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Abstract.   A semi-analytical method is developed to consider free vibrations of a functionally graded 
elastic plate resting on Winkler elastic foundation and in contact with a quiescent fluid. Material properties 
are assumed to be graded distribution along the thickness direction according to a power-law in terms of the 
volume fractions of the constituents. The fluid is considered to be incompressible and inviscid. In the 
analysis, the effect of an in-plane force in the plate due to the weight of the fluid is taken into account. By 
satisfying the compatibility conditions along the interface of fluid and plate, the fluid-structure interaction is 
taken into account and natural frequencies and mode shapes of the coupled system are acquired by 
employing energy methods. The results obtained from the present approach are verified by those from a 
finite element analysis. Besides, the effects of volume fractions of functionally graded materials, Winkler 
foundation stiffness and in-plane forces on the dynamic of plate are elucidated. 
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1. Introduction 

 

Free vibration analysis of circular plates made of composite materials such as functionally 

graded materials (FGM) is of interest in practical applications. Functionally graded materials have 

appeal properties of high strength, minimum weight and ultra-high temperature resistance and 

were first introduced by a group of Japanese scientists (Shen 2009). A typical FGM, is an 

inhomogeneous composite made of different phases of material constituents usually metal and 

ceramic with a high bending-stretching coupling effect was reported by Shen (2009). By gradually 

varying the volume fraction of constituent materials, the material properties of functionally graded 

materials vary smoothly and change continuously between different layers. This advantage 

eliminates interface problems of composite materials and the stress distribution becomes smooth. 
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FGMs now have been regarded as one of the most promising candidates for future intelligent 

composites in many engineering fields such as spacecraft thermal shield structures, heat exchanger 

tubes, biomedical implants, flywheels, fusion reactors, blades, storage tanks, pressure vessels, and 

general wear and corrosion resistant coatings or for joining dissimilar materials in aerospace, 

automobile and defense industries. 

Several researchers have focused their attention on investigating the dynamics of the FGM 

components under mechanical loads. Yang and Shen (2001) considered the dynamic response of 

initially stressed functionally graded rectangular thin plates subjected to impulsive lateral loads. 

Linear and nonlinear thermo-mechanical response of FGM plates subjected to static and dynamic 

loads has been studied with a third-order plate theory and a displacement finite element model was 

reported by Aliaga and Reddy (2004). The effects of amplitude of vibration, initial condition and 

volume fraction on nonlinear vibration of FGM plates with arbitrary initial stresses have been 

studied by Chun-Sheng (2005). Nie and Zhong (2007) investigated three-dimensional free and 

forced vibration analysis of functionally graded circular plate with various boundary conditions. 

They used three-dimensional theory of elasticity. A semi-analytical approach for nonlinear free 

and forced axisymmetric vibration of a thin circular functionally graded plate was developed by  

Allahverdizadeh et al. (2008). Nonlinear vibration of hybrid composite plates on elastic 

foundations have been studied by Chen et al. (2011). Rad (2012) investigated the static behavior 

of bi-directional functionally graded (FG) non-uniform thickness circular plate resting on 

quadratically gradient elastic foundations subjected to axisymmetric transverse and in-plane shear. 

Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic 

foundations were considered by Bouderba et al. (2013). 

Coupled vibration of a flexible circular plate made of functionally graded material is studied in 

the present paper. The plate is considered to be in contact with fluid and resting on a Winkler 

elastic foundation as a model of soil foundation. The effect of in-plane forces because of static 

fluid pressure is also considered. In order to formulate such a full coupled vibration problem, a 

semi-analytical approach based on energy methods is developed. Amabili and Dalpiaz (1998) 

studied the free vibrations of based plates in annular cylindrical tanks theoretically and 

experimentally. The combined effect of thickness variation and hydrostatic in-plane force on the 

natural frequencies of a circular plate has been studied by Jain (1972) on the basis of the classical 

plate theory. Jeong (2003) presented a theoretical method which was based on the finite Fourier-

Bessel series expansion and the Rayleigh-Ritz method to investigate the fluid-coupled vibration of 

two identical circular plates. Ergin and U?urlu (2003) considered the hydroelastic vibration of a 

cantilever plate partially submerged in a fluid. Chan Il (1992) derived the frequency equation for 

the in-plane vibration of the clamped circular plate of uniform thickness with an isotropic material 

in the elastic range. Free vibrations of rectangular Mindlin plates resting on Pasternak foundation 

and in contact with fluid were considered by Hosseini-Hashemi et al. (2010). Askari and 

Daneshmand (2010) developed an analytical method to investigate the effect of internal bodies on 

the hydroelastic vibration of circular plates. Kutlu et al. (2012) considered the free vibration of 

moderately thick plates which rest on arbitrarily orthotropic two parameter foundation. They 

employed finite element method to analysis the Mindlin plate and Pasternak foundation and 

boundary element approach to model the fluid. 

