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Effect of loading rate on softening behavior
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Abstract. Cracked reinforced concrete in compression has been observed to exhibit lower strength
and stiffness than uniaxially compressed concrete. The so-called compression softening effect responsible
is thought to be related to the degree of transverse cracking and straining present. It significantly affects
the strength, ductility and load-deformation response of a concrete element. A number of experimental
investigations have been undertaken to determine the degree of softening that occurs, and the factors
that affect it. At the same time, a number of diverse analytical models have been proposed by various
researchers aimed at modeling this behavior. In this paper, the softened truss model thoery for low-
rise structural shearwalls is employed using the principle of the stress and strain transformations. Using
this theory the softening parameters for the concrete struts proposed by Hsu and Belarbi as well as
by Vecchio and Collins are examined by 51 test shearwalls available in literature. It is found that the
experimental shear strengths and ductilities of the walls under static loads are, in average, very close
to the theoretical values; however, the experiment shear strengths and ductilities of the walls under
dynamic loads with a low (0.2 Hz) frequency are generally less than the theoretical values.
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1. Introduction

In recent years, it is generally agreed among researchers that the truss model theory is the
most promising method to treat shear and torsion. This theory provides a unified concept for
shear and torsion and is able to generate a unified design method for reinforced and prestressed
concrete. When a truss model is employed, besides the equilibrium and compatibility equations
the stress-strain relationship of concrete struts must be assumed before the post-cracking behavior
of shear or torsional members can be predicted. The stress-strain curve obtained from the uniaxial
compression test of standard concrete cylinders was used by several investigators without success.
The nature of this difficulty was understood in 1964 when (Peter 1964) observed that a reinforced
concrete panel subjected to compression was softened by tension in the transverse bars. However,
he was unable to produce a softening parameter for the stress-strain curve, and suggested that
a 15% reduction of the concrete compressive strength should be used (Vecchio and Collins 1981)
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tested seventeen 89 by 89 by 7 cm reinforced concrete panels. According to the test results they
proposed a stress-strain curve incorporating a softening parameter. This softening parameter
is a function of the ratio of the two principal strains. The softened stress-strain curve, proposed
by (Vecchio and Collins in 1981) was used to predict the static behavior of reinforced concrete
structural walls under shear (Hsu and Mo 1985, Mo 1988, Mo 1994) and box structures under
torsion (Mo and Yang 1996).

The discovery and the quantification of this softening phenomenon have provided the major
breakthrough in understanding of the shear problem in reinforced concrete. During the past
15 years, a number of diverse analytical models have been proposed according to the test results.
The eftect of these softening models on low-rise structural walls has been studied (Mo and
Rothert 1995), and it is found that both the 1993 Vecchio and Collins’ Model A and the 1991
Belarbi and Hsu's Model (Hsu 1993) provide the best results. However, these two models are
based on static tests. Up to now, no softening models have been proposed for dynamic loads.
Therefore, the purpose of this paper is to study the effect of loading rate on softening behavior
of low-rise structural walls.

2. Softened truss model theory
Fig. 1 indicates a typical low-rise reinforced concrete structural wall. The softened truss model

theory for such walls can be derived using the principle of stress and strain transformations
(Hsu 1993). In this paper, the principal concepts are described below.
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Fig. 1 A framed shearwall.
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Fig. 2 Stress condition in reinforced concrete.

2.1. Equilibrium equations

When a concrete element reinforced orthogonally with longitudinal and transverse steel bars,
as shown in Fig. 2a, is studied, the three stress components o, ¢, and 7, are the applied stresses
on the reinforced concrete element viewed as a whole. The stresses on the concrete strust itself
are denoted as o, o, and 7, as shown in Fig. 2b. The longitudinal and transverse steel provide
the smeared stresses of pf; and p,f,. as shown in Fig. 2c.

It is significant to recognize the difference between the two sets of stresses: o, ¢, and 7, for
the reinforced concrete element and o,. o, and t, for the concrete struts. Both sets of stresses
(0, 6. % and o, 0. %) satisfy the principle of stress transformation. In summing the concrete
stresses and the steel stresses in the / and 7 directions, a fundamental assumption is made accor-
ding to (Hsu 1993). It is assumed that the steel reinforcement can take only axial stresses. Any
possible dowel action is neglected. Hence, the superposition principle for concrete and steel
becomes valid and gives the general equilibrium equations for reinforced concrete.

