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Abstract. A semi-analytical method is developed to consider free vibrations of a functionally graded
elastic plate resting on Winkler elastic foundation and in contact with a quiescent fluid. Material properties
are assumed to be graded distribution along the thickness direction according to a power-law in terms of the
volume fractions of the constituents. The fluid is considered to be incompressible and inviscid. In the
analysis, the effect of an in-plane force in the plate due to the weight of the fluid is taken into account. By
satisfying the compatibility conditions along the interface of fluid and plate, the fluid-structure interaction is
taken into account and natural frequencies and mode shapes of the coupled system are acquired by
employing energy methods. The results obtained from the present approach are verified by those from a
finite element analysis. Besides, the effects of volume fractions of functionally graded materials, Winkler
foundation stiffness and in-plane forces on the dynamic of plate are elucidated.

Keywords: dynamic behavior; fluid-structure interaction; functionally graded material; Winkler elastic
foundation; in-plane forces

1. Introduction

Free vibration analysis of circular plates made of composite materials such as functionally
graded materials (FGM) is of interest in practical applications. Functionally graded materials have
appeal properties of high strength, minimum weight and ultra-high temperature resistance and
were first introduced by a group of Japanese scientists (Shen 2009). A typical FGM, is an
inhomogeneous composite made of different phases of material constituents usually metal and
ceramic with a high bending-stretching coupling effect was reported by Shen (2009). By gradually
varying the volume fraction of constituent materials, the material properties of functionally graded
materials vary smoothly and change continuously between different layers. This advantage
eliminates interface problems of composite materials and the stress distribution becomes smooth.
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FGMs now have been regarded as one of the most promising candidates for future intelligent
composites in many engineering fields such as spacecraft thermal shield structures, heat exchanger
tubes, biomedical implants, flywheels, fusion reactors, blades, storage tanks, pressure vessels, and
general wear and corrosion resistant coatings or for joining dissimilar materials in aerospace,
automobile and defense industries.

Several researchers have focused their attention on investigating the dynamics of the FGM
components under mechanical loads. Yang and Shen (2001) considered the dynamic response of
initially stressed functionally graded rectangular thin plates subjected to impulsive lateral loads.
Linear and nonlinear thermo-mechanical response of FGM plates subjected to static and dynamic
loads has been studied with a third-order plate theory and a displacement finite element model was
reported by Aliaga and Reddy (2004). The effects of amplitude of vibration, initial condition and
volume fraction on nonlinear vibration of FGM plates with arbitrary initial stresses have been
studied by Chun-Sheng (2005). Nie and Zhong (2007) investigated three-dimensional free and
forced vibration analysis of functionally graded circular plate with various boundary conditions.
They used three-dimensional theory of elasticity. A semi-analytical approach for nonlinear free
and forced axisymmetric vibration of a thin circular functionally graded plate was developed by
Allahverdizadeh et al. (2008). Nonlinear vibration of hybrid composite plates on elastic
foundations have been studied by Chen et al. (2011). Rad (2012) investigated the static behavior
of bi-directional functionally graded (FG) non-uniform thickness circular plate resting on
guadratically gradient elastic foundations subjected to axisymmetric transverse and in-plane shear.
Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic
foundations were considered by Bouderba et al. (2013).