Material properties are assumed to be graded distribution along the thickness direction 

according to a power-law in terms of the volume fractions of the constituents. The clamped 

boundary condition is assumed for the circular plate. The fluid is assumed to be incompressible 

and inviscid and the velocity potential is formulated in terms of Bessel functions and sinusoidal  
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Fig. 1 A FGM elastic bottom plate in contact with fluid and resting on a Winkler elastic foundation 

 

 

Fig. 2 Geometry and coordinate system of the FGM plate 

 

 

functions. Applying compatibility conditions on the fluid and structure interface, the Rayleigh–

Ritz method is utilized to calculate the natural frequencies and modes of the plate. The validity of 

the proposed method is verified by comparing the results with those obtained from the 

experimental and numerical solutions. A finite element analysis is also used to check the validity 

of the present method. The effects of volume fractions (material parameter) of functionally graded 

materials, Winkler foundation stiffness, fluid level, thickness of the plate, the number of nodal 

diameters and circles and the in-plane force on the natural frequencies of the coupled system are 

also examined. 

 

 

2. The governing equations 
 

Consider a functionally graded elastic bottom plate of a partially fluid-filled cylindrical tank 

resting on Winkler elastic foundation as shown in Fig. 1 The rigid tank has radius a, length L, 

elastic thin plate of thickness h and is filled to a height of H with an inviscid incompressible fluid 

of mass density ρL. The plate is assumed to be made of a functionally graded material. The radial, 

circumferential and axial coordinates are denoted by r, θ and z, respectively. 

 

2.1 The material properties of the FGM plate 
 

The functionally graded material (FGM) can be defined by the variation in the volume 

fractions, which is described by the power-law function. 
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For the elastic circular plate shown in Fig. 2, the z- and z -axis are on the middle surface and 

top surface of the plate, respectively. The Young's modulus and mass density of the plates vary 

continuously in the thickness direction (z-axis) i.e., E=E(z), ρ=ρ(z). The effect of Poisson’s ratio on 

the deformation is much less than that of Young's modulus and a constant Poisson’s ratio is 

assumed in the present study. However, the Young's modulus and mass density of the FGM plate 

vary in z-direction with power-law functions (P-FGM). The local volume fraction of the P-FGM is 

assumed to obey a power-law function 
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where p is the material parameter and h is the thickness of the plate. The material properties of a P-

FGM are determined by the rule of mixture (Ebrahimi et al. 2011) 
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where Em 
and ρm 

are the Young's modulus and mass density of the plate at the top surface, z = h/2 

and  0z . Similarly, Ec and ρc 
are the Young’s modulus and mass density of the FGM plate at the 

bottom surface and z = -h/2, respectively.  

 

2.2 Kinetic and potential energies for a plate 
 

The Rayleigh-Ritz method is applied to find the natural frequencies and modes of the plate, and 

the time variation is assumed to be harmonic. Assuming the eigenfunctions of the clamped circular 

plate in vacuo as admissible functions, the transverse deflection W of the plate coupled to the fluid 

can be written as (Leissa 1969) 
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where n and i are the number of nodal diameters and circles, respectively, a is the plate radius, qi 

are the parameters of the Ritz expansion, λni is the well-known frequency parameter related to the 

plate natural frequency, Jn 
and In 

are the Bessel function and modified Bessel function of order n, 

respectively. λni are frequency parameters and can be obtained as (Leissa 1969) 
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where J’n 
and I’n indicate the r-derivatives of Jn and In. The mode shape constant for clamped 

plates is defined as 
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The reference kinetic energy T
*