0, =0ycos”a+t o, sin‘o+p, f (D
o =oysin*a+o.cos’c+tp, f, )
T, =(— oy +0,) sina cosa 3)

where

o0, =stress in /[-axis

o, =stress in d-axis

o, =stress in r-axis

o, =stress in f-axis

7, =shear stress in /- axis

Jfi=stress in longitudinal steel

f,=stress in transverse steel

p; =longitudinal steel ratio

p, =transverse steel ratio

a=—angle between two sets of coordinates

2.2. Compatibility equations

The same principle of transformation for stresses can be applied to strains. Therefore, the
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following compatibility equations can be derived (Hsu 1993).

g=gcos’atesin‘a 4)
&=¢sina+e¢ cos'a (5)
7/; .

=(—¢g,;+¢&)sinacosa (6)

where

g =strain in l-axis
g, =strain 1n d-axis
& =strain in r-axis
& =strain in f-axis
y; =shear distortion in /- axis

2.3. Constitutive laws
2.3.1. Softened compression stress-strain relationship of concrete

In the past three decades a number of diverse analytical models have been proposed by various
researchers aimed at modeling the softening behavior of concrete. It was found by (Mo and
Rothert 1995) that for reinforced concrete structural walls both the Model A of (Vecchio and
Collins 1993) and the Model of (Belarbi and Hsu 1991) provide better results than the other
models when compared to the 44 test specimens (Barda 1972. Barda, et al. 1977, Galletly 1952,
Benjamin and Williams 1957, Mo and Chan 1996). Therefore, only these two models are described
in this paper.

1) 1991 Belarbi and Hsu's Model

Using a softening parameter, f3, the proposed model involved modifying the Hognestad parabola
(Fig. 3a), which was employed as the base curve describing the uniaxial compressive response
of concrete. For the ascending portion of the curve, the equation is

ar[(2)3(2)

For the descending portion of the curve, the equations is

el (_a—g \]
= [1 <28~—8p>_ ®

where ¢, =f,. The softening parameter § was suggested to be

= 09
v/ 1+600¢.

2) 1993 Vechio and Collins’ Model A

(Vecchio and Collins 1993, Vecchio, er al. 1994) found that the Hognestad parabola, used
as the base curve for the softening models. does not provide a good representation of the response
of high-strength concrete. and the Thorenfeldt, er al. (1987) curve (Fig. 3b) resulted in the best
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Fig. 3 Compression softening models.

correlations for the full range of concrete strengths represented in the database. The Thorenfeldt
base curve was calibrated (Collins and Porasz 1989) as follows:

O base = f;r k (10)
. &
(n 1)+< :, )
where

. (MP
n=080+2-MP8) (11)

17
If —¢, <& <0, k=10 (12)

.(MPa

If  &<—s, k:O.67+f'—(—6—2—l (13)

&, = corresponding strain at maximum obtainable compressive stress in softened concrete. And
softening parameter S is

1

ok K, (14
where
—g 0.80
KL.:O.35-< : ) >10 (15)
&
K,=0.1825\/f/ (MPa) >1.0 (16)

If 0<—¢g,<—p¢,, o, is determined by Eq. (10) with
fr=—BF and §=—p¢
It *ﬂ£u<“€d<‘8,)., O'd:ﬂ'f(,’
If —&,<—&,. =B 0O and f,=—f", §=—g¢,
Note that Eqs. (10) to (13) are used with f,=f-f' and ¢ =¢,
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2.3.2. Tensile stress-strain relationship of concrete

From the tests of panels subjected to shear, it was clear that the tensile stress of concrete,
o,, is not zero as assumed in the simple truss model (Vecchio and Collins 1981, Belarbi and
Hsu 1991). Based on the tests of 35 full-size panels (Belarbi and Hsu 1991, Pang and Hsu
1992), a set of formulas were recommended as follows:

If ¢<¢,, o, =FE. ¢ (17

0.4
If 6>6,. o= ({,—) (18)

v

where

E.=47000\/f , where both f' and \/f_('— are in pounds per square inch
&, =strain cracking of concrete=10.00008

Jo =3I5Vf!
2.3.3. Stress-strain relationship of steel

The stress-strain curve of a steel bar in concrete relates the average stress to the average strain
of a large length of bar crossing several cracks, whereas the stress-strain curve of a bare bar
relates the stress to the strain at a local point. In other words, a steel bar in concrete is stiffened
by tensile stress of concrete. If the tensile strength of concrete is neglected, as assumed in the
most of truss models, the following equations are used.