Coupled vibration of a flexible circular plate made of functionally graded material is studied in
the present paper. The plate is considered to be in contact with fluid and resting on a Winkler
elastic foundation as a model of soil foundation. The effect of in-plane forces because of static
fluid pressure is also considered. In order to formulate such a full coupled vibration problem, a
semi-analytical approach based on energy methods is developed. Amabili and Dalpiaz (1998)
studied the free vibrations of based plates in annular cylindrical tanks theoretically and
experimentally. The combined effect of thickness variation and hydrostatic in-plane force on the
natural frequencies of a circular plate has been studied by Jain (1972) on the basis of the classical
plate theory. Jeong (2003) presented a theoretical method which was based on the finite Fourier-
Bessel series expansion and the Rayleigh-Ritz method to investigate the fluid-coupled vibration of
two identical circular plates. Ergin and U?urlu (2003) considered the hydroelastic vibration of a
cantilever plate partially submerged in a fluid. Chan Il (1992) derived the frequency equation for
the in-plane vibration of the clamped circular plate of uniform thickness with an isotropic material
in the elastic range. Free vibrations of rectangular Mindlin plates resting on Pasternak foundation
and in contact with fluid were considered by Hosseini-Hashemi et al. (2010). Askari and
Daneshmand (2010) developed an analytical method to investigate the effect of internal bodies on
the hydroelastic vibration of circular plates. Kutlu et al. (2012) considered the free vibration of
moderately thick plates which rest on arbitrarily orthotropic two parameter foundation. They
employed finite element method to analysis the Mindlin plate and Pasternak foundation and
boundary element approach to model the fluid.

Material properties are assumed to be graded distribution along the thickness direction
according to a power-law in terms of the volume fractions of the constituents. The clamped
boundary condition is assumed for the circular plate. The fluid is assumed to be incompressible
and inviscid and the velocity potential is formulated in terms of Bessel functions and sinusoidal
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Fig. 1 A FGM elastic bottom plate in contact with fluid and resting on a Winkler elastic foundation
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Fig. 2 Geometry and coordinate system of the FGM plate

functions. Applying compatibility conditions on the fluid and structure interface, the Rayleigh—
Ritz method is utilized to calculate the natural frequencies and modes of the plate. The validity of
the proposed method is verified by comparing the results with those obtained from the
experimental and numerical solutions. A finite element analysis is also used to check the validity
of the present method. The effects of volume fractions (material parameter) of functionally graded
materials, Winkler foundation stiffness, fluid level, thickness of the plate, the number of nodal
diameters and circles and the in-plane force on the natural frequencies of the coupled system are
also examined.

2. The governing equations

Consider a functionally graded elastic bottom plate of a partially fluid-filled cylindrical tank
resting on Winkler elastic foundation as shown in Fig. 1 The rigid tank has radius a, length L,
elastic thin plate of thickness h and is filled to a height of H with an inviscid incompressible fluid
of mass density p,. The plate is assumed to be made of a functionally graded material. The radial,
circumferential and axial coordinates are denoted by r, 6 and z, respectively.

2.1 The material properties of the FGM plate

The functionally graded material (FGM) can be defined by the variation in the volume
fractions, which is described by the power-law function.
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For the elastic circular plate shown in Fig. 2, the z- and Z -axis are on the middle surface and
top surface of the plate, respectively. The Young's modulus and mass density of the plates vary
continuously in the thickness direction (z-axis) i.e., E=E(z), p=p(2). The effect of Poisson’s ratio on
the deformation is much less than that of Young's modulus and a constant Poisson’s ratio is
assumed in the present study. However, the Young's modulus and mass density of the FGM plate
vary in z-direction with power-law functions (P-FGM). The local volume fraction of the P-FGM is
assumed to obey a power-law function

z+h/2jp )

G(2) :(
where p is the material parameter and h is the thickness of the plate. The material properties of a P-
FGM are determined by the rule of mixture (Ebrahimi et al. 2011)
E(z) =G(2)E, +[1-G(2)]E,
p(2) =G(2) p, +[1-G(2)]p

where E, and p,, are the Young's modulus and mass density of the plate at the top surface, z = h/2
and Z =0. Similarly, E; and p. are the Young’s modulus and mass density of the FGM plate at the
bottom surface and z = -h/2, respectively.

