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Abstract.  Vibration characteristics of columns are influenced by their axial loads.  Numerous methods have 
been developed to quantify axial load and deformation in individual columns based on their natural 
frequencies. However, these methods cannot be applied to columns in a structural framing system as the 
natural frequency is a global parameter of the entire framing system. This paper presents an innovative 
method to quantify axial deformations of columns in a structural framing system using its vibration 
characteristics, incorporating the influence of load tributary areas, boundary conditions and load migration 
among the columns. 
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1. Introduction 

 

Axially loaded structural components can be found in aerospace, civil and mechanical 

structural framing systems. Performance of such components and hence the structural framing 

system can be evaluated using vibration characteristics since the axial loads influence the vibration 

characteristics of the structural framing system. Several researchers (Yesilce and Demirdag 2008, 

Shaker 1975, Della and Shu 1975) have investigated the influence of axial loads on vibration 

characteristics of individual structural components with different boundary conditions and 

established a relationship between the frequency and the axial load. Their methods can be used to 

quantify axial force and or buckling load of a structural component using natural frequencies. 

However, as the natural frequency is a property of the entire structural framing system, these 

methods are limited to individual structural components. This is the main threshold in previous 

developments.  

The influence of axial force on the vibration characteristics of modal vectors and natural 

frequencies of individual structural components has been treated in past researches. Yesilce and 

Demindag (2008) derived the first five natural frequencies and corresponding mode shapes of an 

axially loaded multi-span Timoshenko beam and showed that the frequencies decrease with the 

axial compressive force. This finding confirmed that the stiffness of the beam is influenced by the 
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axial force. NASA (National Aeronautics and Space Administration) technical note, NASA TN-D-

8109 presented a numerical study on the effects of axial loads on the modal parameters of beams 

with different boundary conditions and showed that the natural frequencies reduce and the mode 

shapes change with increase in axial force (Shaker 1975). This study also indicated that the 

boundary conditions impact on mode shapes of the beam. Della and Shu (1975) showed that a 

monotonic relation exists between the natural frequency and the axial compressive force in beams. 

They also showed that the axial compressive force influences the mode shapes and that this 

influence reduces with the mode number. Walter and Kang (1996) investigated impact of axial 

force on vibration characteristics of a beam and developed a stiffness equation incorporating 

influence of axial force. Bahra et al. (2008) carried out a comprehensive study to examine axial 

load pattern updating using ambient vibration data from a physical frame. Equations developed by 

these authors were validated using ambient vibration data and confirmed that axial compressive 

force reduces the stiffness of the elements. Murat (2012) investigated the influence of axial forces 

on the behavior of the beams with cracks. Outcomes of his research confirmed that there is a 

significant impact of axial load on the dynamic characteristics. Moragaspitiya et al. (2012) studied 

the vibration properties of tall buildings comprising the belt and outrigger systems. In this study 

the influence of axial force on vibration properties of structural components and hence the whole 

structural framing system was investigated.   
It is hence evident that axial forces have an effect on the natural frequencies and mode shapes 

of a structure. To the best of the authors’ knowledge, none of the existing methods can solve the 

inverse problem to determine axial force and hence axial deformation of structural components in 

a structural framing system using its vibration characteristics. Moragaspitiya et al. (2010) 

highlighted the importance of including load migration due to horizontal structural systems such as 

belt and outrigger systems on the axial deformation of vertical structural components. This paper 

proposes an innovative and rigorous procedure to solve the inverse problem to determine these 

axial effects incorporating load migration based on the Modal Flexibility (MF) phenomenon which 

uses both modal vectors and natural frequencies. 
Based on the literature review above, it is evident that the stiffness matrix changes due to the 

applied axial load so that the mode shapes and natural frequencies also change. Since MF is 
inversely proportional to stiffness, it is obvious that there is a relationship between MF and axial 
loads and axial deformation of the structural component. This paper will pursue such a 
relationship. 

