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Abstract.  The accurate determination of cable tension is important to the monitoring of the condition of a 
cable-stayed bridge. When applying a vibration-based formula to identify the tension of a real cable under 
sag, stiffness and boundary conditions, the resulting error must not be overlooked. In this work, by resolving 
the implicit frequency function of a real cable under the above conditions numerically, indirect methods of 
determining the cable force and a method to calculate the corresponding cable mode frequency are 
investigated. The error in the tension is studied by numerical simulation, and an empirical error correction 
formula is presented by fitting the relationship between the cable force error and cable parameters λ

2
 and ξ. 

A case study on two real cables of the Shanghai Changjiang Bridge shows that employing the method 
proposed in this paper can increase the accuracy of the determined cable force and reduce the computing 
time relative to the time required for the finite element model. 
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1. Introduction 

 

The cable force is an important aspect of the working condition of a cable-stayed bridge 

because it makes important contributions to the load bearing and deformation bearing of the 

overall structure of the bridge (Irvine 1991). The force thus needs to be measured accurately. 

Presently, the frequency formula for ambient vibration is commonly used for measurements of a 

cable-stayed bridge (Kim et al. 2007, Nam et al. 2011). When actual factors such as sag, flexural 

stiffness, and boundary conditions are considered, the explicit relationship between the cable force 

and cable vibration frequency cannot be presented; i.e., it is inaccurate to explore their relationship 

employing a formula based on the taut string assumption (Geier et al. 2006, Marcelo et al. 2008, 

Choi and Park 2011). Therefore, a number of methods that aim to increase the accuracy of 

determining the cable force have been proposed. These methods focus on the technical resolution 

to establish an explicit relationship between the cable force and cable modal frequency. Scholars 

adopted the finite difference method (Mehrabi et al. 1998), finit element method (Wang et al. 
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2011), and spline fitting to fit the completely empirical and explicit relationship between the cable 

vibration frequency and force (Zui et al. 1996). Others such as Ren et al. (2005) and Fang et al. 

(2011) proposed a practical formula that takes cable sag and flexural stiffness into account 

separately and calculates the cable force from the fundamental frequency employing energy 

considerations and curve fitting, and this explicit relationship is partially empirical and partially 

theoretical. Chen et al. (2013) make revision on effective cable length and used multiple 

measurements to increase the accuracy of identified cable force. Although these methods are 

suitable for obtaining approximate values of the cable force, in certain circumstances, especially 

when sag, flexural stiffness and boundary conditions need to be considered simultaneously, the 

accuracy is unsatisfactory. Another method is model updating, which determines the cable force by 

modifying the parameters of mechanical models (including differential equation models, finite 

difference models and finite element models). Employing an optimization method, Kim et al. 

(2007) modified the differential analysis model to take flexural stiffness into account when 

obtaining the cable force. Zhang (2010) modified the finite element model of the cable using an 

intelligent algorithm. The former of these methods encounters difficulties in terms of correcting 

systematic errors through parameter modification, whereas the latter can overcome model errors 

but is not suitable for immediate and online determination of the cable force owing to its time-

consuming finite element calculation. Anyway, the frequency formula based approaches often need 

to be verified with other direct cable force measurements like pressure ring method and elasto-

magnetic sensors approach (Yim et al. 2013). 

To achieve a measurement that is accurate and has low computational cost, this paper 

investigates the implicit frequency equation for the cable without a damper that is presented in the 

literature and considers sag, flexural stiffness and clamped boundary conditions, and establishes a 

relationship between the cable force and frequency with an implicit frequency equation. Therefore, 

on the one hand, the cable force can be determined easily, with the accuracy improved by 

empirical error modification, and on the other hand, a computationally inexpensive, accurate and 

online cable model modification can be easily achieved through the accurate frequency calculation 

for a given cable force. 