)

2.2 Kinetic and potential energies for a plate

The Rayleigh-Ritz method is applied to find the natural frequencies and modes of the plate, and
the time variation is assumed to be harmonic. Assuming the eigenfunctions of the clamped circular
plate in vacuo as admissible functions, the transverse deflection W of the plate coupled to the fluid
can be written as (Leissa 1969)

W(r,9)=cos(n@)gq{\]n(/l”ir}Aﬂln[j“irﬂ (3)

a a

where n and i are the number of nodal diameters and circles, respectively, a is the plate radius, g;
are the parameters of the Ritz expansion, 4, is the well-known frequency parameter related to the
plate natural frequency, J, and I, are the Bessel function and modified Bessel function of order n,
respectively. 4, are frequency parameters and can be obtained as (Leissa 1969)

‘Jn(lni)lr;(/lni)_Jr:(ﬂ“ni)ln(ﬂ“ni)zo 4)

where J’, and |, indicate the r-derivatives of J, and I,. The mode shape constant for clamped
plates is defined as

In()“ni)
T3 () ©)

The reference kinetic energy T of the plate can be written as (Askari and Daneshmand 2010)

« 1 ¢hi2 c2r ca 2
T, :Ejmjo [, p(z?rdrd 6dz (6)
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Substituting Egs. (2)-(3) and (5) in Eq. (6), the reference kinetic energy of FGM plate T'» becomes

1 h(pw — £
TPZE{pch-F (€) J l//nqu (7)
where
B 27 if n=0 g
"Iz it n>0 ®)

The maximum potential energy of the plate is the summation of the reference kinetic energies of
the eigenfunctions of the plate in vacuum multiplied by @? , i.e.

1
UP :E(pch (pm J anq

(p 1) i=0

ni

3 s (9)
1 E.h N h*(E,, —E.)(p*— p+2) Zq
2 1207) 40— vA)(p+D(p+2)(p+d) ) &
where the plate circular frequency wy, is related to the frequency parameter by A;
Ech3 + hS(Em - Ec)(p2 -p+ 2)
i [120-v?)  40-v*)(p+D)(p+2)(p+3)
O =5 (10)
a h h(pm _pc)
PN+ — =
(p+1)

The maximum potential energy stored by the Winkler elastic foundation is also given by Amabili
(1997).

1 pemean 1, 2% 2
UE_EKIO jow rdrde_Eky/na i;qi (11)

where k' is the stiffness of the foundation.

The effect of in-plane load on the bottom plate due to the weight of the fluid is included in the
study. The maximum potential energy associated with flexural vibrations of the plate as a
consequence of in-plane load is (Gunaratnam and Bhattacharya 1985)

1 (27 ca oW z 10\N 2
U, :EIO ION“"{(a_rpj +[Fa_€pj }rdrde (12)
where for P-FGM plate

2 Saa o ) A ot 4,5 A o ot 2 s
P

(13)
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where Njy is the in-plane load for unit length

h/2
vy Lt ’dZ[ 6@:4(1)“_@6}
a a a
ngaZ

64Ih/2 E@) 24,
-h/2 (1—y?)

(14)

2.3 Dynamic behavior of the fluid-structure interaction

The tank is partially filled with an inviscid and incompressible fluid whose the free surface is at
distance H from the bottom plate (Fig. 1). For an incompressible and inviscid fluid the
deformation potential satisfies the Laplace equation as follows

Vz(p(r, 0, 2) =0 (15)

The deformation potential ¢ is related to the velocity potential ¢ by

o(r,0,2,t)=-iope'* |, i’=-1 (16)

where o is the natural circular frequency of vibration. Along the contact surface between the plate
and fluid, the normal velocity of the fluid and the normal velocity of the plate must be equal. This
is the condition of contact between the plate and fluid when there are no cavitations along the
interface. Therefore

(69107),_y =-W(r,0) (17)

For the fluid in contact with the rigid lateral wall of the container, the fluid velocity in the radial
direction is zero, so

(Oplor),_, =0 (18)
The fluid free surface condition is described by the zero dynamic pressure condition at Z=H as
((p)z=H =0 (19)

It is also useful to introduce the Rayleigh quotient (Zhu 1994) as
ol = Up +Ug +U,

T, +T) (20)

where p_ is the fluid mass density, y is the direction outward normal to the boundary surface S of
the fluid domain, S=S;+S,, S; is the shell lateral surface, S, is the plate surface. Using boundary
conditions, the simplified reference kinetic energy T*L of the fluid is (Amabili 1997).