 
1.1 Modal flexibility    
 
The Modal Flexibility (MF) of a structure is indicative of its dynamic characteristics and 

incorporates both the modal vectors and natural frequencies. MF phenomenon has been widely 
used in performance assessment and damage detection of structures since it is accurate and 
convenient to apply. Shih et al. (2009) used the MF phenomenon to detect damage in flexural 
structural components. MF is used to develop the methodology proposed in this paper.  

 

1.1.1 Modal flexibility of an element  
Modal Flexibility Fx of an element x of a structural component can be obtained as (Shih et al. 

2009), Catbas et al. (2006), Zhao et al. (2006) and Adewuyi et al. (2010). 
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Fig. 1 Structural component with axial compressive force 

 

 

Where  

r and n = the mode and total number of modes respectively 

Фxr= modal vector of element x for mode r  

Since, the ω
2
 term is in the denominator of Eq. (1), the modal contributions decrease with 

increasing frequencies, resulting in the rapid convergence of Fx.   

 

 

2. Methodology 
 

The following sets of Eqns. are derived to present the influence of axial force on modal vectors 

and natural frequencies of a structural component and hence extended to the entire structural 

framing system. A beam with fixed end and subjected to an axial compressive force as shown in 

Fig. 1 is considered, 

where  

P- axial compressive force 

M-moment 

V-Shear Force 

ρ-mass per unit length 

y,x-axial coordinates  

t-time 

For free vibration of this component, Eqs. (2) and (3) incorporating the axial force, moment and 

shear force can be derived. 
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From the beam theory  
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Where EI- flexural rigidity of the component 

Eqn. (5) can be derived using Eqs. (2), (3) and (4)  
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Eq. (5) is a fourth order homogeneous differential equation. The solution y(x,t) to this equation. 

can be expressed as in Eq. (6) where Z(x) and w(t) represent the influence of distance x and time t 

respectively  

 )t(w)x(Z)t,x(y                                                           (6) 

Eq. (6) is substituted into Eq. (5) in order to form Eq. (7) as follows 
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where ω- natural frequency 

Solution of Eqn. (7) is 

)xcos(D)xsin(D)xcosh(D)xsinh(D)x(z 24231211                     (8) 
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D1, D2, D3, D4- vector constants 

and 
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A1 ,A2-constants determined from initial conditions of the vibration. 

Displacement of the structural component under free vibration can be expressed as follows  
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  )t(w)xcos(D)xsin(D)xcosh(D)xsinh(D)t,x(y 24231211             (14) 

Considering boundary conditions and the initial conditions of vibration, Eqn. (15) can be 

formed as follows 

  }D{A}Y{                                                               (15) 
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Where 1D , 2D , 3D , 4D -vector constants 

Eqn. (19) can be written considering moment, M and shear force, V  
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and  
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Eq. (24) can be formed by using Eqs. (15) and (19) as follows 

   }Y{AB}F{
1

                                                            (24) 

  }Y{k}F{ L                                                              (25) 

where  Lk  –dynamic stiffness matrix of the element and subscript, L indicates the local coordinate 

system. 

The above stiffness matrix is defined based on the local coordinate system so that the 

transformation matrix, [T] can be employed (Friberg 1985) as follows to establish the stiffness 

matrix in the global coordinate system. 

       TkTk L

T

G                                                             (26) 

where subscript G refers to the global coordinate system 

The dynamic stiffness matrix of the structure,  K , incorporating the influence of axial loads 

can then be formed by assembling stiffness matrices of the structural components considering 

compatibility of the nodes 

With the use of the dynamic stiffness matrix  K , the Eqn. of free vibration of a structure with 

the influence of the axial forces in structural components can be represented as  

    0K                                                                 (27) 

where Ф- modal vector  

It is clear from the above derivations that there is an impact of the axial compressive forces on 

the modal parameters of the components and the entire structural framing system. However, it is 

not convenient to solve Eq. (27) to examine the effects of modal parameters in a complex 

structural framing system with shear walls as shown in Example 3 (discussed in the next section).  

The Finite Element (FE) Method is an accessible analysis tool in engineering areas as it can be 

used to capture the complex behaviour of structures. The preprocessing technique in the FE 

package, ANSYS (2011) is used along with the theory presented above to incorporate the axial 

effects of structural components into the modal analysis.  

