foundation rock area and determine displacements using 

the finite element method. At the truncation boundary, it is necessary to apply a boundary 

condition which can transmit elastic waves to obtain a good estimation of the response of the 
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system. The Lysmer boundary condition is one of the most common approaches used at the far end 

of the foundation (Lysmer and Kohlemeyer 1963). 

 

 

3. Perfectly matched layers (PML) 
 

Perfectly matched layers are media defined in a way that they have two essential properties: 

• Waves can pass through boundaries separating perfectly matched layers without any 

reflections. 

• In PML media, wave amplitudes decay as they propagate along some specific directions. 

PML can be utilized in the analysis of the half-plane foundation by defining complex stretched 

coordinates in two perpendicular directions along which elastic waves are to propagate toward 

infinity. Let us define 
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where λi(xi) 
is a complex function called a stretching function which should be continuous in the  

whole area of the problem. Expressing governing relations of elastic media in terms of ix~
 
will  

yield the equations defining perfectly matched layers in the foundation (Basu 2004) 
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Obviously, perfectly matched layers can be treated like a continuous medium as long as the 

stretching function (λi(xi)) is continuous at boundaries. On the other hand, it can be proven that 

primary and secondary waves decay as they propagate along directions of stretched coordinates. 

Therefore, a medium in which displacements satisfy Eq. (10) has the aforementioned properties of 

perfectly matched layers. 

 

3.1 Formulation of a PML medium in the foundation 
 

To solve Eq. (10a) utilizing the finite element method, one can employ the weighted residual 

354



 

 

 

 

 

 

Time harmonic analysis of dam-foundation systems by perfectly matched layers 

 

 

approach. Integrating the multiplication of Eq. (10a) by an arbitrary function W
T

 
and using 

Green’s identity principle will result in the weak form of the equation 
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where gm is the multiplication of stretching functions (gm=λ1(x1)λ2(x2)). B and B
~

 are matrices 

relating the vector-form of ε  and ε~  to the vector of elements’ nodal displacements u and w 

respectively 
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Moreover, Q is a matrix containing shape functions in a form that interpolates the vector of 

displacement based on nodal ones and D is the rigidity matrix 
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where the medium is assumed to be in a plane strain state for the definition of the rigidity matrix. 

The vector in the right side of Eq. (14a) is only calculated at boundaries of PML area. In previous 

applications of PML used in the analysis of dam-foundation rock systems, the right side of the 

equation is assumed to be zero conveniently (Basu 2004). In the present study, the effect of 
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applying a local boundary condition at the truncation boundary of the foundation rock on the 

response of the system is investigated. 

One can rewrite the right side of Eq. (14a) in an expanded form as below 
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where 
1xn  and 

2xn are components of the normal vector at the boundary Γ
e
. If the truncation 

boundary is selected normal to x1 and x2 
axes, the Lysmer boundary condition in stretched 

coordinates can be applied by following relations 
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in which cs and cp are the velocity of secondary and primary waves, respectively. Substituting Eq. 

(18) in Eq. (17) results in 
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Replacing the right hand side of Eq. (14a) by Eq. (19a) will yield the governing equation of the 

PML medium in the foundation in an element level 

0UMCK   ePML
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ePML

ff

2ePML

ff

ePML

ff )i(                                     
(20)

  
 

 

4. Numerical experiments 
 

Several numerical experiments have been carried out to evaluate the accuracy and the 

efficiency of using PML media in analysis of dam-foundation rock systems under a harmonic 

excitation.  

The system being analysed incorporates an ideal triangle concrete dam with an empty reservoir 

on a flexible foundation rock (Fig. 3). The dam body is assumed to be in the plane stress state, 

meanwhile, the foundation rock is assumed to be a half plane in the plane strain state. Material 

properties of the dam body and the foundation rock are summarized in Table 1. The transfer 

function of the horizontal acceleration of the dam crest due to harmonic horizontal and vertical 

ground motions (in terms of the ratio of the excitation frequency to the dam’s first natural 

frequency) has been captured by utilizing different approaches. The frequency range of the 

excitation is chosen between 0 to 12 Hz (a common frequency range for earthquakes).  

The dam body and the foundation are discretized by quadratic isotropic elements. The size of 

elements has been selected in such a way that there are at least two to four elements in every wave 

length so that all waves can pass through the elements. The response of the system has been also 

determined by modelling a relatively large part of the foundation rock (Lf=8B) and using the  
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Fig. 3 Numerical model of the ideal dam-foundation rock system 

 
Table 1 Material properties of the model 

Concrete modulus of elasticity 27.5 GPa 

Concrete Poisson’s ratio 0.2 

Unit weight of concrete 24 kN/m
3
 

Foundation rock Poisson’s ratio 0.333 

Unit weight of foundation rock 26 kN/m
3
 

 
 

Lysmer boundary condition at the truncation boundary. The change of the response due to 

increasing the size of the foundation rock extension beyond 8B is negligible, as a result, aside from 

errors related to FE discretization, the solution corresponding to the model in which the dimension 

of the foundation rock extension equals to 8B may be considered exact. Hence, in the present 

study, responses obtained by other methods are all compared to the one determined through 

modelling a large part of the foundation rock domain. 