1 8(/) 5(0 8(/)
T == S—— —dS-— dS=— @WdS
2 PL sl'[J-sz P or PL g(/’ or _U PL g (21)



Dynamic behavior of a functionally graded plate resting on Winkler elastic foundatio 59

The fluid deformation potential ¢ is assumed to be of the form

¢=iQi®i (22)

i=0

The functions ®@; for axisymmetric modes (n=0), are expressed as (Amabili 1997)

- - sinh(g, Z/a
®,(r,0,2)=Xpo(z-H)+ Z;XO,,(J (gOkr/a){cosh(gokz/a) W} (23)
and, for axisymmetric (n>0) modes, as
- o _ sinh(e, Z/a
®,(r,0,Z)=cos(n e)éxnik\]n (6,.r/ a){cosh(gnkz la)- W} (24)

where g, are solutions of the equation
Jr',(gnk)zo, k=1... ,o (25)

upon rejecting the first solution ¢=0 for n=0. Functions ®; satisfy Egs. (15)-(18) and (19). The
constants X, are calculated in order to satisfy boundary conditions defined in Eg. (15). For
asymmetric modes

atanh(s, H/a

Eq. (26) must be satisfied for 0<r<a. Multiplying Eq. (26) by (1/a%)Jn(enr/a)r, integrating from 0
to a and using the orthogonality of the Bessel functions, we obtain

X, = (it + Anienic) atanh(gnk ﬂj 27)
S nkénk a
By using Eq. (25)
1l a r
Sk = gjo Jr?(gnk g]rdr (28)
1l ca r r
S =, Jn(enk gja{ﬁm gjrdr (29)
1l ca r r
fnik = ?J‘O ‘]n(‘gnk gjln[ﬂm gjrdr (30)
T of the reference kinetic energy of the fluid is
L1 R H
T = —pLa3l//nzz Z o+ Ay gnlk)(Cnhk + Anhfnhk)tanh(gnk _) (31)
2 i=0 h=0 k=1 S nkénk a
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For axisymmetric modes, Eq. (26) is replaced by

SO oLV M. . r , r
Xmo"'kZ_‘IXo.kJo[EOk ajatanh(eOkH /a) {Jo(ﬂou aj"'pmlo(}m aﬂ (32)

The constant X is given by

2

Xoio =~ 7
i 3.2

a r r 1
_[0 [Jo(ﬂoi gj + Ay IO(ﬂOi gﬂrdr = _Z_%[Jl(ﬂm)Jr Ay (1) (33)
The constants X, for k>0 and n=0, are obtained from Eq. (27). For axisymmetric modes, the term
T, of the reference kinetic energy of the fluid is given by

i (§0ik + AviSoik )(

L a0 LF
T = EpLaS‘/’nzzqiqh[E;XOiOXOho " k=1 Sok€ok

i=0h=0

H
Sonk A()héohk)tanh(gok ;ﬂ (34)

2.4 The eigenvalue problem

For numerical calculation of the natural frequencies and Ritz expansion parameters, only N
terms in the expansion of W, Eq. (3), are considered, where N is chosen large enough to give the
required accuracy. All the energy terms are given by finite summations. By introducing a vectorial
notation, the vector g of the parameters of the Ritz expansions are defined by

Qo
q=1: (35)
Oy

The maximum potential energy of the plate, Eq. (9) can be written as (Askari and Daneshmand
2010)

1

Up = Et//anKPq (36)
where the elements of the diagonal matrix K"are given by

1 Ech3 + hg(Em_Ec)(p2 - p+2)

P_s — 4 ih=
Kih_é'haz(12(1—v2) 4(1—v2)(p+1)(p+2)(p+3))/1m W=t N (37

The maximum potential energy stored by the Winkler elastic foundation, Eq. (11), is written as
1
Ue =Zv.a'K"a (38)
where KF=k’a?[1], and [1] is the identity matrix of NxN.