P of the plate can be written as (Askari and Daneshmand 2010) 
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Substituting Eqs. (2)-(3) and (5) in Eq. (6), the reference kinetic energy of FGM plate T
*

P becomes 
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The maximum potential energy of the plate is the summation of the reference kinetic energies of 

the eigenfunctions of the plate in vacuum multiplied by 2
ni  , i.e. 
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where the plate circular frequency ωni is related to the frequency parameter by λni 

      
)1(

)(

)3)(2)(1)(1(4

)2)((

)1(12 2

23

2

3

2

2














p

h
h

ppp

ppEEhhE

a cm
c

cmc

ni
ni 




  (10) 

The maximum potential energy stored by the Winkler elastic foundation is also given by Amabili 

(1997). 
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where k
’

 is the stiffness of the foundation. 

The effect of in-plane load on the bottom plate due to the weight of the fluid is included in the 

study. The maximum potential energy associated with flexural vibrations of the plate as a 

consequence of in-plane load is (Gunaratnam and Bhattacharya 1985) 
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where for P-FGM plate 
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where Nipl  is the in-plane load for unit length  
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2.3 Dynamic behavior of the fluid-structure interaction 
 

The tank is partially filled with an inviscid and incompressible fluid whose the free surface is at 

distance H from the bottom plate (Fig. 1). For an incompressible and inviscid fluid the 

deformation potential satisfies the Laplace equation as follows 

      
  0,,2  zr   (15) 

The deformation potential φ is related to the velocity potential ~ by 
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where ω is the natural circular frequency of vibration. Along the contact surface between the plate 

and fluid, the normal velocity of the fluid and the normal velocity of the plate must be equal. This 

is the condition of contact between the plate and fluid when there are no cavitations along the 

interface. Therefore 
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For the fluid in contact with the rigid lateral wall of the container, the fluid velocity in the radial 

direction is zero, so 
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The fluid free surface condition is described by the zero dynamic pressure condition at Hz  as 
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It is also useful to introduce the Rayleigh quotient (Zhu 1994) as 
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where ρL is the fluid mass density, χ is the direction outward normal to the boundary surface S of 

the fluid domain, S=S1+S2, S1 is the shell lateral surface, S2 is the plate surface. Using boundary 

conditions, the simplified reference kinetic energy T
*

L of the fluid is (Amabili 1997). 
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The fluid deformation potential φ is assumed to be of the form  
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The functions Фi 
for axisymmetric modes (n=0), are expressed as (Amabili 1997) 
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and, for axisymmetric (n>0) modes, as 
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where εnk are solutions of the equation 
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upon rejecting the first solution ε=0 for n=0. Functions Фi satisfy Eqs. (15)-(18) and (19). The 

constants Xnik are calculated in order to satisfy boundary conditions defined in Eq. (15). For 

asymmetric modes 
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Eq. (26) must be satisfied for 0≤r≤a. Multiplying Eq. (26) by (1/a
2
)Jn(εnkr/a)r, integrating from 0 

to a and  using the orthogonality of the Bessel functions, we obtain 
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By using Eq. (25) 
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
LT  of the reference kinetic energy of the fluid is  
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For axisymmetric modes, Eq. (26) is replaced by 
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The constant X0i0 is given by 
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The constants X0ik, for k>0 and n=0, are obtained from Eq. (27). For axisymmetric modes, the term 


LT  of the reference kinetic energy of the fluid is given by 
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2.4 The eigenvalue problem 
 

For numerical calculation of the natural frequencies and Ritz expansion parameters, only N 

terms in the expansion of W, Eq. (3), are considered, where N is chosen large enough to give the 

required accuracy. All the energy terms are given by finite summations. By introducing a vectorial 

notation, the vector q of the parameters of the Ritz expansions are defined by 
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The maximum potential energy of the plate, Eq. (9) can be written as (Askari and Daneshmand 

2010) 
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where the elements of the diagonal matrix K
P
are given by 
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The maximum potential energy stored by the Winkler elastic foundation, Eq. (11), is written as 

      
qKq

ET
nEU 

2

1
  (38) 

where K
E
=k’a

2
[I], and [I] is the identity matrix of N×N.  

The maximum potential energy stored by the plate as a consequence of the in-plane load, Eq. 

