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Abstract. The aim of this paper is to investigate the secondary buckling behaviour and mode-coupling
of spherical caps under uniformly external pressure. The analysis makes use of a rotational finite shell
clement on the basis of strain-displacement relations according to Koiter’s shell theory (Small Finite
Deflections). The post-buckling behaviours after a bifurcation point are analyzed precisely by considering
multi-mode coupling between several higher order harmonic wave numbers, and on the way of
post-buckling path the positive definiteness of incremental stiffness matrix of uncoupled modes is exami-
ned step by step. The secondary buckling point that has zero eigen-value of incremental stiffness matrix
and the corresponding secondary mode are obtained. moreover, the secondary post-buckling path is
traced.
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1. Introduction

Koiter was the first to develop an asymptotic theory for initial post-buckling behaviour of
perfect and imperfect shell structures. The theory provides the most rational explanation of the
large discrepancy between test and theory (Bushnell 1985). There are many papers that handled
the post-buckling behaviours with initial imperfection sensitivities, but few papers are available
on the secondary-bifurcation points with higher equilibrium paths of shell structures (Kratzig,
et al. 1982).

In this study the post-buckling and secondary buckling analysis of spherical caps under uniform-
ly external pressure is performed by a well-established computer program (Chiba, er al. 1993,
Kato, er al. 1996) using a rotational finite shell element on the basis of Koiter's Small Finite
Deflections shell theory. With sufficient wave numbers for higher harmonic displacement fields,
the post-buckling behaviours after bifurcation point are analyzed precisely. On the way of post-
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buckling path the positive definiteness of incremental stiffness matrix of uncoupled modes is
examined step by step to find the secondary buckling point that has zero eigen-value of incremen-
tal stiffness matrix and its corresponding secondary buckling mode is calculated once the zero
eigen-value is found. Moreover, the secondary post-buckling path after the secondary buckling
point is also traced, and the growth of deformations in several interacting modes is investigated.
Besides, with the obtained displacement fields, the total potential energy. strain energy including
membrane and bending energy components and Astatic buckling loads are also calculated. From
the above energy components, the complicated post-buckling behaviours are investigated minutely.

2. Fundamental assumptions and definition of strains (Chiba, et al. 1993)

The rotational shell in this study is shown in Fig. [, where the reference surface is defined
by the coordinate system s and 6. With the deformation of the shell. the following assumptions
are made.

1) The shell is thin, and the Kirchhoff-Love hypothesis is enforced.

2) The strains are small, and the geometric nonlinearity is defined as a set of middle surface
strains.

3) The shell can be assumed to be an isotropic elastic body.

The strain-displacement relations, according to Koiter's Small Finite Deflections shell theory
(Koiter 1966) are expressed in tensor notation as follows.

g;=0;+ %g“(&, — w0 —wy)+ %(p, ¢;  In-plane strains (1)

Kj= %((p, ito)+H 0 +H/ o, ‘Bending strains )

Fig. 1 Displacements and stress resultants.
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0;= %(M;|,~+u,-|.-)’ﬂ,yw :Linearized in-plane strains
1 )

w; = ?(M i—=uil) ‘Rotation tensors

0, =0, +Hlu, :Rotation vectors

where g,, and H; are the first and second fundamental metric tensors, respectively.
The strain-displacement relations in physical components are expressed as follows:
In-plane strains:

g.h\
{896} :LIII(D)+ %Nm(D)

Eo L&, 1 . 8_\-2+ d)“2_+_ VXZ
—4 L€ +j L892+¢92+U92 3)
1€s0 L& UgT 180V +P,04
Linear in-plane strains:
_du_ . do
L& =0 + 0s "
L98 sysing 90 S sptang
IRV - U R
Lé0= 2(sosin(o 20 s v Js >_. 2(U9+V“') @
_odw Jdo _ov
¢ = Js os ¥ V= os
1 (ow . 1 odu 1
©7 sysing (079 Teose ‘) s sosing 90 sy

Linear bending strains:

o =W _dp du ¢
Yo gst  ds Os Js*

L dw.,  cosp v 1 (dw o
Ko = isin‘p 00°  sisin‘e 90 | s ( s  Os u) )
1 Pw L 3 11 N\ou,
0T sesing 9530 | sysing\ 4 s 4 setang ) 46
(i | ldp\o 1 ow (3 1 11 d
4 sgtang 4 Js | Os si’sing 20 4 si’tang 4 sy Os Y

The geometry of spherical cap and analytical conditions are shown in Fig, 2 and Table 1,
respectively. Geometric depth parameter A of spherical caps is defined as follows:

A=23/3(1—v") X\/H/t (6)
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Fig. 2 Geometry of a rotational shell.