The maximum potential energy stored by the plate as a consequence of the in-plane load, Eq.
(21), is
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1
U =Zwa'K'a, (39)

where, (for i, j=0,...,N)

Ea I R

Kilh =

(40)
nj N.,| A,J [ j+c |( j A ( J+C I[A ZJQL
ipl i¥n ni a ni'n h a nh*n a r
The reference kinetic energy of the plate, Eq. (7), is written as
. 1
To =2 ¥d' Mg (41)
where
h(om —p )J 2
MP =| p.h+—=Cm T2 (52| 42
( (07D 1] (42)

[1] is the NxN identity matrix. The simplified reference kinetic energy of the fluid, given in Eq.
(21), can be written as

. 1
T =2v,a' Mg (43)
The elements of the matrix M" of dimension NxN are given by
+ H .
Mj;, = p.a BZM(Q k+'°hh§nhk)ta”h( Enk j for i,h=0.. N (44)
k=L Snkénk a
For axisymmetric modes (n=0) the matrix M" should be changed to

1H é’[)ik+p\)ié:0ik)(

XOIOXOhO Z
k=1 S ok €ok

H .
MiLh = Sonk + PonSonk )tanh [SOK ;ﬂ for i,h=0,..,N (45)

By substituting Egs. (37)-(38)-(39)-(41) and (43) into the Rayleigh quotient, Eq. (20), and
minimizing with respect to the coefficient g;, we can finally obtain

(KP +KE+KHYg-Q*(MP +MY)q=0 (46)
in which Q is the circular frequency of the fluid-coupled system. Eq. (46) gives a linear eigenvalue
problem for a real, non-symmetric matrix.

3. Numerical results

Using the preceding analysis, the eigenvalue problem, Eq. (46) is solved to find the natural
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Table 1 Material properties used for the FGM plate

Properties Metal Ceramic
Aluminum (Al) Zirconia (ZrO,) Aluminia (Al,03)
E (GPa) 70 200 380
p (Kg/m®) 2702 5700 3800

Table 2 Effects of M on convergence of natural frequencies (Hz). (N=5, H=a, k'=10°, Al/ZrO,, p=2)

Mode M

n m 2 3 4 5

0 0 82.31 82.22 82.21 82.21
1 558.63 479.84 478.44 478.27

1 0 225.16 224.98 224.96 224.96
1 959.62 828.66 826.78 826.56

5 0 433.05 432.48 432.43 432.43
1 1469.42 1256.46 1253.15 1252.75

3 0 699.97 698.77 698.66 698.64
1 2058.35 1753.63 1748.64 1747.96

4 0 1025.15 1023.09 1022.87 1022.83
1 2720.45 2317.99 2311.09 2310.05

Table 3 Effect of N on convergence of natural frequencies (Hz). (M=5, H=a, k' = 10°, Al/ZrO,, p=2)

