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Abstract. This paper deals with the bending problem of a variable-arc-length elastica under moment
gradient. The variable arc-length arises from the fact that one end of the elastica is hinged while the
other end portion is allowed to slide on a frictionless support that is fixed at a given horizontal distance
from the hinged end. Based on the elastica theory, exact closed-form solution in the form of elliptic
integrals are derived. The bending results show that there exists a maximum or a critical moment for

given moment gradient parameters; whereby if the applied moment is less than this critical value, two

equilibrium configurations are possible. One of them is stable while the other is unstable because a
small disturbance will lead to beam motion.
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1. Introduction

In deep offshore engineering operations, a long vertical pipe or a marine riser stretching from
the sea floor to sea surface may be considered as an elastica. In the analysis of such an elastica,
the water depth may be considered as the span length and is assumed to be known while
the total arc-length of the elastica in the displaced position may be unknown. Owing to the
variableness of the arc-length, the determination of an equilibrium position of the elastica under
a given loading condition is most challenging.

Elasticas with constant arc-lengths have been extensively researched and classical solutions
under a variety of loading and boundary condition can be found in classical text books, (eg.
Love 1944, Frisch-Fay 1962, and Britvec 1973) and in research papers, (e.g., Barten 1944, Bisshop
and Drucker 1945, Conway 1947, 1956, Schile and Sierakowski 1967, Lau 1982, Seide 1984, Bottega
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1991, and Navaee and Elling 1992, 1993). In contrast, a smaller number of papers have been
published on elasticas with variable arc-lengths, (e.g. Chucheepsakul, er al. 1994, 1995, 1996 and
Wang, et al. 1997). In almost all of these elastica problems, the formulation is based on the
elastica theory for which exact closed-form solutions may be obtained by using the elliptic integral
method. Recently, Chucheepsakul, ef al. (1994) solved the large deflection of beams under moment
gradient using both the elliptic integral method and the shooting-optimization method (Wang
and Kittpornchai 1992). However, later studies (Chucheepsakul, er al. 1995, and Thepphitak 1995)
on variable arc length elastica problems showed that there are two possible equilibrium configura-
tions for a given loading condition. One of this configuration corresponds to a stable equilibrium
while the other an unstable equilibrium. The latter implies that a slight perturbation will cause
the elastica departs from its equilibrium state. In Chucheepsakul, ez al. (1994), only the stable
equilibrium state solutions were presented. For completeness, this paper presents the exact solu-
tions for the unstable equilibrium state. Further, the former solutions given in Chucheepsakul,
et al. (1994) contain some non-elliptic integral functions which will now converted into fully
elliptic integral form for greater computational accuracy. Also, this study gives the maximum
or critical moment values in which the elastica can withstand.

2. Elastica formulation

The equilibrium configuration of an elastica of fixed span length L with variable arc-length
is shown in Fig 1. It is hinged at support A and cantilevered over a frictionless support B.
The beam is subjected to end moments M,=(1—a) M, and Mz=aM,, where a is the scaling
parameter. When a=1, the beam is subjected to only moment M. For =0, the beam is under
moment M, and when a=1/2, the beam is under uniform moment along in fixed span L.

Consider a free body diagram of a segment of the deflected beam as shown in Fig. 2. The
equilibrium of moments at point J gives

M:—(]*2a)(ig—q> x+(1—2a)<—]\zg> tan Ggy+(1—a) M, Q)
The moment-curvature relation and the geometric relations, are given by

M, =(-aM, Mg =aM,

M, =(1-a)M, M, =aM, -
0, 8, (1-20)M,
m m 0 LcosB,
A B y B
i a8 '
L
an ~
.
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(a) Undeflected shape {b) Deflected shape

Fig. 1 Variable-arc-length elasticas under moment gradient.



Exact solutions of variable-arc-length elasticas 531

M
H, =(- 2(1{T0)tan95
M
V, = —(1- 2(1{7‘2)

Fig. 3 Variations of the moment parameter, M with respect to the slopes 6; and 6.

