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Abstract.  This paper introduces a novel optimization technique based on gravitational search algorithm 
(GSA) for numerical optimization and multi-objective optimization of foundation. In the proposed method, a 
chaotic time varying system is applied into the position updating equation to increase the global exploration 
ability and accurate local exploitation of the original algorithm. The new algorithm called global-local GSA 
(GLGSA) is applied for optimization of some well-known mathematical benchmark functions as well as two 
design examples of spread foundation. In the foundation optimization, two objective functions include total 
cost and CO2 emissions of the foundation subjected to geotechnical and structural requirements are 
considered. From environmental point of view, minimization of embedded CO2 emissions that quantifies the 
total amount of carbon dioxide emissions resulting from the use of materials seems necessary to include in 
the design criteria. The experimental results demonstrate that, the proposed GLGSA remarkably improves 
the accuracy, stability and efficiency of the original algorithm. 
 

Keywords:  spread foundation; cost optimization; CO2 emissions optimization; gravitational search 

algorithm 

 
 
1. Introduction 

 

Shallow foundations are one of the most common and utilized types of foundations and 

constitute an integral part of all structures. Spread foundations are by far the most common type of 

foundation, primarily because their low cost and ease of construction. These types of foundations 

required a minimum amount of equipment and skill for construction. Furthermore, the conditions 

of the spread foundations and the supporting soil can be readily examined. In the analysis and 

design of spread foundation, the structure must safely and reliably support the loads; it must have 

sufficient shear and moment capacities; the bearing capacity of the foundation cannot be exceeded 

or allowed to be in tensile stress; and the configuration of the steel reinforcement must meet all 

building code requirements. 

In addition to these design objectives, the structure should be optimized economically and 

environmentally. The traditional goals of engineers in the field of structural optimization design 
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were to minimize the objective function, which is usually the cost or the weight of the structure 

rather than environmental factors. Nowadays, the objective of structural design is to optimize the 

consumption of materials not only from an economic point of view, but also environmental 

impacts. It is worth to note that concrete is the most widely used material on Earth. Therefore, it 

seems vital to include design criteria to minimize the embedded CO2 emissions in reinforced 

concrete (RC) structures. This study deals with the optimization of RC spread foundations, in 

terms of minimum cost and CO2 emissions. The CO2 objective function quantifies the total amount 

of carbon dioxide emissions resulting from the use of materials and minimization of embedded 

CO2 emissions seems necessary to include design criteria.   

In the last decades, several studies have been undertaken to implement different optimization 

approaches for solving structural engineering optimization problems. For instance, application of 

simulated annealing for the optimum design of reinforced concrete retaining structures (Ceranic et 

al. 2001), harmony search algorithm for optimization of truss structures (Lee and Geem 2004), ant 

colony optimization for optimum design of steel frames (Camp et al. 2005), genetic algorithm for 

structural optimization (Salajegheh and Gholizadeh 2005), harmony search algorithm for optimum 

design of steel structures (Degertekin 2008), particle swarm optimization for optimum design of 

spread footing and retaining wall (Khajehzadeh et al. 2011), artificial bee colony algorithm for 

optimum design of truss structures (Sonmez 2011), big bang-big crunch optimization for design of 

retaining walls (Camp and Akin 2012), etc. Gravitational search algorithm (GSA) is a novel and 

attractive swarm intelligence-based optimization technique inspired by the law of gravity and mass 

interactions (Rashedi et al. 2009). Due to its simplicity and ease of implementation, GSA has 

captured much attention and has been applied to solve many practical optimization problems. 

However, similar to other evolutionary algorithms, GSA suffers from some drawbacks such as 

slow convergence rate and premature convergence when solving complex optimization problems. 

Therefore, researchers tried to improve this algorithm by different ways to overcome its drawbacks 

(Sarafrazi et al. 2011, Yin et al. 2011, Khajehzadeh et al. 2012, Mirjalili et al. 2012, Khajehzadeh 

et al. 2013). 