Mode M

n m 2 3 4 5

0 0 82.28 82.22 82.21 82.21
1 581.02 478.76 478.38 478.27

1 0 225.11 224.99 224.97 224.96
1 831.22 827.54 826.79 826.56

5 0 432.67 432.49 432.44 432.43
1 1257.70 1253.88 1253.02 1252.75

3 0 698.97 698.74 698.67 698.64
1 1752.91 1749.17 1748.24 1747.96

4 0 1023.23 1022.95 1022.86 1022.83
1 2314.89 2311.29 2310.34 2310.05

frequencies and mode shapes of a FGM flexible circular plate resting on a Winkler elastic
foundation. Experimental and numerical results available in the literature and a commercial finite
element code (ABAQUS) are used to validate the results of the present study. Quadrilateral shell
elements (S4R) are used for the finite element model of the structure. This element is a four-node,
doubly curved shell element with reduced integration, hour-glass control, and finite membrane
strain formulation. Acoustic three-dimensional elements (AC3D8) based on linear wave theory are
also used for the fluid. The elements are solid, eight-node brick acoustic elements with linear
interpolation and with only one pressure unknown per node. The location of each node on the
constrained surfaces of the fluid corresponds exactly to the location of a node on the structure.
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Table 4 Coupled natural frequencies (Hz) for H=a, k' = 10° and p=2

Mode Al/ZrO, Al/AL,O,
This study FEM This study FEM
1t 82.21(0,0)" 79.65 107.56 (0,0) 103.57
2m 224.96 (1,0) 216.65 298.93 (1,0) 286.33
3¢ 432.43 (2,0) 415.33 582.42 (2,0) 564.48
4t 478.27 (0,1) 466.91 643.65 (0,1) 615.16
5t 698.64 (3,0) 667.65 950.27 (3,0) 919.88
6" 826.56 (1,1) 807.64 1124.40 (1,1) 1086.61

“(n,m)

Surface tied normal contact was considered between the surfaces of the fluid and tank walls. No
sloshing waves are considered in this study. In the present finite element model, the circular plate
is divided into 3200 shell elements of the different size whereas the fluid region consists of 12880
fluid elements. In numerical analysis, the plate is assumed to be made of functionally graded
material with properties given in Table 1. v=0.3 and also for validations are used steel with
Young’s modulus E=206 Gpa, Poisson’s ratio v=0.25 and mass density p =7850 Kg/m®. The fluid
is water with mass density p,=1000 Kg/m®. The plate has a radius a=0.114 m and a wall thickness
h=0.002 m. The cylindrical tank is filled to H with L=0.2 m.

3.1 Convergence and validity study

In order to check the convergence of the developed method, an elastic clamped FGM plate of a
partially water-filled rigid tank is analyzed. Tables 2-3 show the convergence of the theoretical
method for different number of terms used in the series expansions. It is observed that five terms
for plate modes (N=5) in the Ritz expansion, Egs. (3)-(5), and five terms (M=5) in the expansions
of @;, Egs. (23)-(24), have been enough for good accuracy.

To validate the semi-analytical method developed in the present study, the results are compared
with those obtained from the finite element analysis in Table 4. As seen, the agreement between
the results is good and the largest discrepancy is less than 4.4 %. Tables 5-6 compare the results of
this study with those of obtained by Askari and Daneshmand (2010), Chiba (1992) and Ergin and
Ugurlu (2004) whereas they considered the steel plate. It should be noted that the results for both
including and neglecting the effect of in-plane force are provided in Tables 5-6. A good agreement
between the results can be seen. However, there are some differences between the results of the
present study and those found in the literature. In addition to those discrepancies discussed, if
neglected the effect of in-plane force in calculation, the largest discrepancy will be less than 0.11%
for all filling ratios with the predictions of Askari and Daneshmand (2010). This difference when
the effect of in-plane force taken into account increases by 0.17% for H=0.1 L and reaches to
3.91% for H=2 L. it might be because the effect of in-plane force is neglected by Askari and
Daneshmand (2010). As seen from these tables, discrepancies raise with increasing the fluid-filling
ratio. This comes from the decrease of the effect of in-plane forces in the bottom plate with the
increase of filling ratio. The largest discrepancy is less than 2.45% and 1.28% compared with
experimental data reported by Chiba (1992) and numerical one presented by Ergin and Ugurlu
(2004), respectively.
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Table 5 Coupled natural frequencies (Hz) for the coupled system