Modal Flexibility (MF) for an element (element x) without the axial load (unloaded case) can 

be written as (using Eq. (1))  
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where subscript U denotes the unloaded case 

The stiffness matrix of an element changes due to the influence of the axial force and 

consequently the modal parameters and MF of such an element also change. Modal Flexibility 

(MF) for element x with the axial load (loaded case) can be written as  
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where subscript L denotes the loaded case 

In order to amplify the effects of these modal flexibility changes, reciprocals of the two MFs 

for the unloaded and loaded cases are considered as shown below 
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To capture the influence of the axial force on the MF or the vibration characteristics, the 

parameter, SI called the stiffness index is introduced through Eq (32). This parameter is directly 

proportional to the stiffness reduction which occurs due to the axial load.   

   
XLXU F

1

F

1
SI                                                             (32) 

This stiffness Index (SI) can be implemented for a structure using the procedure as described 

below. 

 

 

3. Procedure  
 

    The procedure described herein can be used to quantify axial deformation of vertical structural 

components in structural framing system.    

1. Prior to the application of axial loads, the modal parameters of natural frequencies and mode 

shapes of a structure can be obtained from the outputs of accelerometers, as well as from modal 

analysis of an FE model (FEM) of the structure. 

2. Comparing the two sets of results, the FEM can be validated and Fxu for element x can be 

calculated using Eq. (28) and retained for future use. By applying known axial loads to both the 

FEM and the real structure, the above procedure can be repeated to improve the model validation.   

3. In the next stage, the validated FEM of the structure is used to develop a database that relates 

the index SI to the axial deformation (AD). For a given axial load applied to the FEM of the 

structure, the modal parameters are determined using the modified FE program and the FXL is first 

calculated using Eq. (29) and then along with the FXU determined earlier, SI for the particular case 

is calculated using Eq. (32). Axial deformation due to this axial force can also be obtained from 

static analysis. Repeating this procedure for a range of axial loads, a database for SI vs AD can be 

generated.  

4. Using the results from the database developed in the step above, graphs with the vertical axis 

representing the Stiffness Index (SI) and the horizontal axis representing the axial deformation  
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Fig. 2 Cross section of the beam 

  
Table 1 material properties and other data used in the vibration analysis 

Beam Parameter Numerical Value 

R(mm) 24.5 

t(mm) 4 

L(mm) 820 

m(Kg/m) 0.835 

E(GPa) 68.9 

G(GPa) 26.5 

 

 

(AD), can be plotted for each element x in the structural framing system. As will be seen later, the 

variation of SI with AD will be linear. It is hence evident that, if SI is known (at any stage of 

loading or construction of the structure) the axial deformation (AD) can be obtained by applying 

either interpolation or extrapolation methods.  

5. During the service life of a structure, the axial deformation (AD) of any element can be 

obtained from the SI vs AD graphs, if the current SI is known. Under an unknown axial load on the 

real structure, the modal parameters amend and they can be extracted from the deployed 

accelerometers and then used to calculate the current SI as described earlier. The axial deformation 

(AD) corresponding to the unknown axial load can then be obtained from the already available 

graphs of SI vs. AD for that element. 

 
 
4. Validation and Illustrative example. 
 

Three numerical examples are presented in this section. The first example is for validating the 

FE program with the preprocessing technique developed in this research to incorporate the effect 

of axial load into vibration characteristics while the other examples are used to illustrate the 

proposed procedure described in Section 3 and its capabilities. 