 

 

2. Cable frequency equatıon 
 

The cable frequency equation describes the relationship between the cable vibration frequency 

and cable force. If the cable parameters are given, mutual computing can be achieved using this 

frequency equation. Under certain assumed conditions, the frequency equation can be presented 

explicitly. For example, when a pinned–pinned taut string is assumed, the cable frequency 

equation is explicit and is used as the formula of the vibration frequency method commonly used 

in engineering. In addition, under the conditions assumed in the literature (Ricciardi et al. 2008), 

the cable frequency equation cannot be presented explicitly but can be presented according to its 

implicit function relationship, namely the implicit frequency equation, and mutual computing 

between cable tension and modal frequencies can be realized employing the numerical method. 

The following are frequency equations for these two situations. 

 
2.1 Explicit frequency equation for the taut string 
 

The equation for free vibration of the horizontal taut string is 
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                          (1) 

where x is the coordinate along the cable length and v(x,t) is the transverse deflection of the cable 

location x at time t, EI is the flexural stiffness, H is the cable force, and ρ is the mass per unit 

length. 

Considering the pins of the two cable ends, the explicit frequency equation for vibration and the 

corresponding cable-tension equation in the cable plane are 

2 2 2
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where n is the order of the cable vibration frequency, fn is the frequency of vibration of order n, 

and L is the cable length. 

 

2.2 Implicit frequency equation for the cable 
 

Considering sag and flexural stiffness conditions, the free-vibration equation within the cable 

plane is 

 
4 2 2 2

4 2 2 2
( ) 0

v v d y v
EI H h t

x x dx t


  
   

  
                     (3) 

where h(t) is the additional cable force due to the cable vibration. In the case of the anti-symmetric 

mode, h(t)=0, Eq. (3) has the same form as Eq. (1). By applying a doubly clamped boundary to Eq. 

(3), two implicit frequency equations are obtained as follows (Ricciardi et al. 2008). 
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Fig. 1 Mesh grid of topographic model 

 
 
3. Numerical solution to the implicit frequency equation 
 

When the cable parameters θ(θ1,θ2,θ3…) are given, Eq. (4a) and (4b) provides the implicit 

equation relationship between the frequency and cable force through the operations of 

transposition and simplification. This equation is a complex transcendental equation, and it cannot 

be used to resolve the cable force and other parameters directly. 

Eqs. (2a) and (2b) presents the explicit relationship between the cable vibration frequency and 

cable force, and it can easily be applied to the computation of a cable force. However, it does not 

take the sag, flexural stiffness, or boundary hinge condition into account, and it thus differs from 

the relationship for a real bridge cable. Therefore, the cable force obtained using Eq. (2b) may be 

inaccurate. Even in the case of large sag and long cable length, the result obtained with Eq. (2b) is 

not applicable because of the generation of unacceptable errors. Eqs. (4a) and (4b) is based on all 

above-mentioned factors simultaneously, and is closer to the relationship for a real cable; 

therefore, the described force–frequency relationship for the cable is more accurate than the 

explicit relationship relating to a taut string but applied to real cables. Although it is an implicit 

relationship, a numerical solution to Eq. (4a) and (4b) can be used to obtain the cable vibration 

frequency and cable force. 

 

3.1 Root-seeking mode selection for the implicit frequency equation 
 

Solving Eq. (4a) and (4b) is a process of finding the zero root of the equation F(ω,H,θ)=0. 

Obviously, any primary operations acting on the left term of the expression F(ω,H,θ) will not 

affect the zero root value. Therefore, we make suitable changes to Eq. (4a) and select the most 

suitable form to obtain the numerical solution. The target zero roots of the frequency equation can 

be limited to a continuous interval of the argument and set as far from the break point as possible, 

which will help with the stability and convergence of numerical algorithms. 