Mode H/a=0.1 H/a=0.5
. Ergin . Ergin
w oo This  This Dézﬁﬂrﬁgg j Chiba and  This  This Dﬁfﬁﬂnﬂﬁ | Chiba and
study-  study (2010) (1992) Ugurlu study” study (2010) (1992) Ugurlu
(2004) (2004)
0 0 1742 1739 173.9 177 1735 1127 1127 112.7 110 1128
0 1 3646 364.4 364.4 365.7 2629 262.2 262.2 264.6
1 0 689.2 689.1 689.1 694 688.1 539.6 538.7 538.6 540 540.6
1 1 1067.2 1066.2 1066.1 1072.3 893.2 892.2 891.9 902.5
2 0 15845 1583.4 1583.0 1620 1585.2 1390.4 1387.3 1386.2 1410 1393.9
2 1 21642 21624 2162.2 2183.0 1976.3 1963.0 1962.2 1991.3
YIncluding the effect of in-plane force due to the weight of the fluid
Neglecting the effect of in-plane force due to the weight of the fluid
Table 6 Coupled natural frequencies (Hz) for the coupled system
Mode H/a=1 H/a=2
. . Askari and . Ergin . . Askariand  Ergin and
This This Chiba and This This 9
m study'  study? Daneshmand (1992) Ugurlu study® study? Daneshmand  Ugurlu
(2010) (2004) (2010) (2004)
0 0 91.7 90.3 90.30 92 91.3 71.8 69.1 69.1 71.8
0 1 246.7 2443 244.30 2474 2459 241.0 241.0 244.2
1 0 5153 5117 511.60 520 515.1 5059 4958 495.7 499.5
1 1 8798 8753 874.90 886.3 8874 872.1 872.1 883.6
2 0 13699 1364.4 1363.00 1390 13723 1369.2 13517 1350.2 1356.2
2 1 19619 19495 1947.40 1976.9 1963.0 19445 1945.0 1974.5

YIncluding the effect of in-plane force due to the weight of the fluid
Neglecting the effect of in-plane force due to the weight of the fluid

3.2 The number of nodal diameter n

The variations of normalized natural frequencies for the coupled system as a function of the
number of nodal diameters n are shown in Fig. 3. The normalized natural frequency is defined as
the coupled natural frequency divided by the natural frequency of the plate in vacuum for the
specific corresponding mode. Fig. 3 shows that the frequencies increase as the number of nodal
diameters n enhances. It might be worthy to note that for a given number of nodal diameter n, the
frequencies increase as the number of nodal circles m increase. Therefore the fundamental
frequency always belongs to the curve m=0. For each number of nodal circles m, the minimum
values of normalized natural frequencies occur for n=0.

3.3 Functionally graded material

The effect of a wide range of material parameter on the natural frequencies for m=0 and m=1
and different nodal diameters (n) are investigated in Figs. 4-5, respectively. It can be seen from
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Fig. 4 Natural frequencies of the coupled system as a function of material parameter (p) for H=a,
k' = 10° and m=0

these figures that the natural frequencies increase as the material parameter increase. It is because
raising the material parameter changes the dominant material properties of the plate from ceramic
to Al. In order to clarify this fact it should be noted that when p is 0, the plate behaves as a metal
(Al), however, as the value of p goes to infinity, the plate behavior goes towards ZrO,. The main
increase in natural frequencies can be seen between p=0 and 5. It should be noted that the raising
of the material parameter has more effects on natural frequencies obtained for m=1 than those for
m=0.

3.4 Winkler elastic foundation

The presence of a Winkler elastic foundation is now considered for the same tank completely
filled by water and with the material parameter p=2 in Fig. 6 The stiffness of Winkler foundation
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H=a and Al/ZrO, material with p=2

has no effects on the natural frequencies of the plate since the stiffness of foundation is too small
compared with the plate stiffness when it is lower than 10° N/m®. After that, increasing the
foundation stiffness raises the natural frequencies of the fluid-coupled system exponentially. The
upward trends of natural frequencies are similar for curves with different circumferential mode
numbers as it can be seen in figure.