(21), is 
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where, (for i, j=0,…,N) 
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The reference kinetic energy of the plate, Eq. (7), is written as 
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[I] is the N×N identity matrix. The simplified reference kinetic energy of the fluid, given in Eq. 

(21), can be written as 
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 (43) 

The elements of the matrix M
L 

of dimension N×N are given by 
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For axisymmetric modes (n=0) the matrix M
L
 should be changed to 
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By substituting Eqs. (37)-(38)-(39)-(41) and (43) into the Rayleigh quotient, Eq. (20), and 

minimizing with respect to the coefficient qi, we can finally obtain 

      
0)()( 2  qMMqKKK

LPIEP
 (46) 

in which Ω is the circular frequency of the fluid-coupled system. Eq. (46) gives a linear eigenvalue 

problem for a real, non-symmetric matrix. 

 

 

3. Numerical results 
 

Using the preceding analysis, the eigenvalue problem, Eq. (46) is solved to find the natural  
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Table 1 Material properties used for the FGM plate 

Properties 
Metal Ceramic 

Aluminum (Al) Zirconia (ZrO2) Aluminia (Al2O3) 

E (GPa) 70 200 380 

ρ (Kg/m
3
) 2702 5700 3800 

 
Table 2 Effects of M on convergence of natural frequencies (Hz). (N=5, H=a,  k'=10

5
, Al/ZrO2, p=2) 

Mode M 

n m 2 3 4 5 

0 
0 82.31 82.22 82.21 82.21 

1 558.63 479.84 478.44 478.27 

1 
0 225.16 224.98 224.96 224.96 

1 959.62 828.66 826.78 826.56 

2 
0 433.05 432.48 432.43 432.43 

1 1469.42 1256.46 1253.15 1252.75 

3 
0 699.97 698.77 698.66 698.64 

1 2058.35 1753.63 1748.64 1747.96 

4 
0 1025.15 1023.09 1022.87 1022.83 

1 2720.45 2317.99 2311.09 2310.05 

 
Table 3 Effect of N on convergence of natural frequencies (Hz). (M=5, H=a, k' = 10

5
, Al/ZrO2, p=2) 

Mode M 

n m 2 3 4 5 

0 
0 82.28 82.22 82.21 82.21 

1 581.02 478.76 478.38 478.27 

1 
0 225.11 224.99 224.97 224.96 

1 831.22 827.54 826.79 826.56 

2 
0 432.67 432.49 432.44 432.43 

1 1257.70 1253.88 1253.02 1252.75 

3 
0 698.97 698.74 698.67 698.64 

1 1752.91 1749.17 1748.24 1747.96 

4 
0 1023.23 1022.95 1022.86 1022.83 

1 2314.89 2311.29 2310.34 2310.05 

 
 

frequencies and mode shapes of a FGM flexible circular plate resting on a Winkler elastic 

foundation. Experimental and numerical results available in the literature and a commercial finite 

element code (ABAQUS) are used to validate the results of the present study. Quadrilateral shell 

elements (S4R) are used for the finite element model of the structure. This element is a four-node, 

doubly curved shell element with reduced integration, hour-glass control, and finite membrane 

strain formulation. Acoustic three-dimensional elements (AC3D8) based on linear wave theory are 

also used for the fluid. The elements are solid, eight-node brick acoustic elements with linear 

interpolation and with only one pressure unknown per node. The location of each node on the 

constrained surfaces of the fluid corresponds exactly to the location of a node on the structure.  
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Table 4 Coupled natural frequencies (Hz) for H=a, k' = 10
5
 and p=2 

Mode 
Al/ZrO2  Al/Al2O3  

This study FEM This study FEM 

1
st
 82.21 (0,0)

* 
79.65 107.56 (0,0) 103.57 

2
nd

 224.96 (1,0) 216.65 298.93 (1,0) 286.33 

3
rd

 432.43 (2,0) 415.33 582.42 (2,0) 564.48 

4
th

 478.27 (0,1) 466.91 643.65 (0,1) 615.16 

5
th

 698.64 (3,0) 667.65 950.27 (3,0) 919.88 

6
th

 826.56 (1,1) 807.64 1124.40 (1,1) 1086.61 
*
(n,m) 

 

 

Surface tied normal contact was considered between the surfaces of the fluid and tank walls. No 

sloshing waves are considered in this study. In the present finite element model, the circular plate 

is divided into 3200 shell elements of the different size whereas the fluid region consists of 12880 

fluid elements. In numerical analysis, the plate is assumed to be made of functionally graded 

material with properties given in Table 1. v=0.3 and also for validations are used steel with 

Young’s modulus E=206 Gpa, Poisson’s ratio v=0.25 and mass density ρL=7850 Kg/m
3
. The fluid 

is water with mass density ρL=1000 Kg/m
3
. The plate has a radius a=0.114 m and a wall thickness 

h=0.002 m. The cylindrical tank is filled to H with L=0.2 m. 