This paper develops a new version of GSA referred to as global-local gravitational search 

algorithm (GLGSA). In the proposed approach, a new chaotic decreasing operator is introduced 

and applied into the classical agents’ updating position equation. In this way, the randomness, 

irregularity and the stochastic property of the new operator improve the global search ability of the 

algorithm and allow agents to escape from local minima when they are prematurely attracted to a 

local attractor. In addition, decreasing behavior of the new operator during the optimization 

procedure will increase the local exploitation ability of the algorithm in the later part of the 

optimization. To validate the efficiency of the proposed approach a set of six well-known 

benchmark functions is considered. Afterwards, the new algorithm is applied for multi-objective 

optimization of spread foundations to minimize the total cost and embedded CO2
 
emissions of the 

structure simultaneously. The numerical simulation results in section 4 demonstrate that the 

proposed strategy has significantly better performance in terms of robustness and accuracy 

compared with the classical GSA. 

 

 

2. Multi-objective optimization of foundation 
 

Multiple objectives arise naturally in most real-world combinatorial optimization problems. 

Several principles and strategies have been developed and proposed in order to solve these 
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problems. The aim is to find a vector of decision variables that satisfies constraints and optimizes 

(minimizes or maximizes) these functions. In a more precise mathematical way, formulation of a 

multi-objective problem includes a set of n design variables, a set of m objective functions and a 

set of k constraints and can be defined as follows 
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where f1, f2, . . . , fm denote the objective functions to be optimized simultaneously, X is the vector 

of decision variables and gj(X) denotes the inequality constraints. 

For a multi-objective optimization, we can construct a new function called evaluation function 

to convert a multi-objective problem into a single-objective problem for simplification. There are 

many ways to construct an evaluation function. In this paper, in order to apply and solve the 

economic emissions foundation optimization problem using the GLGSA algorithm, we use the 

weighted aggregation method as an efficient way to combine and transform the two objective 

functions of the problem, i.e., the embedded CO2 emissions and total cost of the structure, into one 

objective function. In this method, the problem is transformed into a single-objective function (U) 

by using weighting coefficients as follows 

 
1

m

i i

i

U w f


 X                            (2) 

where wi is a constant indicating the weight (and hence importance) assigned to fi. By giving a 

relatively large value to wi it is possible to favor fi over other objective functions.  

 

2.1 Objective functions  
 

In this study, the multi-objective optimization of foundation consists of two objective 

functions; the embedded CO2 emissions and total cost of the structure. Therefore, the optimization 

algorithm aims to minimize these objective functions simultaneously. 

The first objective function measures the total amount of CO2 emissions resulting from the use of 

materials, which involve emissions at the different stages of production and placement. The CO2 

emissions objective function can be presented mathematically in the following form 

      1 c c f fe e sb sbf e V e V e V e A e W    X
 (3) 

where ec, ee, eb, ef and es are the CO2 unit emissions of concrete, excavation, backfill, formwork, 

and reinforcement, respectively. In addition, Vc ,Ve and Vb denote the volume of concrete, 

excavation and backfill of the foundation, Af is the area of formwork and Ws indicates the weight 

of steel of the structure. The CO2 unit emissions considered for the optimization in the current 

study are given in Table 1 and are obtained from the study of (Yepes et al. 2012). 

The second objective function quantifies the total cost of the structure. The cost minimization 

objective function includes the cost of the materials and costs associated with labor and 

installation. The cost function can be expressed in the following form 

      2 c c e e b b f f s sf C V C V C V C A C W    X
 (4) 
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Table 1 Spread foundation assembly unit cost and unit CO2 emissions 

Item Unit Unit Emission (Kg) Unit Cost (US$) 

Earth removal m
3
 13.16 11.41 

Formwork m
2
 14.55 36.82 

Reinforcement kg 2.82 1.51 

Concrete m
3
 224.94 104.51 

Earth fill-in m
3
 27.20 38.1 

 

 

Fig. 1 Design variables of the foundation 

 

 

where Cc, Ce, Cb, Cf and Cs are the unit cost of concrete, excavation, backfill, formwork, and 

reinforcement, respectively. The unit costs considered here are presented in Table 1 and are 

obtained from the study of (Yepes et al. 2012). 