 

4.1 Results 
 

The near-field part of the foundation rock adjacent to the dam body has been discretized by 

conventional solid elements and the rest has been modeled by perfectly matched layers. The 

stretching functions are selected in the form recommended by Basu (2004) 
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Table 2 Parameters of stretching functions (Eq. (20)) used in defining PML (a0= ωB/2cs) 

Function #1 (Es≤Ef)  f e=1 f 
p
=4.25/a0 m=1 

Function #2 (Es≥Ef) f e=1 f 
p
=6.00/a0 

m=1 

 

 
(a) 

 
(b) 

Fig. 4 Horizontal acceleration at dam crest due to harmonic ground motions, for the case Ef/Es=2.00 with 

different boundary conditions of PML region, (a) Horizontal ground motion, (b) Vertical ground motion 

 

 

2

xx
x


                                                             (20c) 

After several numerical experiments, proper coefficients have been chosen and the smallest 

PML domain necessary to obtain an acceptable approximation of the response of the system has  
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(a) 

 
(b) 

Fig. 5 Horizontal acceleration at dam crest due to harmonic ground motions, for the case Ef/Es=1.00 with 

different boundary conditions of PML region, (a) Horizontal ground motion, (b) Vertical ground motion 

 

 

been found. It should be mentioned that the size of the PML domain can be reduced by opting for 

stretching functions which establish a more attenuative medium. However, to do so, one has to 

employ smaller elements to discretize the PML area. Here, the size of elements is chosen as if the 

whole foundation is modeled by solid elements and stretching functions and the PML domain size 

are selected accordingly. The function parameters (f 
e
, f 

p
 and m) are presented in Table 2. The term 

a0 in the table is a non-dimensional frequency defined as a0= ωB/2cs. The functions are defined in 

such a way that the equation governing PML medium can be transformed into time domain.  

In Table 2, Es and Ef are the elastic modulus of the structure and the foundation rock, 

respectively. Note that two different functions have been suggested for two ranges of the elastic 

modulus ratio (Es/Ef). 
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(a) 

 
(b) 

Fig. 6 Horizontal acceleration at dam crest due to harmonic ground motions, for the case Ef/Es=0.50  with 

different boundary conditions of PML region, (a) Horizontal ground motion, (b) Vertical ground motion 

 

 

Figs. 4-7 present transfer functions of the dam-foundation rock system for a model in which 

domain sizes are chosen to be Lf=0.6B  and Lp=0.4B (Fig. 3). Both horizontal and vertical ground 

motions are considered. By applying local boundary conditions at the truncation boundary of the 

PML medium, reasonably accurate results have been obtained for four different elastic modulus 

ratios (Es/Ef) for both horizontal and vertical ground motions even though the computational 

domain is relatively small. The inaccuracy of results from models using the Lysmer boundary 

condition (with the same size of the foundation rock extension (Lf=0.6B) is a proof for the 

smallness of the domain. 

The results obtained by adopting local boundary conditions at the truncation boundary of the 

PML medium are also compared with the cases in which no boundary conditions are applied at the  
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(a) 

 
(b) 

Fig. 7 Horizontal acceleration at dam crest due to harmonic ground motions, for the case Ef/Es=0.25  with 

different boundary conditions of PML region, (a) Horizontal ground motion, (b) Vertical ground motion 

 

 

outer boundaries of the PML area. The cases named “Fixed” and “Free” are the ones with no 

boundary conditions at the truncation boundary and the external nodes of their corresponding 

models are fixed and free, respectively.  

As it is shown in Figs. 4-7, applying the Lysmer boundary condition at the truncation boundary 

of the PML area improves the accuracy of results. Under horizontal excitations, the difference 

between the results corresponding to different boundary conditions decreases as the elastic 

modulus ratio (Ef/Es) decreases, however, one could use a smaller PML domain to gain results with 

the same accuracy by applying the Lysmer relation at the truncation boundary of the PML region 

even for smaller elastic modulus ratios.  
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5. Conclusions 
 

Perfectly matched layers have been employed in the time harmonic analysis of dam-foundation 

rock systems. The Lysmer boundary condition at the truncation boundary of the PML region has 

been incorporated in the formulation of the dam-foundation rock FE model. Several numerical 

experiments have been carried out on an ideal dam-foundation system. The transfer function of the 

horizontal acceleration of the dam crest has been determined using different truncation boundary 

conditions and various numerical model parameters. Results show that: 

• If the Lysmer boundary condition is applied at the truncation boundary of the PML area, 

highly accurate results can be obtained at a relatively small computational cost. Choosing the 

foundation domain size equal to 0.60B (B is the dam width) will yield reasonably accurate results. 

It is noteworthy that the stretching function used for defining PML has been selected in such a way 

that the governing equation of PML can be transformed into time domain. 

• Applying the Lysmer boundary condition at the truncation boundary of the PML region 

improves the accuracy of the results for a specific size of the foundation rock which has to be 

discretized by finite elements. Hence, it reduces the computational cost and makes the PML 

approach more efficient for the harmonic analysis of dam-foundation systems. 
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