3.5 The fluid level

The variation of the first three natural frequencies as a function of filling ratio (H/L) for the
Al/AIZrO,-plate with different thicknesses, h=0.7, 1, and 2 mm are shown in Figs. 7, 8 and 9,
respectively. Two types of conditions were considered for including (Type 1) and neglecting (Type
I1) the effect of in-plane force due to the weight of the fluid. The results are represented by dash-
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dotted lines and solid lines for type I and type I, respectively.

In type I condition with plate thickness h=0.07 mm, the natural frequencies decrease sharply in
the range of 0<H/L<0.05 due to the increase of the added mass effect of the fluid on the bottom
plate motion. Further increase of H/L causes the natural frequencies to increase on account of the
increase of the effect of in-plane forces of the bottom plate. The in-plane force effect is dominant
with respect to added mass effect for H/L>0.05. In type II conditions for h=0.07 mm, the natural
frequencies decrease sharply in the range of O0<H/L<0.1. Further increase of H/L leads to the
natural frequencies continuing to decrease because the effect of in-plane force is neglected in this
case. The effect of fluid level is very small in filling ratios H/L>0.4. In each mode, type II natural
frequencies are lower than those of type I, however, the difference between natural frequencies in
Type I and II, increase with increasing filling ratio and mode number. Next, for the larger value of
the thickness of the plate, i.e., h=1 mm shown in Fig. 8, the increase in the natural frequencies with
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H/L for Type 1 is less than those obtained for h=0.07. It seems to occur due to the decrease in the
effect of in-plane forces of the plate with increasing the thickness. In the case of h=2 mm shown in
Fig. 9, there is a little difference in the values among two types of conditions (I and II) whereas no
increase in the natural frequencies can be seen for type 1.

Generally, when the plate is thin especially in high filling ratio, which results in large static
deflections, one must consider in-plane forces but for higher thickness, it is not very significant as
much as ignorable in the calculations.
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3.6 Vibration mode shapes

The first four mode shapes of the FGM elastic plate coupled with the fluid for different values
of (k") having the number of nodal diameters n=0 and 1 are shown in Figs. 10-11, respectively. The
mode shapes are plotted in the tank section defined by =0 and #=x. As it can be observed from
these figures, the locations of the nodal points (the points with zero displacement) and peak points
change with k' which means the mode shapes vary with foundation stiffness. The effect of
foundation stiffness on the axisymmetric mode shapes (n=0) is more than its effect on the
asymmetric mode shapes (n>0). Near the centerline, foundation stiffness has more effect on the
mode shapes and the effect of foundation stiffness on the mode shapes decrease as the number of
nodal circles m increase.

4. Conclusions

Hydroelastic vibration of functionally graded circular plates resting on Winkler elastic
foundations, including the effects of both in-plane forces due to fluid weight and the interaction
between fluid and plate, was theoretically investigated. Results obtained by the proposed approach
were validated by the experimental and numerical data available in the literature. Effects of fluid
level, functionally graded material, elastic foundation stiffness, and numbers of nodal diameter and
circle (n, m) on the natural frequencies and the mode shapes of the coupled system were also
considered.

It was found that by increasing the material parameter, the natural frequencies of the fluid-
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coupled system increase; however, this increase for the greater amount of material parameter is
lower than those with smaller ones. Also, it was observed that the natural frequency of the plate
increases as the elastic foundation stiffness increases.

Effects of fluid level on the natural frequencies of the FGM elastic plate resting on an elastic
foundation vary with number of nodal diameters and circles (n,m), i.e., these effects are stronger
for modes with smaller number of nodal diameters and circles. The natural frequencies by taking
in-plane forces into account are higher than those that neglect this effect, however, the difference
between natural frequencies, increase with increasing filling ratio and mode number.
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