Table 1 Analytical condition

Radius R=50cm
Semi-angle & =10°
Rise H=0.75962cm
t=0.13945cm (A =6)
Shell thickness t=0.10246cm (A =7)
t=0.07804cm (A =8)
Young's modulus E=206GPa
Poisson’s ratio v=0.3
Boundary condition Clamed edge
Loading condition External pressure (n=0)

3. Numerical method (Kato, et al. 1996)

In the case of a rotational shell element, the displacement components u, v and w are described

by Fourier series as follows:
u m | u,(s)cosnd
v =2 < v,(s)sinnb 0
w =0 L w,(s) cosnf

where # is the harmonic wave number and u,(s), v,(s), w.(s) are displacement interpolation
functions in the direction of arc length s in harmonic #, by the Hermitian cubic shape function.

According to the usual FE method for geometrically nonlinear problems, the governing equation
for the rotational shell is obtained from the stationary condition of the total potential energy.

Incremental equilibrium equation is as follows:

(K 1+ K I+ K, I+ 1K 5 D) 1ADI=10 1 +140 1 — 10w —10Q ! (8)
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or in another expression,
[Kin('r] {AD}:{AP}

(K.»], [K;s] :Linear in-plane and bending stiffness matrix

[(K,] : Initial displacement matrix

(K,] . Initial stress stiffness matrix

{AD} . Incremental displacement vector

{0.}, {A0.} . External load and incremental load vector
{Q,-M}, {Q,B} . In-plane and bending internal load vector

In this study the integral of stiffness matrix with respect to arc length (s) is carried out by
Newton-Cotes 6-point numerical integration scheme, and the integral with respect to Fourier
expansions (#) can be evaluated analytically according to the following equations. Mode coupling
between n=i0 and n=j0 can be examined easily.

CC(I,J)ZJ:” cosifcosjOdo
SS(.J)= f :” sini@sinjOdo
CCC{l,J.K) =J’jn cosifcos jOcoskBdO
CSS(I.JQK)zjj” cosi@sin jOsink6do ®
(
ccccl,J. K, L)y= j 7 cosiflcos jOcoskB coslOdO
0
SSSS(, J. K,L):fﬂ sini@sin j@sink@sin/0dO
0
CSCS(1,J,K,L)= f i cosi@sin jO coskBsin/fdo
0

In case of axisymmetric loading, the incremental equilibrium equation on the fundamental
path (yielding only axisymmetric prebuckling deformation) is:

me 0 O 0 0 0 fAd() (AP()¢O\
K, ©0 0 0 O Ad, AP, =0

K_z 0 0 0 Adg o AP2:0

K44 0 Ad4 AP4:0

Symm. KSSJ \Ads KAPS:OJ

where (K,,. n=0, 1, 2, 3, 4, 5) are the incremental stiffness matrices with respect to Fourier
expansion # (harmonic wave number), that are not coupled with other harmonics on the funda-
mental equilibrium path.
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To search the asymmetric bifurcation loads, the eigen-value of the incremental stiffness matrix
(tangential matrix) in asymmetric harmonic wave number (1+0) is checked throughout the loading
step. If zero eigen-value (or negative definite) is found, the eigen-vector is to be searched as
the asymmetric bifurcation mode.

In this study, in order to evaluate the higher order terms due to modal coupling, deformations
after a bifurcation point are represented with four Fourier terms. For example, in case of bifurca-
tion mode # ., deformation modes n=0, n=n., n=2n,, n=3n,, (after this, denoting by n=0
tn,+2n,+3n,) are used for the superposition of deformations. From the bifurcation point,
the adjacent post-buckling path can be searched by using displacement incremental method
with the acquired asymmetric bifurcation mode.