 

3.1 Convergence and validity study 
 

In order to check the convergence of the developed method, an elastic clamped FGM plate of a 

partially water-filled rigid tank is analyzed. Tables 2-3 show the convergence of the theoretical 

method for different number of terms used in the series expansions. It is observed that five terms 

for plate modes (N=5) in the Ritz expansion, Eqs. (3)-(5), and five terms (M=5) in the expansions 

of Фi, Eqs. (23)-(24), have been enough for good accuracy. 

To validate the semi-analytical method developed in the present study, the results are compared 

with those obtained from the finite element analysis in Table 4. As seen, the agreement between 

the results is good and the largest discrepancy is less than 4.4 %. Tables 5-6 compare the results of 

this study with those of obtained by Askari and Daneshmand (2010), Chiba (1992) and Ergin and 

Uğurlu (2004) whereas they considered the steel plate. It should be noted that the results for both 

including and neglecting the effect of in-plane force are provided in Tables 5-6. A good agreement 

between the results can be seen. However, there are some differences between the results of the 

present study and those found in the literature. In addition to those discrepancies discussed, if 

neglected the effect of in-plane force in calculation, the largest discrepancy will be less than 0.11% 

for all filling ratios with the predictions of Askari and Daneshmand (2010). This difference when 

the effect of in-plane force taken into account increases by 0.17% for H=0.1 L and reaches to 

3.91% for H=2 L. it might be because the effect of in-plane force is neglected by Askari and 

Daneshmand (2010). As seen from these tables, discrepancies raise with increasing the fluid-filling 

ratio. This comes from the decrease of the effect of in-plane forces in the bottom plate with the 

increase of filling ratio. The largest discrepancy is less than 2.45% and 1.28% compared with 

experimental data reported by Chiba (1992) and numerical one presented by Ergin and Uğurlu 

(2004), respectively. 
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Table 5 Coupled natural frequencies (Hz) for the coupled system 

Mode H/a=0.1 H/a=0.5 

m n 
This 

study
1
 

This 

study
2
 

Askari and 

Daneshmand 

(2010) 

Chiba 

(1992) 

Ergin 

and 

Uğurlu 

(2004) 

This 

study
1
 

This 

study
2
 

Askari and 

Daneshmand 

(2010) 

Chiba 

(1992) 

Ergin 

and 

Uğurlu 

(2004) 

0 0 174.2 173.9 173.9 177 173.5 112.7 112.7 112.7 110 112.8 

0 1 364.6 364.4 364.4  365.7 262.9 262.2 262.2  264.6 

1 0 689.2 689.1 689.1 694 688.1 539.6 538.7 538.6 540 540.6 

1 1 1067.2 1066.2 1066.1  1072.3 893.2 892.2 891.9  902.5 

2 0 1584.5 1583.4 1583.0 1620 1585.2 1390.4 1387.3 1386.2 1410 1393.9 

2 1 2164.2 2162.4 2162.2  2183.0 1976.3 1963.0 1962.2  1991.3 
1
Including the effect of in-plane force due to the weight of the fluid 

2
Neglecting the effect of in-plane force due to the weight of the fluid 

 
Table 6 Coupled natural frequencies (Hz) for the coupled system 

Mode H/a=1 H/a=2 

m n 
This 

study
1
 

This 

study
2
 

Askari and 

Daneshmand 

(2010) 

Chiba 

(1992) 

Ergin 

and 

Uğurlu 

(2004) 

This 

study
1
 

This 

study
2
 

Askari and 

Daneshmand 

(2010) 

Ergin and 

Uğurlu 

(2004) 