 

2.2 Design variables 
 

Fig. 1 shows the design variables considered for the spread foundation model. The design 

variables are divided into two categories: those that describe the geometric dimensions and those 

that model the steel reinforcement. As it is shown in Fig. 1, there are four geometric design 

variables representing the dimensions of the foundation: X1 is length of the foundation, X2 is 

breadth of the foundation, X3 is thickness of the foundation and X4 is depth of embedment. There 

are two additional design variables related to the steel reinforcement: X5 is the longitudinal 

reinforcement and X6 is the transverse reinforcement.  

In Fig. 1, d is the distance from compression surface to the centroid of tension steel, l is the 

long side of the column and s is the short side of the column. 

 

2.3 Design constraints  
 

Fig. 2 shows the general forces acting on the foundation. In this figure, E is Young’s modulus, 

ν is Poisson’s ratio, c is cohesion,  is effective friction angle, and γ is unit weight of soil. In 

addition, M is moment applied on the foundation, P is the axial load, and qmin and qmax are the 

minimum and maximum bearing stresses on the base of the foundation, respectively.  
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Fig. 2 Forces acting on the foundation 

 
Table 2 Bearing capacity factors, shape factors and depth factors (Vesic 1975) 

Bearing capacity factors Depth factors Shape factors 
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The typical design philosophy of a spread foundation seeks designs that provide safety and 

stability against failure modes and comply with concrete building code requirements. These 

requirements may be classified into four general groups of design constraints: stability, capacity, 

reinforcement configuration, and geometric limitations. The various design constraints to be 

considered in the optimization of the spread foundation are presented in detail in the following 

sections. 

 
2.3.1 Bearing capacity failure mode  
The bearing capacity of the foundation must be large enough to resist the stresses acting along 

the base. To have a safe design the imposed stress should be less than the safe bearing capacity of 

soil as follows 

    
max

ultq
q

FS


 
(5) 

where qult is the ultimate bearing capacity of the foundation soil, FS is the factor of safety and qmax 

is the maximum contact pressure at the interface between the bottom of a foundation and the 

underlying soil. In this study, qult is evaluated using Vesic’s method (Vesic 1975), according to 
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0.5ult c c c q q qq cN d s qN d s N d s    

 
(6) 

where q is the effective vertical stress at the footing base level; Nc, Nq and Nγ  are bearing capacity 

factors, dc, dq and dγ  are depth factors and sc, sq and sγ  are shape factors. The equations for 

bearing capacity, shape and depth factors are summarized in Table 2. 

The minimum and maximum applied bearing stresses on the base of the foundation are 

evaluated by 

       
min
max 1 2 1

6
1

P e
q

X X X

 
  

   

(7) 

where e is the eccentricity which is the ratio of the uniaxial moment to the axial forces.  

 

2.3.2 Eccentricity failure mode 
In order to prevent tensile stresses at the bottom that tend to uplift the foundation, the following 

conditions must be satisfied (Gunaratne 2006) 

      

1

6

X
e 

 
(8) 

 
2.3.3 Settlement of foundation 
Settlement of foundation should be within a permissible limit according to the following 

inequality 

     all 
 (9) 

where δall is allowable settlement and δ is the settlement of foundation. According to the elastic 

solution suggested in Poulos and Davis (1974), the settlement can be calculated as follows 

     

2

1 2

(1 )

z

P

E X X









 

(10) 

where κz is the shape factor. The shape factor suggested in Wang and Kulhawy (2008) is adopted 

in this study according to 

     
2

1 2 1 20.0017( / ) 0.0597( / ) 0.9843z X X X X      (11) 

 
2.3.4 One way (wide beam) shear failure mode  
For one way shear, the foundation must be considered as a wide beam and the ultimate shear 

force (Vu) should be less than nominal shear strength of concrete according to (ACI 2005) 

     
2

1
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6
u V cV f X d

 
(12) 
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(13) 
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where V is the shear strength reduction factor equal to 0.75 (ACI 2005) and f΄c is the compression 

strength of concrete. The ultimate shear is taken along a vertical plane extending the full width of 

the base (X1 or X2) located at distance d from face of column. 