For example, in case of bifurcation mode n, =3, the incremental equilibrium equation on
the post-buckling path is:

Ky Ko Ky Ky Ad, AP(,;&O
Ky Ky Ky Ad ; _ AP, =0 (1

Ky Ko Ad AP, =0

symm. K99 Ad7 AP9:0

Furthermore, on the post-buckling path, the eigen-value of stiffness matrix for uncoupled har-
monic wave numbers is checked just like as post-buckling mode searching. Let us consider
the post-buckling mode of n,.,=3. On this case the post-buckling deformation is described by
the superposition of harmonic wave numbers (n =0-+3+6+9), and the secondary buckling mode
is determined by (n=142+4+5). Then, the secondary post-buckling path is described by (n=0+
3+6+9+1+2+4+5). The schematic representations of the coupled and uncoupled incremental
stiffness matrix are shown as follows.

The incremental equilibrium equation after bifurcation is:

n=0+3+6+9 : post-buckling deformation modes after bifurcation
n=1+2+4+5 : secondary buckling modes

(Ko O 0 Ki 0 0 Ky K Ad, AP, #0
K, K, 0 KuwKys 0 0 Ad AP, =0
Kzg 0 K24 ng 0 0 Ad] AP]ZO
K33 0 0 K}(, K}g Ad} - AP\:()
< Ky Kis 0 O > Ad4>— AP4:O>
Kis 0 O Ad s AP; =0
symm. K¢ K Ad AP, =0 |
Ko Ad,y APy =0
Rearranging rows and columns of the above equation,
Koy Kis Ky Koow 0 0 0 0 Ad APy #0
Ky, Kyxw Ky 0 0 0 O Ad; AP;
K Ko 0 0 0 0 Ad AP,
Ky 0 0 0 O Ady | APy
< K Ko K Ko | Ady ) =4 AP =0 12
K» K. K Ad, AP, =0
symm. K K Ad, AP, =0

Ks_; Ads AP;ZO
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All components, AP,, AP,, AP, and AP;, of the secondary buckling modes (n=1+2+4+5)
are zero on the way of post-buckling path because of uncoupling between (n=0+3+6+9) and
(n=1+2+4+5).

On the way of post-buckling path. the following eigen-value (u) of the uncoupled incremental
stiffness matrix (n=1+2+4+35) is examined step by step as stated above, and the load that
sign of u is to be changed from positive to negative just at the secondary buckling can be
obtained exactly by half-interval search method.

Kll KIZ K14 K!S Adl Adl
KZZ K24 KIS Adl Adz
= 13
Ku K () Ady (~H Ady (3
symim. K55 Ads AdS
The incremental equilibrium equation after secondary buckling is:
Ko Koo Koo Ko Ko Kos Ko Km\ Ad, AP, #0
K]] K!Z Kl} K14 K15 K16 Kl9 Adl API
K22 KZJ KZ4 KZS K26 KZ‘) AdZ APZ
K33 K}4 K]S K}é K39 Ad3 _ AP3
Ku Kic Kug Ko | Ady (70 4P, (19
K55 K56 K59 Adﬁ APS
Symm. K¢ Keo Ad6 AP(,
K«;g Adt) AP‘) J

All components of deformation modes are coupling each other after secondary buckling.

4. Computations for analysis

To solve the nonlinear incremental equilibrium equations, the Newton-Raphson scheme and
modified Riks-Wempner method (Ramm 1982, Crisfield 1991) are used together with FE discreti-
zation. Each model is discretized by 24 rotational elements with 25 nodes, and each node has
6 D.OF. Therefore the number of D.OF. for each circumferential mode sums up to 95 for
n=0 (axisymmetric mode, Ad, in Eq. (14)), 145 for n=1 (Ad, in Eq. (14)) and 142 for n22
(for example, Ad» in Eq. (14)), respectively. In case of post-secondary buckling analysis, symmetric
full matrix with 1092 D.O.F. must be reformed by numerical integration in every load step
and each iteration. In this study, the integral calculations of total potential and strain energy
associated with actual deformations are carried out at each equilibrium state using Newton-Cotes
6-point numerical integration scheme just like as the linear and nonlinear stiffness matrix. All
numerical calculations were performed by using VPX210/10 vectorized supercomputer (Memory
256MB, nominal CPU speed 625MFlops) at Hosei University.