SV U S Ay _ ,
M=—EI s - s cos f:; and s =sin @ (2a, b, ¢)

In view of Eq. (2) and some algebraic manipulations, Eq. (1) may be written as

—2( i?) =(1-2a )( °> sm9+(1—2a)< ) tan@; cos 6+C 3)
The integrating constant C in Eq.(3) can be evaluated by using the boundary condition at either
A or at B. Using the boundary condition at 4, where =6, and d E
obtains
_ =My, (Mo _ M,
C SEI (1—2a) 7 sin 8,—(1—2a) T tan 6 cos 6, E))]
while the boundary condition at B, in which 8=6; and d@/ds= —aM,/EI, gives
__(aMyy
C E (5

Egs. (4) and (5) yields the following relation between 8, and 6
M=2(sin 0,+tan 6 cos 6,) (6)

where M=M,L/El. By substituting Eq. (5) into Eq. (3) and taking the square root of Eq. (3),
one obtains the following curvature expression

% = —(%> /2M \/y,+,113 sinf+ u; cos 6 (7)

where
= a(sin G;+tan Gz cos 0y); w=(1—2a); u;=(1—2a)tan G, (8a-c)
Combining Egs. (2a), (2b), and Eq. (7), and after integration, yields the following expressions



532 Somchai Chucheepsakul, G. Thepphitak and CM. Wang

L= ’ —d o
o /Mt sin 0+ s cos 0
X_ o f —).cosfd w0
L V i+ o sinf+ g5 cosO
Y- —Asinfd6
L7 J' V i+ sinB+ s cos6 (11)

where A= ﬁ .

3. Exact elastica solutions

The elastica solutions of Egs. (9)~(11) may be categorized into four cases. depending on the
parameters u, @ and u;, as follows.

LM . <
CHSCI. W <1and,uk_0

:{xm{F(dz. k)—F(®,, k. if 62, 12)
AF(D,. k)+F®, k), if 6<p
Ap2{E(®, k)+E<1>> k)= [F(®,, k)+F(®, k)}+nicos®—cos®,}], if 6<y,
_{A'n4[2{E(¢b k) E(@?, k)} {F(¢l~ k)-‘F(@, k)}—nS{COS¢1—COS¢2}]q 1f 9_>_71 (14)
T nR2AE(®@, K)+E(®, k) —{F(®. k)+F@,. k)}—nslcos® —cos®}], if 6<y

where E and F are the elliptic integrals of the first and second kind (Byrd and Friedman 1971)
respectively, and

cpl:sin»»]\/ﬁ*',u%“llzsm9/4;51)_300894 : _Sm\,\/Jyz+/f L sin 8— u; cos 0
IR VAT.AST: /s

AR A _( 1 ) N2 2w
k Witm ATV E ST @ T

_ 2k 2w 2k .
773 IJ} - 774 ([é+}l§)3/4 . ]"5_ IUQ . (]53'1)
. 1
Case II: rEDY. <land v > 0

=VAnF(@. k) +F( @, k)l 8<n<6, (16)

{—lm{F(d’l, k)—F(®,, k), 0<6,<y,
§=
A{F( D k)—F(®Ds, k)}, n<6<0,
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=Y AmLAE(Dy, k) +E(®y, i} —{F(D,, k)+F(®@s, k)}+ micos® —cos®ut], if 6<y<6,  (17)

{Anz[{F(cD], k)—F(@D, k)| —2{E(®,, k)—E(D, k)}+ns{cos @, —cos @ )], if 6<0,<y
x._
AmLAE(®D,, k)~ E(®,, k)l —{F(®\, k)—F(®., k)}+ n{cos®—cos®}], if 1<6<6,

y=YA2{E(Dy, k)+E(®y, k) —{F(®,, k)+F @, k)}—ns{cos® —cosd:}], if 8<y<6, (18)

{/1774[{F(¢1, k)_F(QQ, k)}*z{E(¢|, k)‘—E(¢2, k)}‘”'ns{cos ¢1—-COS ¢2}1 if QSHAS)/I
AL2{E(D, K)—E(®s, )} —{F(@,, k)—F(®,, k)l —nslcos® —cos®}]. if 1<6<6,

where @, @, k y, m, m. m. e and ns are defined in Egs. (15).

Case III: - <land p > 0
2+ 3

S_{An.{F(cpl, ) =@, k). if 02, 19

— UnlR(@. k)+F®, k), if 6<n

(nlE@®, b—E@®. k)—8{F®, h—F@®, k)
Ll 1=k sin’® —/1—k*sin’ @} ], if 62y,
T n{E(@, k)—E(®. k)= 8{F®. k)+F(d®, k)

\+mly/1—k%sin’ @ —/1—k?sin> @} ], if 6<y,

(20)

(

AnLAE(D,, k)~ E(®,. k) —&{F(D,, k)~ F(®. k)|
{ =0/ 1= sin’® —\/ Tk sin’ @y} 1. if 6>y,

YT A E(D, k)~ E(®., k)= 8,{F(®,. k)+F(®, k)
\— nsly/1—k*sin® @, —\/1—k?sin> @} ], if <y,