When solving for the symmetric mode, we can rearrange Eq. (4a) as 

 
2
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Adopting Eq. (5a), it is found that most roots of the equation approach the break points of 

intervals, which leads to difficulties in finding the zero roots and solving the equation numerically 

(see Fig. 1(a)). However, the following mode can be used to locate the zero roots at nearly the 

mid-point between two break points (Fig. 1(b)). As a result, the solution is easy and concentrated 

and is unlikely to be confined to infinite recursion. 
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To solve for the anti-symmetric mode, we apply the following expression to the frequency 

equation 

 
ˆ ˆtan( / 2)

( , , ) 0
ˆ ˆtanh( / 2)

F H
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                          (6) 

 
3.2 Determination of the equation solution interval 

 
Owing to the presence of periodic terms „tan‟ on the left side of the cable frequency equation, 

the domain of the definition of the functions determined by Eqs. (5a), (5b) and (6) is periodically 

separated as numerous continuous intervals with discontinuous break points, with each period 

forming a resolving interval, within which the function has at least one zero root corresponding to 

one order mode of the cable. Thus, the first step to solving this type of periodic implicit function is 

to determine the resolving intervals throughout the domain of definition of the functions. 

Anti-symmetric mode: 

According to the parameter values of Eqs. (4b) and (6), break points arise from the periodic 

discontinuous point of the term tan(̂ /2) in the left expression F(ω,H,θ), and the resolving 

intervals can be determined by these periodic break points. 

Let 

 ˆ/ 2 / 2 / 2n n                                 (7) 

where n=0,1,2,… Solving the above inequality, the argument ranges of ω and ξ
2

 
can be determined 

as 
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When the cable force is known and the frequency is to be resolved, Eq. (8) can be used to 
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define the resolving interval, where ω is the circular frequency of the structure. To solve the 

resolving interval for the cable force, Eq. (9) is used to first obtain the intervals of ξ
2
, and the 

resolving intervals of the cable force are then obtained according to 

2

2
=

EI
H

L
                                 (10) 

It should be mentioned that in Eq. (6), if the zero root exists and ̂ >0, ̂ >0 and tanh( ̂ /2)>0
 

hold throughout the definition domain, the resolving interval can be shortened as 

ˆ / 2 / 2n n                                 (11) 

As a result, the narrowed interval of ω and H can be determined in the same way using the 

above-mentioned operations. 

Symmetric mode: 

In Eq. (5b), the cot(̂ /2) term has periodic break points, and the resolving interval of ω and ξ
2 

can be defined by these break points; i.e., substituting the definition expression of ̂  into the 

inequality nπ<̂ /2<(n+1)π, n=0, 1, 2, …,
 
we get 
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Similarly, the resolving interval of H can also be deduced from Eq. (13). 

 
3.3 Selection of method for resolving numerical rooting  

 
Commonly used numerical solutions for nonlinear equations include the procedures of 

dichotomy, the rule of thirds, the bubble method, simple iteration, the golden section method and 

Newton-Raphson (NR) iteration. NR iteration provides a quick searching rate but cannot be 

applied in solution crossing intervals, as it can give rise to the interference of intervals and the 

acquired root will not be within the corresponding interval. Additionally, NR iteration requires 

convergence conditions to be met to avoid any departure from the target root or falling into infinite 

iterations. Interval solution methods including dichotomy procedures, the rule of thirds, the golden 

section method, and the bubble method can provide at least one root in a desired resolving interval 

of the equation if the root exists. The only restriction is that the function values have different 

signs at the two ends of the resolving intervals. The searching of the dichotomy method is slow, 

whereas that of the golden section method is quicker, but the former method has a higher 

convergence rate. 

According to the features of the real-cable implicit frequency equation, a method with a quick 

convergence rate should be adopted. Eqs. (5a), (5b) and (6) contain periodic function terms, and 

the left function value of the two equations thus crosses the zero axis periodically and there is 

more than one root. Generally, there is only one zero root in the resolving interval. In particular 

cases, there can be two or more zero roots, and this paper therefore adopts a combination of the 
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interval solution method (implemented by the fzero function in Matlab) and NR method to solve 

the cable vibration frequency equation. 