5. Asymmetric bifurcation loads and post-buckling behaviours

The results of the asymmetric bifurcation buckling load (P.) are shown in Table 2, and
the values in the parentheses are the results of Huang's reliable bifurcation loads (Huang 1964).
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Table 2 Asymmetric bifurcation buckling load P,”/P.

A=6 A=T A=8
0971 (0.995)  1.045 (1.068)  1.107 (1.130)
0.906 (0.919) - -

0763 (0.775)  0.784 (0.796)  0.880 (0.893)
0817 (0.827) 0750 (0.760)  0.764 (0.774)
- 0.803 (0812) 0758 (0.766)
0.805 (0.813)

I T T S S ]
([ I
(V.0 RV S I )

where P, =2E/\/3(1—v*) -(t/R)* : classical buckling load

1.20—

1.0

P/Pa|

-..' '-\-‘. n"'0+4+8+1 g
o0 o, - N=0+3+6+9 )

0.5- Y ‘/ nN=042+4+6

/ n=0

o Astatic Buckling Load

1 ] ] 1 1

0 2 4 W/t 6
Fig. 3 Load-deflection curve (A =7).
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Fig. 4 Load-deflection curve (A =38).
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For A=7 and A =8, the post-buckling behaviours with buckling mode n. =2, 3, 4 and 5
could be traced as shown in Fig. 3 and 4. The paths that are rising and falling complicatedly
after bifurcation points, and on the way of post-buckling paths, non-axisymmetric components
disappear finally. These results are calculated precisely by considering multi-mode coupling with
several higher order harmonic wave numbers, but no previous paper could be compared for
the buckling analyses of spherical caps. .

6. Secondary buckling loads and behaviours

For A =6, the secondary buckling point that has zero eigen-value of uncoupled incremental
stiffness matrix (n=1+3+5+7) could be found just right after the bifurcation point on the

1 | L) T v
A=6
= Secondary Post-buckling -
P/Py 2 B.P. n=0+2+4+6
0.5 E
\Axisymmetric Secondary Buckling
- n=0 n=0+2+4+6+ T
143+5+7
5 4
n | " 1 " ] "
0.0 1 WApcx/t 2
Fig. 5 Load-deflection curve (A =6).
Apex Clamped FEdge

w=w +ws+ws 4wy
P[Py =0.745

Fig. 6 Secondary buckling mode (A =6).
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way of post-buckling path (n=0+2+4+6) as shown in Fig. 5, and the associated secondary
buckling mode determined by (#=1+3+5+7) is shown in Fig. 6. Similarly. the load-deflection
curve and secondary buckling mode (n=1+2+4+5) for A =7 are shown in Figs. 7 and 8.
The secondary post-buckling behaviours (after secondary bifurcation) could be traced as shown
in Figs. 5 and 7, and the load falls gently but decreases considerably in comparison with the
post-buckling after the first bifurcation.

The secondary buckling modes are shown in Figs. 6 and 8. In comparison of the bifurcation
mode n,, on the axisymmetric prebuckling path, the secondary mode on the post-buckling path
has several harmonic wave numbers and the mode of harmonic number (n,, —1) is predominant.
These tendencies are common to every case for A, and it indicates that the complicated mode
coupling occurs near the secondary buckling points.

The results of the secondary buckling loads are shown in Table 3.

As shown in this table, the bifurcation points and secondary buckling points are adjacent

1.2
T A=
1.0 ~
P[P [ Sy
Sgcgndary'”"‘% ]
. ——Post-buckling |
n=0+3+6+9 4
0.5}
Axisymmetric {
) n=0
econdary Buckling
N=0+3+6+9+1+2+4+5
1 1 1 L -y
0.0 0 2 4 Whe/t 6

Fig. 7 Load-deflection curve (A =7).

wy(n = 4)

P/ Py = 0.735

ORI T AT
\\8‘::“:'0:"0"0
0TI ISL TSI

CZSCIECS
wtat trrltn 200,
mes

Fig. 8 Secondary buckling mode (A =7).