 

2.3.5 Two way (punching) shear failure mode 
Punching shear indicates the tendency of the column to punch through the foundation slab. To 

avoid such a failure, the upward ultimate shearing force (Vu) must be lower than the nominal 

punching shear strength according to (ACI 2005). 
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(14) 

where b0 is the perimeter of critical section taken at d/2 from face of column ([l+d]×[s+d]), βc is 

the ratio of long side to short side of column section (l / s) and αs is the 40 for interior columns. 

 

2.3.6 Bending moment failure mode 
The moment capacity of the foundation should be less than the nominal flexural strength 

according to (ACI 2005) 
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(16) 

where Mu is the bending moment of the reaction forces due to the applied load at the face of the 

column (for foundation supporting a reinforced concrete column), M is the flexure strength 

reduction factor equal to 0.9 (ACI 2005) and fy is the yield strength of steel. 

 

2.3.7 Minimum and maximum reinforcements 
The amount of steel reinforcement in each direction of the foundation must satisfy minimum 

and maximum reinforcement area limits required by building codes (ACI 2005) according to 

     min 2 5 max 2. . . .d X X d X  
 (17) 

     min 1 6 max 1. . . .d X X d X  
 

(18) 

where ρmin and ρmax are the minimum and maximum reinforcement ratio based on the following 

equations (ACI 2005) 
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Table 3 Constraints for optimum design of spread footing 

Constraint number Failure mode Constraint 

g1(X) Bearing capacity max 0ultq
q

FS
 

 

g2(X) Eccentricity failure 1 0
6

X
e  

 
g3(X) Settlement of footing 0all  
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g9 (X) 
Minimum depth of 

embedment 40.5 0X 
 

g10(X) 
Maximum depth of 

embedment 4 2 0X  
 

g11-12(X) Minimum steel area 
min 2 5

min 1 6

. . 0

. . 0

d X X

d X X





 

 
 

g13-14(X) Maximum steel area 
5 max 2

6 max 1

. . 0

. . 0

X d X

X d X





 

 
 

 

 
2.3.8 Limitation of depth of embedment 
Finally, the depth of embedment (X4) should be greater than a minimum depth to prevent frost 

damage and should be limited to a maximum depth to minimize disturbance to adjacent structures. 

Therefore 

     40.5 2X 
 (21) 

Finally, the inequality constraints for multi-objective optimization of spread footing can be 

summarized as shown in Table 3. 

 

 

3. Global-Local gravitational search algorithm 
 

Gravitational search algorithm (GSA) is a newly developed stochastic search algorithm 
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presented originally by Rashedi et al. (2009). The GSA could be considered as a small artificial 

world of masses obeying the Newtonian laws of gravitation and motion (Rashedi et al. 2009). In 

this approach, all the individuals (search agents) can be viewed as objects and their performances 

are evaluated by their masses. All these objects attract each other by a gravity force, and this force 

causes the movement of all objects globally towards objects with heavier masses. The heavy 

masses correspond to good solutions of the problem. The position of the agent represents a 

potential solution of the problem, and its mass is determined using a fitness function. Over time, 

masses are attracted by the heaviest mass, which is probably close to the optimum solution in the 

search space.  

In order to explain GSA, consider a system with N agents (masses) in which the position of the 

agent i is represented by 

     Xi=(xi
1
,. . ., xi

d
,. . ., xi

n
)       for i = 1, 2, . . ., N (22) 

where xi
d
 is the position of agent i in dimension d and n is the search space dimension. 