In the event that there are many zero points in one interval, further discrimination is needed to 

gain the actual root. As for the cable force, whichever order of frequency is adopted, the acquired 

cable force should be the same. On this basis, the root closest to the single zero root in another 

resolving interval can be selected. 

 
 
4. Identification error and empirical modification of the cable force and frequency 
 

Employing the numerical method of the previous frequency equation, we can easily determine 

the cable force when the cable vibration frequency is provided and determine the frequency when 

the cable force is provided. The cable force and vibration frequency obtained employing the 

methods proposed in this paper are closer to the actual quantities than those obtained using the 

explicit frequency equation for a taut string. However, the error in the proposed method cannot be 

neglected. For comparison, if the cable is divided into enough elements, the cable force and 

vibration frequency obtained using the FEM are close to the real values. Therefore, the vibration 

frequency obtained using the FEM can be assumed as the frequency of the real structure and is 

used to study the error tendencies of the methods proposed in this paper. 

The frequency error is defined as relative error between the frequencies gained using the 

examined method and the finite element procedure 

FE

FE
( ) n n

n

n

f f
Err f

f


                             (14) 

The basis frequency 
FE

nf is the n
th
 order mode frequency without an additional damper and 

with a clamped boundary condition, and fn 
is the n

th
-order frequency gained employing the 

examined method. 

The error in the cable force is defined as the relative error between the determined cable force 

Tidentified
 
and the designated cable force Tdesignated

 
of the FEM 

( )
identified designated

designated

T T
Err T

T


                         (15) 

Carrying out numerical simulation to numerically determine the cable force using the implicit 

frequency equation with different cable technique parameters, we can investigate the relationship 

between the errors and synthetic cable parameters such as λ
2

 and ξ
 
(see Fig. 2 and Fig. 3). During 

the simulation, to obtain reasonable values of λ
2

 and ξ, we take the upper margin of cable 

parameters in an engineering scope (including Tdesignated) as the boundary, traverse the values within 

this range, and maintain these parameter values independently. Each step of the simulation 

matches a set of parameters, and we first accurately calculate the first seven orders of cable 

vibration frequencies employing the FEM, and then take these frequencies as the input and 

determine the cable force Tidentified numerically. Eqs. (14) and (15) can be used to calculate the 

errors in the cable vibration frequency and cable force. The relationship between the errors and 

synthetic parameters λ
2 
and ξ can then is investigated. 

43



 

 

 

 

 

 

Danhui Dan, Yanyang Chen and Xingfei Yan 

 

Fig. 2 Relationship between error in the cable force and λ
2
 

 
Table 1 Some Irvine parameters λ

2
 from 3 cable stayed bridges in shanghai 

bridge Yangpu Xupu Donghai 

Cables Mid23 Mid11 Mid1 S29 S15 S2 S32 S16 S3 

λ
2
 0.467 0.304 0.024 0.769 0.432 0.358 0.674 0.532 0.293 

 
 

4.1 Relationship between cable-force error and λ2 
 

Fig. 2 shows that λ
2
 has a marginal value of 42, which defines the applicable scope of the 

numerical method of the frequency equation. When λ
2
<42, the error in the determined cable force 

is 5%–7% (the determined cable force is larger than the real cable force), and the error has no 

obvious relationship with λ
2
; when λ

2
>42, the error increases sharply. The explanation is that, for 

pure cable behavior, if λ
2
<4π

2
, the frequency of first symmetric mode is less than the frequency of 

first anti-symmetric mode, and when λ
2
=4π

2
, the two frequencies are equal; if λ

2
>4π

2
, the 

frequency of first symmetric mode is greater than the frequency of first anti-symmetric mode. In 

this study, considering other factor, this critical value come to 42, a value approached to 4π
2
. 