Secondary buckling analysis of spherical caps 725

Table 3 Secondary buckling load P./P,

A wave numbers for wave numbers for P,;'/PC, P[Py
post-buckling path secondary buckling bifurcation load

6 n=0+2+4+6 n=1+3+5+7 0.763 (n=2) 0.745

7 n=0+3+6+9 n=1+2+4+5 0.750 (n=3) 0.735

8 n=0+4+8+12 n=2+6+10+14 0.758 (n=4) 0.732

8 n=0+4+8+12 n=143+5+7 0.758 (n=4) 0.753

-.-. .‘
5 -\:Ul(n =1)

.
Clamped o wn = 3) . Clamped

= A o ; ' - o
00?28 ] '_ orpapenssoran, l = 180

Fig. 9 Deformation mode (A =7).

to each other, and on the way of post-buckling path re-bifurcation occurs by appearing lower
harmonic wave number than the first bifurcation one. Generally speaking, the collapse pressure
of imperfect spherical caps depend on the shapes of the imperfections. Since a general imperfec-
tion will contain harmonics of several modes, it seems that mode coupling has an important
role in sensitivity problems of load carrying capacity to initial imperfections.

7. Deformation modes after secondary buckling

The deformation mode at the lowest load on the secondary buckling path for A =7 is very
interesting as shown in Fig. 9, because several harmonic wave numbers (#=0+3+6+9+1+2+4
+5) are canceling out each other and the deformation is confined to the narrow part of the
cap and it appears to form a single narrow dimple. For the case of A =6 the same deformation
mode can be obtained.

The load-deflection curve for A =8 is shown in Fig. 10, and the deformations after secondary
buckling at the equilibrium states A and B are very different from the case of A=6 and 7.
Several modes (n=0+4+8+12+2+6+ 10+ 14) are amplifying each other to the contrary and
the deformation spreads over the whole part of the cap, as shown in Fig. 11 and 12, and it
appears to form a large dimple and turn over.
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Fig. 10 Load-deflection curve (A =8).
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Fig. 11 Deformation mode (A =38).
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Fig. 12 Deformation mode (A =8).
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Fig. 13 Load-energy curve (A =6).
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\Secondary Buckling
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" 1 2 1 n — —_

0.0 20 V.C. (cm3) 40

Fig. 14 Load-volume change curve (A =6).

8. Strain energy and volume change

In this study the external potential energy and strain energy associated with actual deformations
are calculated at each equilibrium state, and one example of the load-energy curve is shown
in Fig. 13. In this figure, Astatic buckling loads for the equilibrium state that has zero total
potential energy are also shown. In case of uniformly external pressure, external potential energy
can be regarded as the volume change of the deformed cap. This is because only the axisymmetric
deformation takes part in volume change.

Making a comparison between the post buckling and secondary post-buckling, volume changes
after bifurcation are very different, as shown in Fig. 14. On the post-buckling path, the axisymmet-
ric deformation is very large and spreads over the whole part of the cap. As a result, the volume
change of deformation becomes very large. In case of the secondary buckling path for A =6,
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non-axisymmeric modes are predominant and volume change of deformation is very small like
as the case for deformation mode of A =7 in Fig. 9. According to Figs. 13 and 14, on the
secondary buckling path it seems that the behaviour of deformation is determined by growing
or disappearing of non-axisymmetric components with little change of axisymmetric one.

9. Conclusions

The following several conclusions can be drawn. (a) The secondary buckling point could
be found just right after bifurcation point on the way of post-buckling path, and the secondary
buckling mode is a very complicated deformation due to mode coupling between several harmonic
wave numbers. (b) The higher equilibrium paths and buckling behaviours after secondary buckling
could be traced minutely. In comparison with the cases of post-buckling path, the loading capacity
1s fairly decreased on the way of the secondary post-buckling path. Similarly, there is a difference
between the two judging from the view of strain energy change. (¢) For A =6 and 7, the volume
change of deformation mode after secondary buckling is very small and non-axisymmeric modes
are noticeable, but the deformation is confined to the narrow part of the cap. (d) For A =8,
the volume change of deformation mode is very large, and the deformation spreads over the
whole part of the cap.

The bifurcation points and secondary buckling points are adjacent to each other, and on
the way of post-buckling path re-bifurcation occurs accompanied by appearing lower harmonic
wave number than the first bifurcation one. Therefore it seems that mode coupling near the
secondary buckling point has an important role in sensitivity problems of load carrying capacity
to initial imperfections.

The method used here may be also useful to the secondary buckling problems of other type
of shells of revolution, for example, circular cylindrical shells.
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