After evaluating the current population fitness, the mass of each agent is calculated as follows 

        
1
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( )
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i N

jj

m t
M t

m t





 

(23) 

where 

      

ifit ( ) - worst( )
( )

best( ) - worst( )
i

t t
m t

t t


 
(24) 

where fiti(t) represent the fitness value of the agent i at time t. best(t) and worst(t) is the best and 

worst penalized fitness values of all agents (for a minimization problem) at time t and defined as 

follows 

     {1,..., }
best( ) min fit ( )j

j N
t t




 
(25) 

     {1,..., }
worst( ) max fit ( )j

j N
t t




 
(26) 

To evaluate the acceleration of an agent, total forces from a set of heavier masses applied on it 

should be considered based on a combination of the law of gravity according to 

     
, ,

( ) ( )
( ) ( ) ( ( ) ( ))

( )

j id d d

i j j i

j kbest j i i j

M t M t
F t rand G t x t x t

R t  


 




 

(27) 

where randj is a random number in the interval [0, 1], G(t) is the gravitational constant at time t, Mi 

and Mj are masses of agents i and j, ε is a small value and Ri,j(t) is the Euclidean distance between 

two agents, i and j. One way to perform a good compromise between exploration and exploitation 

is to reduce the number of agents with a lapse of time in Eq. (27). Hence, in this algorithm, only a 

set of agents with a bigger mass apply their force to the other. However, this property may reduce 

the exploration ability and increase the exploitation capability. To improve the performance of the 

GSA by controlling exploration and exploitation ability, the kbest agents will attract the others. 

kbest is a function of time, whose initial value is K0 at the beginning and decreases with time. 

Therefore, all agents apply the force at the beginning, and as time passes, the term kbest decreases 
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linearly. At the end, there will be just one agent applying force to the others.  

By the law of motion, the acceleration of the agent i at time t, and in direction d, ai
d
(t), is given 

as follows 

     
,

2

( )( )
( ) ( ) ( ( ) ( ))

( ) ( ), ( )

d
jd d di

i j j i

j kbest j ii i j

M tF t
a t rand G t x t x t

M t X t X t  

  



 

(28) 

The searching strategy on this concept can be described by the following equations. 

     ( 1) ( ) ( )d d d

i i i iv t rand v t a t     (29) 

     ( 1) ( ) ( 1)d d d

i i ix t x t v t     
(30) 

where randi is a uniform random variable in the interval [0, 1]. This random number is applied to 

give a randomized characteristic to the search. xi
d 
represents the position of agent i in dimension d, 

vi
d
 is the velocity and ai

d
 is the acceleration.       

It must be pointed out that the gravitational constant G(t) is important in determining the 

performance of GSA and is defined as a function of time t (Rashedi et al. 2009) 

     

0

max

( ) exp
t

G t G
t


 

    
   

(31) 

where G0 is the initial value of gravitational constant, β is a constant, t is the current iterations and 

tmax is the maximum iteration number.  

In this algorithm, each agent attracts every other agents with the gravitational force that is 

directly proportional to the product of their masses and inversely proportional to the distance 

between them. As these masses absorb every other agent, there will not be any recovery for the 

algorithm if premature convergence happens. In order to overcome this problem and increase the 

flexibility and efficiency of the algorithm, a new operator is added into the standard GSA. In the 

current study, we propose a new version of the algorithm, namely global-local gravitational search 

algorithm (GLGSA) by introducing and applying a new global-local (GL) operator during the 

updating stage of agents’ position. In the proposed GLGSA, the position of each solution (agent) 

will change based on the following equation instead of Eq. (30) 

      
( 1) ( ) ( ) ( 1)d d d

i i ix t GL t x t v t        
(32) 

where GL is a chaotic decreasing function according to 

      
( ) ( 1) ( )GL t t t   

 (33) 

where λ(t) is a chaotic map with randomness, irregularity and the stochastic property and it is used 

to improve the global search ability of the algorithm. In this study, the well-known Logistic map 

(May 1976, Caponetto et al. 2003) is used to generate chaotic variables. 