If ¢<g,, fi=E.g (19)
If 6=¢. fi=f (20)

where E,=modulus of elasticity of steel bars
fy =vyield stress of longitudinal steel bars
&, =yield strain of longitudinal steel bars

2.4, Solution procedures

As discussed by (Hsu and Mo 1985), in the design of low-rise structural walls the boundary
elements are reinforced to resist the applied bending moment, while the webs are designed to
resist the applied shear force. Due to the restricion of the boundary elements, the strain of
transverse steel in low-rise framed shearwalls can be neglected, as verified by the PCA tests
(Barda 1972, Barda, er al. 1977), ie., §=0. Therefore, adding Eq. (4) and Eq. (5) gives

E—& & (21 )
Insertin & Sil’l2 a=g — & COS2 a into Eq (4) giVCS
g

E &
& &

cos’ a= (22)

Substituting Egs. (21) and (22) into Eq. (1) results in
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_ 1 (—&) {81—6‘(1)]
=—— 1o —o0y" -0, 23
AR =it )
Neglecting the tensile strength of concrete, ie., o, =0, gives
1 ( — & ) :l
=— o —0," 24
S P [G/ o (& —2¢&) @

For low-rise structural walls, the average shear stress  on the horizontal cross section 1s defined
as

.
bd

where d is the eftective depth, which will be defined later; b is the width of the web; ¥ is
the horizontal shear force. The deflection at the top of the shearwall, 8, is determined by

5=rh (26)

T (25)

check if
the efror for _/;
is acceptable

Calculate 7,7,v,8

check if NO
£, >0003

Yes

Fig. 4 Algorithm for framed shearwall analysis.
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where
h=height of wall

Based on the softened truss model theory presented above, the algorithm is shown in Fig.
4 and is explained below

1) Select a given ¢;.

2) Assume a value of g.

3) Calculate ¢ from Eq. (21).

4) Calculate B using Egs. (7) to (16).

5) Calculate o, from Eq. (10).

6) Calculate o, from Eq. (7) or (8).

7) Calculate f; from Eq. (23) or (24).

8) Check £, using Egs. (9) and (20).

9a) If the calculated value for f; determined in step 8 is not sufficiently close to the value
shown in step 7, repeat steps 2 through 7.

9b) If the calculated value for f; determined in Step 8 is sufficiently close to the value shown
in Step 7, proceed to calculate r(or V') and y(or §) from Eq. (3) (or Eq. (25)) and Eq.
(6) (or Eg. (26)), respectively. This will provide one set of the solutions.

10) Select other values of g and repeat steps 2 through 9 for each . This will provide a
number of sets of quantities. From these sets of quantities the shear stress versus distortion
curve (or shear force versus deflection curve), the longitudinal steel strain versus deflection
curve, and the longitudinal steel strain versus concrete strain curve can be plotted. In
this study the maximum ¢, value was chosen as 0.003 with an increment of 0.00005.

3. Comparison of theory with tests
3.1. Shear force-deflection relationships

Two specimens are chosen for discussion: Specimen B64 with a concrete strength of 21.2
MPa tested at PCA (Barda, Hanson and Corley 1976) and Specimen LM4-2 with a concrete
strength of 66,0 MPa tested at National Cheng Kung University (NCKU) (Mo and Chan 1996).
The shear force-deflection curves for these two specimens are plotted in Figs. 5 and 6. Each
figure includes one experimental curve and two theoretical curves computed from the 2 softening
models discussed previously. Examination of the two theoretical curves reveals the following
observations:

1) The curve using the 1993 Vecchio and Collins’ Model A for softened concrete is represented
by a curve with solid circles. These theoretical shear force-deflection curves are very close
to the corresponding test curve in all aspects: (1) the predicted maximum shear strengths
are only 46 and 56 percent greater than the test values for Specimens B64 and LM4-
2, respectively; (2) each shear force-deflection curve exhibits a descending branch: (3) the
deflection at maximum shear strengths are very close to the test values; and (4) the ascending
portion of the theoretical shear force-deflection curves are reasonably close to the test curves.

2) The curve using the 1991 Belardi and Hsu's Model for softened concrete is represented
by a curve with solid triangles. It can be seen that the deflections at maximum shear
strengths are much less than the test values, that in turn affect the ascending portion of
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Fig. 6 Shear force-deflection curves of wall LM4-2.

the theoretical shear force-deflection curves.

3.2. Shear strength

The experimental specimens of fifty-one low-rise framed shearwalls were found and their detai-
led dimensions and material properties are summarized in (Mo and Rothert 1995, Mo 1996).
The specimens tested at Stanford University (SU) (Benjamin and Williams 1957) and MIT (Galle-
tly 1952) were subjected to monotonic loads; the specimens tested at PCA (Barda, Hanson and
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Table 1 Effect of softening models on shear strengths

Vu Ltest / Vu Leale.
Source No. of Statistics Belarbi and Vecchio and
Specimens Hsu 1991 Collins Model
A 1993
mean 1.022 1.060
PCA 7
COov. 0.122 0.157
Stanford . mean 0.968 1.010
University cov. 0.121 0.105
mean 1.041 1.121
MIT 8
cov. 0.152 0.168
NCKU 0 mean 0.793 0.834
(0.2Hz) Cov. 0.140 0.141
NCKU . mean 1.03 1.11
(4Hz) cov. 0.103 0.102
mean 0925 0977
All specs. 49
cov. 0.163 0.173

Corley 1976) were statically loaded under cyclic reversals; the specimens tested at NCKU by
the first author were dynamically loaded under cyclic reversals (Mo and Chan 1996) and shake
table tests (Mo 1996) with a loading frequency of 0.2Hz and 4Hz, respectively. The shear strength
of all the test specimens are compared to their theoretical values in Table 1 using the softening
models described previously. Of all these specimens, two are ineligible for comparison.