0 0 91.7 90.3 90.30 92 91.3 71.8 69.1 69.1 71.8 

0 1 246.7 244.3 244.30  247.4 245.9 241.0 241.0 244.2 

1 0 515.3 511.7 511.60 520 515.1 505.9 495.8 495.7 499.5 

1 1 879.8 875.3 874.90  886.3 887.4 872.1 872.1 883.6 

2 0 1369.9 1364.4 1363.00 1390 1372.3 1369.2 1351.7 1350.2 1356.2 

2 1 1961.9 1949.5 1947.40  1976.9 1963.0 1944.5 1945.0 1974.5 
1
Including the effect of in-plane force due to the weight of the fluid 

2
Neglecting the effect of in-plane force due to the weight of the fluid 

 

 

3.2 The number of nodal diameter n 
 

The variations of normalized natural frequencies for the coupled system as a function of the 

number of nodal diameters n are shown in Fig. 3. The normalized natural frequency is defined as 

the coupled natural frequency divided by the natural frequency of the plate in vacuum for the 

specific corresponding mode. Fig. 3 shows that the frequencies increase as the number of nodal 

diameters n enhances. It might be worthy to note that for a given number of nodal diameter n, the 

frequencies increase as the number of nodal circles m increase. Therefore the fundamental 

frequency always belongs to the curve m=0. For each number of nodal circles m, the minimum 

values of normalized natural frequencies occur for n=0. 

 

3.3 Functionally graded material 
 

The effect of a wide range of material parameter on the natural frequencies for m=0 and m=1 

and different nodal diameters (n) are investigated in Figs. 4-5, respectively. It can be seen from 
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Fig. 3 Normalized natural frequencies with respect to the number of nodal diameter n for the 

coupled system for H=a, k' = 10
5
 and Al/ZrO2 material with p=2 

 

 

Fig. 4 Natural frequencies of the coupled system as a function of material parameter (p) for H=a, 

k' = 10
5
 and m=0 

 

 

these figures that the natural frequencies increase as the material parameter increase. It is because 

raising the material parameter changes the dominant material properties of the plate from ceramic 

to Al. In order to clarify this fact it should be noted that when p is 0, the plate behaves as a metal 

(Al), however, as the value of p goes to infinity, the plate behavior goes towards ZrO2. The main 

increase in natural frequencies can be seen between p=0 and 5. It should be noted that the raising 

of the material parameter has more effects on natural frequencies obtained for m=1 than those for 

m=0. 

 

3.4 Winkler elastic foundation 
 

The presence of a Winkler elastic foundation is now considered for the same tank completely 

filled by water and with the material parameter p=2 in Fig. 6 The stiffness of Winkler foundation  

65



 

 

 

 

 

 

Ali A. Shafiee, Farhang Daneshmand, Ehsan Askari and Mojtaba Mahzoon 

 

Fig. 5 Natural frequencies of the coupled system as a function of material parameter (p) for H=a, 

k' = 10
5
 and m=1 

 

 

Fig. 6 Effect of the foundation stiffness k' on the natural frequencies of the coupled system for 

H=a and Al/ZrO2 material with p=2 

 

 

has no effects on the natural frequencies of the plate since the stiffness of foundation is too small 

compared with the plate stiffness when it is lower than 10
6 

N/m
3
. After that, increasing the 

foundation stiffness raises the natural frequencies of the fluid-coupled system exponentially. The 

upward trends of natural frequencies are similar for curves with different circumferential mode 

numbers as it can be seen in figure. 

 

3.5 The fluid level 
 

The variation of the first three natural frequencies as a function of filling ratio (H/L) for the 

Al/AlZrO2-plate with different thicknesses, h=0.7, 1, and 2 mm are shown in Figs. 7, 8 and 9, 

respectively. Two types of conditions were considered for including (Type I) and neglecting (Type 

II) the effect of in-plane force due to the weight of the fluid. The results are represented by dash- 
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Fig. 7 Variation of the first three modes with H/L, h=0.7 mm, – · – · – Type I condition, —― 

Type II condition, k' = 10
5
, Al/ZrO2, p=2 

 

 

Fig. 8 Variation of the first three modes with H/L, h=1 mm, – · – · – Type I condition, —― 

Type II condition, k' = 10
5
, Al/ZrO2, p=2 

 

 

dotted lines and solid lines for type I and type ΙΙ, respectively.  