      
( 1) 4 ( ) (1 ( )), (1) (0,1), (1) 0.25,0.5,0.75t t t          

 (34) 

In addition, α(t) in Eq. (33) is a nonlinear decreasing function of time according to 

      
2

max( ) exp[ 4 ( / ) ]t t t   
 (35) 
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Fig. 3 Variation of GL during the iterations 

 
Initialize N random positions of the agents 

t = 1 

while t < tmax 

       Evaluate fitness of each agent  

          for i = 1 to N 

                 Determine the best and the worst of the population  

                 Calculate the mass of agent i using Eq. (23) 

                 Calculate the acceleration of agent i using Eq. (28) 

                 Update the agent’s velocity using Eq. (29) 

                 Evaluate GL based on Eq. (33) 

                 Update the agent’s position using Eq. (32) 

           end 

t = t +1 

end while 

Output the best solution  

Fig. 4 The framework of the GLGSA algorithm 

 

 
Fig. 3 shows the variation of the GL operator during the iteration when λ(1)=0.55.     

As it is presented in Fig. 3, the new operator oscillates and decreases simultaneously during the 

iterations. The oscillation and chaotic manner of the GL during the optimization can increase the 

global exploration of the algorithm and enhance the ability of escaping from local minima when 

the agents are prematurely converged to local optima. In addition, the gradually reduction of the 

proposed operator during the iteration can improve the local search ability and exploitation of the 

algorithm in the later part of the optimization. In this way, the new algorithm may find an 

optimum more quickly and accurately. The procedure of the proposed GLGSA algorithm is 

presented in Fig. 4. 
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Table 4 Standard benchmark functions 

Function 

Name 
Function 

Dimension 

(n) 
Range 

Quadric  
2

1 1 1
( )

n i

ji j
F X x

 
 

 
30 [-100,100]

n 

Schwefel  2 ( ) max ,1i iF X x i n  
 

30 [-100,100]
n 

Quartic 
4

3 1
( ) [0,1)

n

ii
F X ix random


   

30 [-1.28,1.28]
n 

Rastrigin 
2

4 1
( ) ( 10cos(2 ) 10)

n

i ii
F X x x


    

30 [-5.12,5.12]
n 

Ackley 
2

5 1 1

1 1
( ) 20exp 0.2 exp cos2 20

n n

i ii i
F x x x e

n n


 

   
            

 
 

30 [-32,32]
n
 

Griewank 
2

6 11

1
( ) cos( ) 1

4000

n n i

i ii

x
F X x

i


  
 

30 [-600,600]
n
 

 
 
4. Experiments  

 
We validated the efficiency and robustness of the proposed GLGSA compared with the original 

algorithm in two sets of experiments: numerical and foundation optimization applications. In all 

experiments, the algorithms’ parameters are set as follows: population size (N) is 50; maximum 

iteration number (tmax) is 500; G0 and β are 100 and 20, respectively. In addition, in GLGSA, λ(1) 

is equal to 0.55. These parameters are selected based on the authors’ experience and the general 

recommendations given in the literature (Rashedi et al. 2009, Sarafrazi et al. 2011). The following 

subsections describe the experimental methodology.  

 

4.1 Numerical applications 
 

The aim of this experiment is to evaluate and compare the performance of the new method with 

the original algorithm for solving numerical optimization. Well-defined benchmark problems can 

be used as objective functions to measure and test the performance of optimization methods. A set 

of six unimodal and multimodal benchmark functions are used in this experiment. The first three 

functions are unimodal functions whereas others are multimodal optimization problems with a 

considerable amount of local minima. All the functions are to be minimized. Table 4 shows the 

main properties of the selected benchmark functions. 

The presented benchmark functions in Table 4 are solved using both GSA and GLGSA 

algorithms. Every experiment is repeated 30 times independently each starting from a different 

random population and statistical analyses are presented. The results are shown in Table 5 in terms 

of the best, worst, median, mean and standard deviation of the solutions obtained in the 30 

independent runs by each algorithm. In addition, Fig. 5 graphically presents the comparison of the 

two algorithms in terms of convergence characteristics in solving the six different problems. 