Fortunately, in the scope of engineering, λ
2
 is usually less than the marginal value of 42, and the 

method presented in this paper can thus be applied to the determination of the cable force of a 

cable-stayed bridge. Caetano, E. D. S. have investigated many real cables and have proved that is 

true. Also we can verify it by the data in following Table 1, which are collected from three cable 

stayed bridge in Shanghai area. 
 

4.2 Relationship between cable-force error and ξ  
 

We now discuss the relationship between cable-force error and ξ in the scope of engineering 

(λ
2
<42). 

 
Fig. 3 shows the relationship between the error in determining the cable force using the 

numerical method of the frequency equation for the first seven orders of vibration and cable 

parameter ξ, and its fitting curve. The figure shows that no matter whether the fundamental 

frequency or frequencies from second order to seventh order is chosen to determine the cable 
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Fig. 3 Cable force determined using the frequencies of the first to seventh modes of vibration 
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Table 2 Fitting coefficients for the error-ξ relationship in Eq. (16) 

 Baseband 2 3 4 5 6 7 2~6 composite 

ai 17.64 15.19 15.31 14.66 13.6 13.45 13.02 14.205 

bi -0.4763 -0.4286 -0.4296 -0.4165 -0.3943 -0.3893 -0.3765 -0.4058 

ci 5.298 4.917 4.926 4.883 4.817 4.795 4.741 4.8465 
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Fig. 4 Relationship between
 
ξ
 
and the error in the cable force determined using the first seven 

orders of vibration 

 

 

force, the cable force error and ξ have an approximately exponential relationship. When 0<ξ <200, 

as the ξ value of the cable increases, and cable-force error decreases from 14% to 7%. When 

ξ>300, the decrease in error becomes more gradual and the error value approaches 5%. 

To fit the relationship between the cable-force error and ξ using 

ib

i i iErr a c                                (16) 

Where the subscript i represents the order of vibration adopted, and ai, bi and ci are the coefficients 

of the fitting expression for the relationship between the cable-force error calculated for the i
th
 

order of frequency and ξ . The values of the fitting coefficients are listed in the table. The fitting 

curves for all orders of vibration are shown in Fig. 2. It is seen that when the orders two to seven 

are adopted to determine the cable force, the fitting expressions for the error and ξ almost 

superpose. However, when the base frequency is adopted, the fitting curve is above that for orders 

two to seven. This means that, under the same cable conditions, the error is slightly larger when 

the base frequency is used to determine the cable force, and when frequencies of second to seventh 

order are applied, the errors are almost equal. Therefore, the cable force can be corrected by one of 

two fitting formulas. The last column in Table 2 gives the coefficients for the fitting of the error- ξ
 

relationship that are suitable for the second- to seventh-order vibrations, and Fig. 4 presents the 

integrated modification curve (in green) for cable-force error that is suitable for second- to 

seventh-order vibrations. 

Because all the determined results are monotonously larger than the actual cable force, the 

previous fitting formula can be applied to modify the numerical results of the implicit frequency 

equation. After modification, the cable force is calculated as 

46

javascript:;


 

 

 

 

 

 

Determination of cable force based on the corrected numerical solution 

 

Cable B1 
Cable B17 

to Changxing island
  
to Shanghai       

 

 

Fig. 5 Main bridge of Shanghai Changjiang Bridge and the cable layout 
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Fig. 6 Power spectrum density of cables B01 and B17 

 

 

_ mod _ *(1 )ified identified iH H Err                         (17) 

 
4.3 The proposed modified cable force determination procedure 

 
The following flowchart is proposed to determine the cable force of any given cables, 

Step 1, to identify the mode frequencies from the vibration data;   

Step 2, to determine the solution interval according to the frequency mode order. 

Step 3, to do root seeking of frequency equations according to the proposed method. If the 

symmetric mode frequency is used, the equation is (5b), and if anti-symmetric frequencies are 

chosen, the rooting seeking in done on equation (6) ; 

Step 4, to estimate the Err according to the experience formula (16);  

Step 5, to modify the initial Cable force identified in step 3, according to expression (17). 