   

4.1 Example 1 
 

Banerjee and Williams (1994) carried out comprehensive studies on an axially loaded beam 

with cantilever end condition using different approaches. This example is used to evaluate the 

accuracy of the technique developed in this paper. Fig. 2 shows a cross section of a beam while 

Table 1 presents the material properties and other data used in the vibration analysis. More 

information on the selected element can be found in (Banerjee and Williams 1994). 

t
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Table 2 comparison of natural frequencies without axial load 

 Natural Frequency (rad/s)  

 Axial force=0  

Frequency Number Banerjee and Williams This Research Variations (%) 

1 391.70 390.40 0.33 

2 816.00 815.00 0.12 

3 1629.00 1625.00 0.25 

 
Table 3 comparison of natural frequencies with tension axial load 

 Natural Frequency (rad/s)  

 Axial force=−1790 N (tension)  

Frequency Number Pervious Publications [9] This research Variations (%) 

1 405.80 404.00 0.44 

2 826.70 826.00 0.08 

3 1649.00 1650.00 0.06 

 
Table 4 comparison of natural frequencies with compression axial load 

 Natural Frequency(rad/s)  

 Axial force=1790N(compression)  

Frequency Number Pervious Publications [9] This research Variations (%) 

1 376.80 377.00 -0.05 

2 805.10 804.00 0.14 

3 1609.00 1608.00 0.06 

 

 

A finite element model of this structural component was developed using the FE program and 

was first subjected to an axial compressive force of 1790N and then to an axial tensile force of the 

same magnitude. These are the loads used in the previous publication (Banerjee and Williams 

1994). The natural frequencies of the first three modes and the corresponding mode shapes with 

and without axial loads are extracted from the analysis results and compared with results from the 

previous publication. Tables 2 to 4 show the results for the natural frequencies of the first three 

modes for the three cases. 

It is evident that the present results compare well with those from Banerjee and Williams 

(1994).  In additions, the 1
st
 three mode shapes obtained from the present analysis, where the first 

mode is bending and the next two modes are mostly torsional, also compare well those from the 

previous research and highlight the accuracy of the finite element modeling and the preprocessing 

techniques developed and used in this research. 

 

4.2 Example 2 
 

A column, 0.5×0.5×4 m with different boundary conditions is selected to illustrate capabilities 

of the proposed procedure. The column was modeled using solid elements to capture torsion, if 

any, due to the boundary conditions. The material properties of the column are presented in Table 

5. 10 axial compressive load cases with loads ranging from 1, 2, 3 up to 10 MN are applied to the 

column to cause axial deformations in the linear elastic region. Effects of the boundary conditions  
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Fig. 3 Columns with two different boundary conditions 

 
Table 5 material properties of the column 

Material Property Numerical Value 

Density/(kNm-3) 2300 

Poisson Ratio 0.2 

Young’s Modulus /(GPa) 30 

 

 

 

are studied using two cases; A and B shown in Fig. 3. The first three frequencies and the 

associated modes were obtained for both cases from the modal analyses of the FE models.  

 
4.2.1 Case A: results and discussion 
The results indicated that first and second modes are bending while the third mode is a 

combination of bending and torsional. The frequency changes for each mode due to the axial 

compressive force are depicted in Fig. 4.  It is interesting to note that this change is largest for the 

first mode and reduces with the mode number and shows that the stiffness matrix change under 

axial force can be captured by using the first mode. Similar observations were made in a previous 

study (Della and Shu 1975). 

For each axial force the modal parameters (natural frequencies and modal vectors) were 

obtained from the finite element analysis and Eqn (32) was used to calculate the Stiffness Index; 

SI. The corresponding axial deformation was obtained using static analysis. Fig. 5 shows the 

variations of SI with the axial deformation for three different cases – using the (i) first mode, (ii) 

first two modes and (iii) first three modes.   

It is clearly revealed from Fig. 5 that SI does not deviate significantly with an increase in the 

number of modes incorporated into the calculation. This confirms that impact of number of modes 

on case A is very low. Fig. 5 also shows that the variations are linear and enable interpolation and 

extrapolation methods to estimate the axial deformation due to an unknown applied axial force, if 

the SI can be obtained from vibration measurements – the essence of the proposed methodology.    