As shown in Table 5, the proposed GLGSA algorithm is able to reach the global optimum for 

the Rastrigin and Griewank functions. Moreover, the new algorithm could provide a significantly 

better solution for all other functions based on mean and best fitness values achieved by each 

method. In terms of standard deviation, the results obtained by the GLGSA in 30 independent runs 
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Table 5 Minimization result of benchmark functions  

Function Method Best Mean Median Worst 
Standard 

deviation 

F1 
GSA 

GLGSA 

216.94 

1.26e-24 

469.48 

1.02e-23 

440.28 

8.05e-24 

893.66 

3.44e-23 

156.75 

7.63e-24 

F2 
GSA 

GLGSA 

1.28 

3.58e-13 

3.41 

9.32e-13 

3.49 

8.67e-13 

6.13 

1.45e-12 

1.19 

3.33e-13 

F3 
GSA 

GLGSA 

0.012 

1.49e-6 

0.0267 

5.48e-5 

0.0232 

4.36e-5 

0.0734 

1.93e-4 

0.014 

4.37e-5 

F4 
GSA 

GLGSA 

8.955 

0.00 

16.152 

0.00 

15.919 

0.00 

26.864 

0.00 

5.078 

0.00 

F5 
GSA 

GLGSA 

3.03e-9 

4.95e-13 

4.78e-9 

1.25e-12 

4.63e-9 

1.27e-12 

6.84e-9 

2.7e-12 

9.14e-10 

5.51e-13 

F6 
GSA 

GLGSA 

9.17 

0.00 

17.37 

0.00 

17.44 

0.00 

26.08 

0.00 

4.69 

0.00 

 

  

  

Fig. 5 Convergence performance of GSA and GLGSA on the six test functions 
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Fig. 5 Continued 

 

 

are much smaller than those computed by GSA for all the functions, which indicates the higher 

stability of the new method. In addition, the convergence performance comparison of the 

algorithms in Fig. 5 shows that the fitness values obtained by GLGSA descend much faster to a 

lower level than those of GSA. In addition, the evolutionary behavior of GLGSA has an inflexion 

and greatly outperforms GSA which falls into local trap very quickly during the evolutionary 

process. As shown in Fig. 5, for all test functions except Ackley function, the resulting history 

converges very quickly by GSA within the first 100 iterations but does not improve after the initial 

convergence. In other words, after becoming converged, the GSA loses its ability to explore and 

then becomes inactive. However, the new algorithm is more successful in exploring the search 

space. From the above results, it can be concluded that the GLGSA algorithm possesses superior 

performance in terms of accuracy, convergence speed, stability and robustness when compared to 

the standard algorithms.  

 

4.2 Foundation optimization application 
 

In this section, the efficiency and robustness of the proposed algorithm for multi-objective 

optimization of foundation will be investigated. In order to demonstrate, compare and analyze the 

effectiveness and performance of the new method, two illustrative examples of spread foundation 

optimization will be presented.  

In the following experiments, we use w1=w2=0.5 as a weighting factor for each objective function, 

since both of the objectives (i.e., cost and CO2 emissions) have equal importance in the given 

problem, and therefore, they have to contribute equally to the formulation of the objective 

function. In addition, a penalty function method is utilized to handle the constraints and convert a 

constrained optimization to an unconstrained one. Now, the problem can be formulated as follows 

      
 

2

1 2

1

( ) 0.5 ( ) 0.5 ( ) 1000 max 0, ( )
i

k

iF f f g


     X X X X

 
(36) 

where, f1(X) and f2(X) are CO2 emissions and cost objective functions defined in Eqs. (3) and (4),  
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Table 6 Input parameters for design examples 1 and 2 