 
 
5. Applications 
 

To demonstrate the effectiveness of the methods proposed in this paper, employing the 

numerical method of the implicit frequency equation (simply referred to as the numerical method 

hereafter), the cable forces are determined from the vibration frequency for the B01 and B17 

cables of the Shanghai Changjiang Bridge (see Fig. 3). For comparison, the FEM and taut-string 

explicit vibration frequency formula (simply referred to as the explicit formula hereafter) are used. 

Before the investigation of these three methods, the FEM model is updated for both cables to  
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Table 3 Cable parameters for Shanghai Changjiang Bridge undergo process of model updating 

Cable 
Cable 

length (m) 

Elastic 

modulus (Pa) 

Section 

area (m
2
) 

Second moment 

of area (m
4
) 

Linear density 

(kg/m) 

Cable force 

(KN) 

B01 97.6 2e11 1.0029e-2 8.0036e-6 79.15 3.01e3 (dip70º) 

B17 300 2e11 1.2272e-2 1.1984e-5
 

96.85 kg/m 5.46e3 (dip28º) 
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Fig. 7 Frequency results and their errors for cables B01 and B17 

 

 

obtain a set of reasonable physical constants, which are presented in the table. The optimum target 

functions of the updating process are the root-mean-square of the difference vector between the 

measured frequencies and the corresponding calculated frequencies. The measured frequencies are 

obtained from power spectrum analysis of the measured raw acceleration shown in Fig. 4. Three-

dimensional beam elements are used to establish finite element models of the two cables, and each 

cable is divided into 100 elements. In the modal analysis of the parameters for the first 20 orders 

of frequency, this finite element number provides very accurate modal frequencies, which can be 

regarded as good approximations of the real modal frequencies of the cable. 

 
5.1 Cable force is provided to calculate frequency 

 
First, the designated cable force of the two cables in the table is taken as the input for the above 

three methods, and the frequencies for the first 20 orders of vibration are obtained (see Fig. 5(a) 

and (c)). According to the definition of frequency error in Eq. (14), the error in the frequencies can 

also be calculated (Fig. 5(b) and (d)).  
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Fig. 8 Error in determining the cable force for cables B01 and B17 

 
 

Fig. 5(a) and (c) show that the solution of the cable vibration frequency obtained by adopting 

the numerical method is closer than the solution obtained from the vibration frequency formula to 

the FEM solution. The frequencies obtained using the numerical method discussed in this paper 

are lower than the FEM frequencies. Therefore, if these errors are estimated accurately, the 

frequency obtained employing the numerical method can be simply modified through subtraction. 

Fig. 7(b) and (d) show that the accuracy of the numerical method is better than that of the explicit 

formula. In the case of the B01 cable, the frequency errors for 2
nd

- to 20
th
-order vibrations resulting 

from the explicit formula vary from 4.2% to 4.6%, while the error arising from using the 

numerical method only fluctuates from 2.6% to 3.1%; thus, the maximum error difference between 

the two methods is 1.5%. In the case of the B17 cable, the maximum error difference is only 0.8%. 

The error in the fundamental frequency can be twice that in the frequencies of other orders when 

using the explicit formula, but the error in the fundamental frequency obtained using the numerical 

method is only 2%-3%, much smaller than that for the explicit formula method.  

 
5.2 Frequency is provided to calculate the cable force 

 
In the reverse process, when the measured vibration frequencies of the two cables are the input 

for the explicit formula and the numerical method, the cable force can be determined. According to 

the definition of cable force error in Eq. (15), the errors in cable force are also calculated and 

shown in Fig. 6. 