 

4.2.2 Case B: results and discussion 
For case B, the frequency changes with axial loads are similar to those in case A with the 

Tx=Ty=Tz=FREE
Rx=Ry=Rz=FREE

Tx=Ty=Tz=FIXED
Rx=Ry=Rz=FIXED

P(Force) P(Force)

Tx=Ty=Tz=FREE
Rx=Ry=FIXED
Rz=FREE

Tx=Ty=Tz=FIXED
Rx=Ry=Rz=FIXED

X

Z

0.5x0.5x4m

CASE A CASE B

 

82



 

 

 

 

 

 

Use of vibration characteristics to predict the axial deformation of columns 

largest change for the first mode.  However, the mode shapes for case B seem to be different to 

case A due to the impact of the different boundary conditions (see Fig. 3). Though the first two 

modes are bending while the third mode is a combination of bending and torsional, as also 

observed for case A, the shapes of the modes for case B are different from those for case A. It was 

also observed that there was a significant change in the first mode shape due to the influence of the 

axial load as also observed by Della and Shu (1975).  

Fig. 6 shows variation of stiffness index, SI with the axial deformation, AD where the impact of 

number of modes can be examined.  In case B, the boundary conditions influence the variation of 

 

 

  

 

 

 

 

 

 

 

 
(a) (b) 

 

 

 

 

 

 

 

 

 

 
(c) 

Fig. 4 Percentage of frequency change (a) first mode, (b) second mode and (c) third mode 

 

 

Fig. 5 variation of stiffness index, SI with the axial deformation for case A 
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Fig. 6 Variation of stiffness index, SI with the axial deformation for case B 

 

 

the mode shapes and hence SI. Consequently, the graphs (see Fig. 6) deviate considerably when 

the number of modes used in the calculation is increased. This feature is different to that observed 

for case A and highlights the effect of boundary conditions on the SI proposed in this paper. 

 

4.3 Example 3  
 

As the last example, a 10 storey structural framing system with shear walls is used to illustrate 

the capability of the Stiffness Index (SI) and the proposed procedure to capture load migrations 

among members. The material properties of all structural components are selected to be same as in 

the previous example. Sizes of columns and beams are 1×1 m and 0.3×0.5 m respectively while 

0.5m thickness shear walls are located as shown in Fig. 7. Because of the shear walls, load 

migration occurs among the columns as in a structural framing system with belt and outrigger 

systems which are commonly used in structural framing systems of high rise buildings. This 

example studies the capability of the proposed SI to capture effects of load migration.  Floor height 

of the selected structure is 4m.  Different axial compressive loads are applied on columns as shown 

in Table 6. These loads facilitate to simulate different loads on the vertical structural components 

due to different load tributary areas, and are increased by 0.25MN to develop several loading 

cases. Stiffness Indexes, SI(s) of columns C1, C2, C3 and C4 in Fig. 7 at certain floor levels are 

selected to examine their behavior. SI(s) of columns in floor levels 2 6 and 10 represent their 

behavior at lower, middle and upper levels respectively, while SI(s) of columns in levels 4 and 8 

represent the behavior under load migration occurring due to shear walls located in these levels. 

Separate modal analyses are performed incorparating the effects of the applied axial 

compressive loads for each loading case using the developed and validated preprocessing 

technique. The first two modes of vibration, both of which are bending modes, and the 

corresponding frequencies are extracted from the analyses to calculate SI(s) of columns, as higher 

modes do not impact significantly on SI as indicated in the previous examples. Stiffness Indexes, 

SI(s)) are calculated for each column at the selected floor levels using the results from the modal 

analyses, while static analyes are used to calculate the axial deformations of the columns. Fig. 8  

shows the variation of the SI(s) of the columns with their axial deformations at the selected floor 

levels. 
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Use of vibration characteristics to predict the axial deformation of columns 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Structural framing system with shear walls 

 
Table 6 Initially applied axial compressive loads on columns   

Floor Number 

Force/ MN 

Column 

C1 C2 C3 C4 

1 1 1.5 2 1 

2 1 1.5 2 1 

3 2 3 3.5 2 

4 1 1.5 2 1 

5 1 1.5 2 1 

6 1 1.5 2 1 

7 2 2.5 3 2 

8 1 1.5 2 1 

9 1 1.5 2 1 

10 1 1.5 2 1 

 

 

Figs. 8 (a), (c) and (e) depict that SI of column C3 is lower than that of the other columns while 

SI of column C2 is lower compared to columns C1 and C4. This is because column C3 is subjected 

to a higher axial compressive load than others and column C2 is subjected to a higher axial load 

than that of columns C1 and C4 (see Table 6).  