2n

where
. + 1 Sin 68— 5 cos G,
&, =sin 1\/ \/:Z[2 1‘1—
1 2\/ 15+ 15

,,\/ \/ 1B+ 18— 1 sin O— u; cos O
2/ 18+ 15

=sin

2\/£12+/f : ~1< )23 ) _ 4 .
- N - o] o) . 6_ ] -
k ‘/ wridrg \/w+ TR RV/T R
! VitV (M+ﬁ) G m
_ 2

= (B+ 18) IR

(CaseIV——-u—— >1land i, > 0
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*lm{F(GPI, k)—F(®,, k)}, 0<0,<y

S:{/Vh{F(@]. ky+F(@,, k)}, 6<n< 6, (23)
I{F(@y, k)~ (@, k)}. n<6<8,

(An[81F(®, k)~ F(®s, )} —{E(®,, k)—E(®,, k)}

+ /1= Ksin’ @, — /1= ki@, if 0<6,<y,

X:< ApUE(D,, k)y+E(D,, k)l —8§{F( D, k)+F(d, k)}

+miy/1—ksin’®@, — /1 —ksin* @y}, if 8<y,<6, (24)
A {E(Dy, k)—E(D>, k)l = 8{F( Dy, k)—F(®, k)
\+ mafy/T=Esin’®,—/T—ksin’@} ), if 1, <6< 6,

(I S{F(@,. k)—F(@ k)t —{E(@,, k)—E(@®, k)}
—nsly/1—=ksin’ @, —/T—ksin @y}, if 6<6,<y,
y:< A {E(®y, k) +E(Ps, k)l = 8{F(D,, k)+F(®, k)}

+nsly/1=ksin’ @, — /1= ksin’@y} ], if 6<y,<6, (25)
AUE(D, k) —E(Ds, k)}—8{F(D,, k)—~F(®, k)}
\— nsfy/1—k%sin’ @, —/T—ksin’ @}, if y,<6<6;

where @, d, k, v, 6. M, M, . 1y and ns are defined in Egs. (22).

4. Special case; a=0.5

In the special case of a=0.5 (ie., when the beam is under uniform moment over its fixed
span L), the parameters u,=M/8, b= 1;=0. The simplification of the u perameter for Egs. (9)-
(10) yields.

2
§$=—=(0-0) (26)
X*—z—(si 6,—sin ) 27
=37 s o sin 2
—2 (cos 0—cos 6 2%
y=7; (cos 6—cos 1) (28)

Egs. (26)-(28) implies that the elastica has a circular arc configuration.
By applying the boundary condition at B and setting 8= — 6, Egs. (27) and (28) give

M=4sin 6, (29)
746 _ 6
and L= M sing, (30

5. Solution procedure

For a given value of M, two unknowns (8, and 0) are to be solved in order to obtain the
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equilibrium configuration. The two equations needed come from Egs. (6) and (10) with x=1

and 6=—06;, ie.,

In solving these two nonlinear equations, an iterative procedure is required and

M

Moment parameter ,

% —Acos 0d 6
o0 VT b sind+ s cosd

= 00
= 025
= 045

ML‘T

Critical moment ,

Slope , 8 (rad)

Fig. 2 Free body of a segment of elastica.

No equilibrium state exists

00 | 005 | 010 | 015 | 0.20 [ 0.256 | 0.30 | 0.35 04 | 045 | 050

a
[_ m‘, 2.4061{2.4525|2.5048( 2.5645|2.6335|2.7146 | 2.8124/2.83463.0967[3.3385| 4.0
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Moment gradient parameter , O
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Fig. 4 Variations of the critical moment parameter, M., with respect to the moment gradient parameter,

Q.
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when the obtained results satisfy the specified tolerance. In case where ¢<0.5 and if the assigned
value of M is greater than M,, (critical moment or the maximum moment value), the equilibrium
solution does not exist. Thus, using aforementioned procedure may be not convenient for solving
the problem. A more direct method of solution is recommended, in which only one equation
is required to solve the problem. By setting y=0 and 6= —60; in Eq. (11), one obtains

~ g .
—sinfd 0

= 2

J‘QA \/,ul + 1%3) sinf+ W cosd 0 (3~)

This equation can be transformed into elliptic integral forms as given in Egs. (14), (18), (21),
and (25). If 6 is given, one can solve 8, from these equations and M can be determined from
Eq. (6).

The solution steps are summarized as follows:

1. Assign a value for 6, (0<6;<s/2), and set the initial value of 8, to be zero.

2. Solve 6; in Eq. (31) by the Newton-Raphson iterative process based on the value of 6,
given in Step 1.

3. Evaluate M from Eq. (6) for the values of 6, and 6, obtained from step 2.

4. Add an increment A8; to 6; to obtain the new value of .

5. Repeat steps 2-4 and construct the curves of M versus 6, and 6,

To solve the deflection y and L at a distance x it is necessary to determine 8 at x first.
At any distance x assigned and the angles 6, and 6; found, the value of € is determined from
Egs. (13), (17), (20), and (24). Then the corresponding values of L and y are determined from
Egs. (12), (16), (19). or (23) and from Egs. (14), (18). (21). and (25) respectively.