After excluding these two specimens, the average V,,./V.... values calculated from the two
softening models for all forty-nine walls are listed in Table 1. It can be seen from Table 1
that using the 1993 Vecchio and Collins' Model A and the 1991 Belarbi and Hsu’s Model the
average Ve /Vicae Values are 0977 and 0.925, respectively, and the corresponding standard devia-
tions are 0.173 and 0.163. The calculated shear forces are often close to the experimental values
for static tests (such as: PCA, SU and MIT specimens) while they are generally somewhat greater
than the experimental values for dynamic tests with a low frequency of load (such as: NCKU
(0.2Hz) specimens). The following reasons may have been involved. 1. Walls under dynamic
loads will have more serious softening of concrete struts than those under static loads, and
the two proposed softening models are based on static tests. 2. Although walls are subjected
to dynamic loads, material strengths (concrete and steel) do not increase because of the low
frequency of loads (0.2Hz).

The experimental and theoretical shear strengths for the five groups of walls are compared
in Fig. 7. In general, using the 1993 Vecchio and Collins’ Model A the theoretical shear strengths
for the walls under static loads (such as: PCA, SU and MIT specimens) are in excellent agreement
with the experimental observations. In contrast, the theoretical shear strengths for the walls under
dynamic loads (such as: NCKU (0.2Hz) specimens) are often greater than the experimental
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Fig. 7 Comparison of theoretical and experimental shear strengths.

Table 2 Ductilities

S No. Of Uiess / Ucale
ource .

Specimens mean cov.
PCA 1 0979 0
Stanford Univ. 6 0.797 0.088
MIT 6 1.207 0311
NCKU (0.2Hz) 20 0.576 0.227
NCKU (#4Hz) 7 0.886 0.205
All specs. 40 0.768 0.306

values. However, when the loading frequency is increased to 4Hz, the theoretical shear strengths
are close to the experimental values again. In other words, low-rise structural walls subjected
to dynamic load with low frequency have more serious softening of concrete.

3.3 Ductility factors

As discussed previously, in general the 1993 Vecchio and Collins’ Model A provide better
results, such as: maximum shear force, deflection at the maximum shear force and shear force-
deflection curve. Therefore, in this section only the 1993 Vecchio and Collins’ Model A was
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used to calculate the theoretical ductility factors. The theoretical ductility factors, u.., is defined
as the theoretical deflection at the maximum shear force, 8,.., divided by the theoretical yield
deflection, &, . The experimental ductility, u.y, is defined by the experimental deflection at
the maximum shear force, 8,..., divided by the theoretical yield deflection. ... The results
are shown in Table 2. The specimens without yielding are excluded in the comparison, since
no theoretical yield deflections can be found. After the exclusion, the average Ui/t value
for all 40 specimens is 0.768 and the standard deviations is 0.306. The average /U values
and the standard deviations are also given for those five groups of tests. It can be seen that
the average U../u.. values for the specimens under static loads (such as: PCA, SU and MIT
specimens) is close to unity, and the average ../t values for the specimens under dynamic
loads, such as: NCKU (0.2Hz) and NCKU (4Hz) specimens are 0.576 and 0.886, respectively.
In other words, the specimens under dynmaic loads will have less ductility factors than those
under static loads. All in all, the shear strengths and ductilities of low-rise structural walls are
influenced by the loading types (static or dynamic loads). It can also be seen from Table 2
that the average u../ta value increases when the loading frequency is changed from 0.2Hz
to 4Hz.

4. Conclusions

Using the principle of transformation, the softened truss model theory can be used for low-
rise reinforced concrete structural walls. the theory can predict not only the shear strength but
also the shear distortion, the steel strains, and the concrete strains. The softening models for
concrete struts, proposed by Hsu and Belarbi as well as by Vecchio and Collins have been
examined by 51 test walls with concrete strength from 16.3 MPa to 66.0 MPa available in literature.
It is found that the 1993 Vecchio and Collins’ Model A provides better results.

The experimental shear strengths and ductilities of the walls under static loads are, on average,
very close to the theoretical values; however, the experimental shear strengths and ductilities
of the walls under dynamic loads with a low (02Hz) frequency are generally less than the
theoretical values. In other words, further research in the area of dynamic compression softening
of reinforced concrete is needed.
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