Load migration can occur from a column with a larger axial load to column(s) with smaller 

axial load(s) when these columns are connected by stiff shear walls. The capability of SI to capture 

these load migrations among columns can be seen in Figs. 8(b) and 8(d). SI of column C1 is higher 

compared to that of column C4 at levels 4 and 8 though these two columns are subjected to equal 

axial loads (see Table 6).  At the 4
th
 level, axial load of column C3 migrates to columns C4 and C2 

via the shear walls while the axial load of column C2 migrates only to column C1 via the shear 

wall. Load migration from column C3 to C4 is higher than that from column C2 to C1 since the 

8m 6m 8m

S hear 
Walls

S hear 
Walls

4th L evel

8th L evel 

C 1 C 2 C 3 C 4
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(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) (d) 

 

 

 

 

 

 

 

 

(e) 

Fig. 8 variation of SI(s) of the columns, (a) 2nd level, (b) 4th level, (c) 6th level, (d) 8th level and 

(e) 10th level 

 

 
axial load of column C3 is higher than that of column C2. Hence C4 acquires more load than 

column C1 and Fig. 8(b) depicts that SI of column C4 is lower than that of column C1. It is also 

seen that SI of column C1 is lower than that of columns C2 and C3 from which load migrations 

occur to the outer columns.  The shear wall configuration at the 8
th
 level is different to that at the 

4
th
 level (see Fig. 7). Axial load of column C3 migrates to column C4 while axial load of column 

C2 migrates to column C1. However, axial load of column C3 is higher than that in the other 

columns so that load migration from columns C3 to C4 is higher than that between the other two 

columns. Axial deformation of column C4 is thereby more pronounced than that of columns C1 

and C2 and hence SI of column C4 is lower in comparison to that of columns C1 and C2 as shown 

in Fig. 8(d).  

Moragaspitiya et al. (2010) reported that even though the axial (elastic) deformations are low, 

they impact significantly on the creep deformations which are long term time dependent 

phenomenon. Accurate quantification of the axial deformations, incorporating load migration 
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Use of vibration characteristics to predict the axial deformation of columns 

among the vertical load bearing structural components, are hence essential in order to provide 

adequate provision to mitigate the adverse effects of differential axial deformations such as tilting 

of horizontal floor plates, deformation of claddings and facades, etc.          

Figs. 5, 6, and 8 indicate linear variations of SI with axial deformation for the different 

structural components confirming that interpolation and extrapolation methods can be used to 

calculate the axial deformation due to unknown axial loads, when the SI is determined from 

vibration measurements. These linear graphs show that as the axial deformations of the 

components are in the linear elastic range, their stiffness reduces linearly. When axial deformation 

due to an unknown axial force is needed, modal vectors and natural frequencies can be obtained 

from the deployed accelerometers and the stiffness index, SI can be calculated. The axial 

deformation can then be obtained by using interpolation and extrapolation methods on the graph, 

as explained in step 5 of the procedure described in section3. 

 

 

6. Conclusions 
 

Numerous methods have been developed to relate axial force and hence axial deformation of a 

single structural component using its natural frequencies. These developments cannot be applied to 

a structural component in a structural framing system since the natural frequency is a property of 

the entire structural framing system, and they are not capable of capturing the load migration 

among vertical structural components due to the presence of horizontal stiff structural systems 

such as belt and outrigger systems. In response to the need for a rigorous method to quantify axial 

deformation of vertical load bearing structural components of structural framing systems, a 

comprehensive method incorporating a vibration based parameter called stiffness index (SI) is 

proposed in this paper and illustrated through examples. Results indicate that the proposed 

procedure has the ability to quantify axial deformations of structural components in a structural 

framing system and capture the effects of the magnitudes of axial loads, the boundary conditions 

and the load tributary areas as well as the load migration.  The method proposed in this paper can 

be used to quantify axial deformation of vertical structural components of a complex structural 

framing system under gradual loadings using a non destructive vibration based test. 
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