Fig. 6(a) and (b) show that the measurement accuracy of the numerical method is obviously 

higher than that of the explicit formula. When adopting frequencies of vibrations other than the 

fundamental frequency to estimate the cable force, for the short cable that is hardly affected by 

sag, the measurement accuracy of the numerical method is 3%-5%, better than that of the explicit 

formula. For a cable of length 300 m, the numerical method provides about 1% more accuracy 

than does the explicit formula. When adopting the fundamental frequency, no matter for a long or 

short cable, the numerical method acquires impressively better accuracy for the cable force. 

Compared with using the explicit formula, the numerical method decreases the cable force error by 

5%-10%. This can be interpreted as the numerical method taking the effects of sag, stiffness and 

the clamped support condition into account, and thus gaining higher cable-force accuracy. 

It is found that all cable forces determined by the numerical method are higher than the real 

values. This one-sided-biased estimation can be corrected if the a priori error mechanism is  
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Table 4 Cable force modified by using the correction relationship 

 1 2 3 4 5 6 7 2~6composite 

B01 designated cable force (N) 3.01e6 

B01 determined cable force (N) 3.004 2.998 2.998 2.998 2.998 2.997 2.997 2.998 

B01Error of cable (%) 0.14 0.08 -0.08 -0.08 -0.08 -0.09 -0.09 -0.09 

B17 designated cable force (N) 5.46e6 

B17 determined cable force (N) 5.532 5.468 5.469 5.469 5.469 5.468 5.468 5.468 

B17 Error of cable (%) 1.31 0.14 0.17 0.16 0.16 0.15 0.16 0.13 

 

 

known. Using the empirical formulae (16) and (17), the modified cable forces and their errors for 

the two cables are presented in the table. 

As shown in the table, after the modification of Eqs. (16) and (17), the cable identification 

results obtained with the numerical method are improved, and the error can be controlled to within 

1.5%. 
 
 
6. Conclusions 
 

When cable sag, flexural stiffness and boundary conditions are considered, the frequency 

equation for a cable is a complex transcendental equation and cannot be solved explicitly. This 

paper showed that the implicit equation for the cable vibration frequency can be made explicit 

employing a numerical method and the cable vibration frequency and cable force can then be 

determined easily. Compared with the explicit frequency formula applicable to a taut string, the 

numerical method based on cable‟s implicit frequency can estimate the cable vibration frequency 

and cable force with greater accuracy. After further modification of the numerical method, the 

estimation accuracy becomes satisfactory. 

Engineering applications showed that in the calculation of cable vibration frequency, the 

solution obtained by the numerical method is closer than that obtained by the explicit formula to 

that obtained by the FEM. The frequency obtained for each order of vibration is 1.5% higher than 

the result obtained using the explicit formula method, and the accuracy improvement for the first-

order vibration is the most obvious. In the determination of a cable force, the proposed method 

produces errors for a short cable are 3% less than those produced by the explicit formula. In the 

case of a long cable, when frequencies of second- to seventh-order vibrations are adopted, the 

calculation accuracy of the cable force is about 1% better. The sag has a greater effect on the 

accuracy of cable-force determination when the fundamental frequency is used. 

The proposed numerical method for determining the cable force is applicable when λ
2
 is less 

than 42. This is the case for ordinary engineering applications because the cable commonly used 

for a cable-stayed bridge meets this limitation. Reasonable calculation accuracy for the cable force 

can then be achieved using the frequencies of vibrations of first to seventh order. In the case of 

cables for which λ
2
 is greater than 42, it is better to determine a cable force according to the 

fundamental frequency.  

FEM model updating method can be used to determine the cable force. In that situation, the 

parameters plus cable force are underdetermined and the difference between the measured mode 

frequencies and their corresponding values calculated by FEM model are reduced step by step 
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until a convergence value is reached. Then the final updated cable force is the desired solution. 

This approach is time-consuming processes because of many iteration computing are needed. The 

proposed numerical method of the implicit frequency equation, which is used to compute the cable 

force, can effectively reduce the computational cost relative to FEM updating, and can be applied 

to the real-time monitoring of the cable force. 
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