In type Ι condition with plate thickness h=0.07 mm, the natural frequencies decrease sharply in 

the range of 0<H/L<0.05 due to the increase of the added mass effect of the fluid on the bottom 

plate motion. Further increase of H/L causes the natural frequencies to increase on account of the 

increase of the effect of in-plane forces of the bottom plate. The in-plane force effect is dominant 

with respect to added mass effect for H/L>0.05. In type ΙΙ conditions for h=0.07 mm, the natural 

frequencies decrease sharply in the range of 0<H/L<0.1. Further increase of H/L leads to the 

natural frequencies continuing to decrease because the effect of in-plane force is neglected in this 

case. The effect of fluid level is very small in filling ratios H/L>0.4. In each mode, type ΙΙ natural 

frequencies are lower than those of type I, however, the difference between natural frequencies in 

Type Ι and ΙΙ, increase with increasing filling ratio and mode number. Next, for the larger value of 

the thickness of the plate, i.e., h=1 mm shown in Fig. 8, the increase in the natural frequencies with  
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Fig. 9 Variation of the first three modes with H/L, h=2 mm, – · – · – Type I condition, —― 

Type II condition, k' = 10
5
, Al/ZrO2, p=2 

 

 

Fig. 10 First four modes (n = 0 and H=a, p=2) for different values of foundation stiffness. (a)m = 0; 

(b) m = 1; (c) m = 2; (d) m = 3 (—— k
'
=10

5
, – – – k

'
=10

8
, – · – · – k

'
=10

10
) 

 

 

H/L for Type Ι is less than those obtained for h=0.07. It seems to occur due to the decrease in the 

effect of in-plane forces of the plate with increasing the thickness. In the case of h=2 mm shown in 

Fig. 9, there is a little difference in the values among two types of conditions (Ι and ΙΙ) whereas no 

increase in the natural frequencies can be seen for type Ι.  

Generally, when the plate is thin especially in high filling ratio, which results in large static 

deflections, one must consider in-plane forces but for higher thickness, it is not very significant as 

much as ignorable in the calculations. 
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Fig. 11 First four modes (n = 1 and H=a, p=2) for different values of foundation stiffness (a) m = 0; 

(b) m = 1; (c) m = 2; (d) m = 3 (—— k
'
=10

5
, – – – k

'
=10

8
, – · – · – k

'
=10

10
) 

 
 

3.6 Vibration mode shapes 
 

The first four mode shapes of the FGM elastic plate coupled with the fluid for different values 

of (k') having the number of nodal diameters n=0 and 1 are shown in Figs. 10-11, respectively. The 

mode shapes are plotted in the tank section defined by θ=0 and θ=π. As it can be observed from 

these figures, the locations of the nodal points (the points with zero displacement) and peak points 

change with k' which means the mode shapes vary with foundation stiffness. The effect of 

foundation stiffness on the axisymmetric mode shapes (n=0) is more than its effect on the 

asymmetric mode shapes (n>0). Near the centerline, foundation stiffness has more effect on the 

mode shapes and the effect of foundation stiffness on the mode shapes decrease as the number of 

nodal circles m increase. 

 

 

4. Conclusions 
 

Hydroelastic vibration of functionally graded circular plates resting on Winkler elastic 

foundations, including the effects of both in-plane forces due to fluid weight and the interaction 

between fluid and plate, was theoretically investigated. Results obtained by the proposed approach 

were validated by the experimental and numerical data available in the literature. Effects of fluid 

level, functionally graded material, elastic foundation stiffness, and numbers of nodal diameter and 

circle (n, m) on the natural frequencies and the mode shapes of the coupled system were also 

considered.  

It was found that by increasing the material parameter, the natural frequencies of the fluid-
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coupled system increase; however, this increase for the greater amount of material parameter is 

lower than those with smaller ones. Also, it was observed that the natural frequency of the plate 

increases as the elastic foundation stiffness increases.  

Effects of fluid level on the natural frequencies of the FGM elastic plate resting on an elastic 

foundation vary with number of nodal diameters and circles (n,m), i.e., these effects are stronger 

for modes with smaller number of nodal diameters and circles. The natural frequencies by taking 

in-plane forces into account are higher than those that neglect this effect, however, the difference 

between natural frequencies, increase with increasing filling ratio and mode number. 
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