Parameter Unit Value for example 1 Value for example 2 

Vertical load (P) kN 3000 3000 

Moment (M) kN-m 0.0 1000 

Load factor − 1.4 1.4 

Effective friction angle of base soil degree 35 30 

Unit weight of base soil kN/m
3
 18.5 18 

Young’s modulus MPa 50 35 

Poisson’s ratio − 0.3 0.3 

Concrete cover cm 7.0 7.0 

Yield strength of reinforcing steel MPa 400 400 

Compressive strength of concrete MPa 28 30 

Long side of column m 0.5 0.5 

Short side of column m 0.5 0.5 

Factor of safety for bearing capacity − 3.0 3.0 

Allowable settlement of foundation m 0.04 0.04 

 
Table 7 Optimization result for design example 1 

Design variable Unit CO2 emissions (Kg) Cost (Euros) Multi-objective 

Length of the foundation (X1) cm 312.72 301.36 308.86 

Breadth of the foundation (X2) cm 52.41 56.19 53.63 

Thickness of the foundation (X3) cm 51.72 51.72 51.73 

Depth of embedment (X4) cm 200 200 200 

Longitudinal reinforcement (X5) cm
2
 8 8 8 

Transverse reinforcement (X6) cm
2
 84.2 76 81.2 

Objective function value (GLGSA)  633.8 582.6 608.5 

Objective function value (GSA)  646.4 587.3 623.8 

 

 

respectively. The last term in Eq. (36) is a penalty term and added to the objective function to 

penalize constraint violations. gj(X) are inequality constraints summarized in Table 3. 

The examples are solved using both GSA and GLGSA algorithms and the results are compared.  

 

4.2.1 Design example 1 
The first example is concern with the optimum design of an interior spread foundation in dry 

sand to carry a vertical load. Other input parameters for this example are given in Table 6.  

The problem is solved using both the GSA and GLGSA algorithm and the results of the 

analyses are presented in Table 7. The third and the fourth columns of this table show the values of 

design variables when the CO2 emission and cost objectives defined in Eqs. (3) and (4) have been 

considered separately. In addition, in the last column of Table 7, the results of the single-objective 

function of the problem as defined in Eq. (36) are presented which considered both cost and 

emission objective functions simultaneously.  

Table 7 shows that the fitness values evaluated by the proposed GLGSA for all objective 

functions are lower than those computed by GSA and the new method could provide a better 

solution.  
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Table 8 Optimization result for design example 2 

Design variable Unit CO2 emissions (Kg) Cost (Euros) Multi-objective 

length of the foundation (X1) cm 403.32 382.9 394.06 

breadth of the foundation (X2) cm 113.6 120.67 116.62 

thickness of the foundation (X3) cm 51.6 51.67 51.62 

depth of embedment (X4) cm 200 200 200 

longitudinal reinforcement (X5) cm
2
 10.1 11.75 10.81 

transverse reinforcement (X6) cm
2
 101.2 92.45 97.17 

Objective function value (GLGSA)  1466.2 1199.2 1333.3 

Objective function value (GSA)  1492.6 1212.1 1388.5 

 

 

4.2.2 Design example 2 
Optimum design of a reinforced spread foundation under an eccentric load in dry sand is 

investigated in the second example. Other input parameters for this example are given in Table 6.  

This example is solved using both algorithms to minimize the total cost, CO2 emissions and 

combination of both objectives.  The results of the analyses are presented in Table 8. 

As shown in Table 8, for all objective functions, the optimum values obtained by the proposed 

GLGSA are lower than those calculated by classical GSA.  

 

 

5. Conclusions 
 
This article introduced a new version of gravitational search algorithm (GSA) by application of 

an effective chaotic decreasing function of time referred to as the global-local GSA (GLGSA). The 

new algorithm has been applied to a series of some mathematical benchmark functions and to the 

multi-objective optimization of spread foundation. For the optimization of foundation, two 

objective functions, namely the cost and the amount of embedded CO2 emissions have been 

considered simultaneously. The performance of the proposed algorithm as a global optimization 

technique is investigated using a set of six well-known unimodal/multimodal benchmark 

functions. In comparison with the results obtained from the classical GSA, the GLGSA algorithm 

has been verified to possess excellent performance in terms of accuracy, convergence rate, stability 

and robustness. In addition, in the foundation optimization, the results comparison between 

presented method and classical GSA demonstrated better performance of the GLGSA in terms of 

efficiency and robustness.  
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