6. Numerical resuits

Fig. 3 shows the variations of M with respect to the end slopes 6, and 6; for a=0, 025
and 045. There is a peak value of M for each value of a which is less than 0.5. This peak
value is known as the maximum or critical moment, M,,. and it can be determined numerically
using the Dichotomous search algorithm (Kempf 1987) during the solution procedure in step
3. Fig. 4 shows the numerical values of M,, and the plots of these values for different values
of a. At a=0, M,, is equal to 24061 which was previously obtained in Chucheepsakul, et al.
(1995). For a=0.5, Eq. (29) gives a maximum value of M, =4 when 6,=m/2(0<68,<m) and from
Eq. (30), the corresponding L=7/2.

Fig. 5 shows typically, two different curves representing the stable and unstable equilibrium
configurations for M=2 and a=0, 025 and 045. In the case of @=0.5, for a given value of
M which is less than 40, one can determined 8, from Eq. (29) which gives two values of 6,.
The smaller 8, gives the stable equilibrium configuration which is a circular arc of smaller
total arc-length. On the other hand, the larger 6, gives the unstable equilibrium configuration
which is a circular arc with the larger total arc-length. Numerical results of the stable and unstable
equilibrium configurations are given in Table 1. For the stable cases the results are obtained
for every values of a whereas in the unstable cases the results are obtained for every values
of a which is less than or equal to 0.5. Beyond this @ value, the equilibrium results of the
unstable cases are non-existent. To confirm the validity of the elliptic-integral formulation and
solution, the results obtained by this method are compared with those determined from the
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0, =0.7761 rad 9, = 03974 rad 8, = 06470 rad 0, = 04619 rad
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02 02 T
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9, =15708 rad 6, =1.1927 rad
0.4 04 +
05 - 05 +
'——— Unstable equilibrium Unstable equilibrium

06 -= 0.6 —L

y y

(@) (b)
6, =051 15rad
0, = 05479 rad b “’
055M, 045M,

02 +
0, = 14792 rad
03 +
Stable equilibrium
04 J» 0, =1.5708 rad

0.5 1

Unstable equilibrium
06 L

(©
Fig. 5 Equilibrium configurations for M=2 and a=0, 025, and 045,

shooting-optimization method (Wang and Kittipornchai 1992). The details of this method is
given in Chucheepsakul, er al (1994). It was found that both methods yield the same solutions
up to four decimal places; confirming the correctness of the elliptic integral expressions.

7. Conclusions

Exact solutions for elasticas with variable-arc-length under moment gradient have been pre-
sented. The solutions are given for both cases of stable and unstable equilibrium states. In addition,
the critical moments for various moment gradients are given. These solutions should be useful
to engineers designing offshore risers and the results may serve as benchmark values to verify
convergence, validity and accuracy of numerical results obtained from computational methods.
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Table | 6,, 6 and L versus M for various values of a for both stable and unstable equilib-

rium states
o & O L
a
Stable Unstable Stable Unstable Stable Unstable
1.0 0.3429 1.7378 0.1722 12414 1.0119 1.7848
0.0 1.5 0.5364 1.6975 02711 1.0894 1.0299 1.5913
20 0.7761 1.5708 03974 09234 1.0655 1.4070
1.0 0.2979 1.6590 02127 1.3951 1.0112 1.8480
025 15 0.4605 1.6393 0.3288 1.3013 1.0271 1.6883
20 0.6470 1.5708 04619 1.1927 1.0550 1.5319
2.5 0.9009 14154 0.6440 1.0373 1.1131 1.3596
1.0 02527 2.8889 0.2527 2.8889 1.0107 11.5556
0.5 1.5 0.3844 27572 0.3844 27572 1.0251 7.3525
2.0 0.5236 2.6180 0.5236 2.6180 1.0472 5.2360
2.5 0.6751 2.4665 0.6751 2.4665 1.0802 3.9463
1.0 02073 ~ 0.2920 — 1.0106 —
075 15 0.3085 — 0.4381 — 1.0237 -
20 0.4053 - 0.5828 — 1.0417 -
2.5 0.4938 — 0.7224 - 1.0631 -
1.0 0.1618 — 0.3307 - 1.0108 -
10 15 0.2331 — 0.4901 - 1.0232 -
20 0.2917 - 0.6395 — 1.0382 —
2.5 0.3337 — 0.7734 — 1.0533 -
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