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Abstract. This paper presents a high precision integration method for the dynamic response analysis
of structures with holonomic constraints. A detail recursive scheme suitable for algebraic and differential
equations (ADEs) which incorporates generalized forces is established. The matrix exponential involved
in the scheme is calculated precisely using 2V algorithm. The Taylor expansions of the nonlinear term
concerned with state variables of the structure and the generalized constraint forces of the ADEs are
derived and consequently, their particular integrals are obtained. The accuracy and effectiveness of the
present method is demonstrated by two numerical examples, a plane truss with circular slot at its tip
point and a slewing flexible cantilever beam which is currently interesting in optimal control of robot
manipulators.
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1. Introduction

Aerospace, civil and mechanical engineering structures are quite often subject to prescribed
constraints. These constraints can be non-linear, time dependent and holonomic due to restrictions
on configurations, phase plane trajectories, and workspace of the structures. These constraints
can not simply be eliminated and the governing equation of the dynamic structural system
is a mixture of both algebraic and differential equations (ADEs).

The constrained dynamic problems have received increasing attentions in recent years with
a large proportion of the literature focusing on flexible multibody systems (Bae and Haug 1987,
Li and Sankar 1992, Amirouche 1992, Yang 1992, Barauskas 1994). Yang (1992) presented a
formulation for predicting the natural frequencies of constrained structural systems. Dynamic
structures with unilateral constraints under impact have been considered by Barauskas (1994).
Recent studies on optimal control of space structures, such as antenna, solar panels also involve
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coupled equations of rigid motion and flexible vibration with prescribed constraints. To deal
with local nonlinearities in a structure, Liu, et al. (1994) developed an alternative substructuring
approach which results in a set of ADEs. A Newmark scheme-based predictor-corrector algorithm
(NPC) was presented for the integration of the resulting ADEs.

For some time, implicit direct integration methods have been used for the solution of the
ADEs (Amirouch 1992, Nikravesh 1984). These methods, however, can not maintain the property
of conservation of a conservative Hamilton system and induce errors due to the use of difference
approximation techniques. The accuracy of these methods denoted as O(cy, depends strongly

on the time step size © In addition, the key parts of these methods, e.g the effective stiffness
matrices also rely heavily on = This implies that there is a little flexibility to improve the computa-
tional accuracy when using these schemes. Further, since the structures are characterised by
the holonomic constraints, highly nonlinearities can arise, and direct use of the constraints can
result in instability problems (Liu 1996, Baumgarte 1972). It is therefore essential that efficient
integration methods with high accuracy are needed in the solution of these ADEs. Recently,
Zhong (1993) presented a high precision integration method which can maintain the conservation
of a dynamic Hamilton system. The method has been extended to the numerical integration
of differential Riccati equation and two-point boundary value problems (Zhong and Williams
1994, Zhong 1994).Lin and his co-workers (1995) have applied the method to non-stationary
random seismic response of structures with very large time steps. It is therefore foreseeable that
the method could result in desirable results for ADEs.

The present paper extends Zhong's work to the response analysis of constrained structures
and establishes a recursive scheme for the solution of ADEs. The matrix exponential is calculated
by using the 2V algorithm. The generalised forces in the ADEs are separated and expressed
as Taylor series and their particular integrals are obtained. The accuracy and the effectiveness
of the present method is demonstrated via two examples.

2. Equations of motion of constrained structure

A general set of r independent prescribed holonomic constraints of dynamic structure can be
written as

@(t, D)=0 (D

This equation imposes r restrictions on D, and @ is presumed to have two continuous derivatives
with respect to each of its two arguments. Differentiating the constraints of Eq. (1) with respect
to time gives velocity and acceleration equation as, respectively

D=0=>Dp,D+ D=0 )
and
D=0=>Dp D+ (PpD)p+ 2P D+ &, =0
=>@,D+R=0 ?3)
where

R=[J(®pD)/0D+20®, /011 D+ J* &/
Let E=0®/0D, then, after incorporation of an arbitrary Lagrangian Multiplier vector A=(A,,
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Ayt A, the equation of motion of the constrained structure becomes
MD+CD+KD+E"A=P @

where K, M and C are time-invariant stiffness, mass and damping matrices of the structure, while
P is the vector of applied loads. The term ETA is the generalized constraint force which enforces
the constraint Eq. (1) being satisfied.

For some nonlinear structures, Eq. (4) can be modified by introducing the nonlinear term
Q without changing the properties of K, M and C, which will keep the advantages of the time-
invariant parameter matrices, ie.

MD+CD+KD=P—E"A+Q 5

Since Q is separated and it appears on the right-hand side of the equation, it is referred
to as the nonlinear generalized force. Usually Q is a function of the state variables of the structure.
Egs. (5) and (1) together with the following initial conditions

S (2o, D)ZO}

52 (lo, D, AD):O (6)

define an initial value problem that governs the dynamic behaviour of the structure.

It is essential that the first equation of Eq. (6) and the constraint Eq. (1), evaluated at #,
~ uniquely determine the initial displacement IX(z,). Similarly, the initial velocity D(r;) must be
uniquely determined by Eq. (2) and the second equation of Eq. (6).

From Eq. (5), one has

D=M " (P—E"A+Q—KD—CD) )
Substitution of Eq. (7) into Eq. (3) gives
EM~'ETA=EM(P+Q—KD—CD)+R (8)

If M is positive definite, which is normally the case, and if the constraints are independent,
so that E is of full rank, then EM~'E" is positive definite and A can be determined uniquely
from Eq. (8).

It should be noted that Egs. (5) and (8) are coupled to each other and cannot be solved
separately by the existing integration methods, such as Newmark, Houbolt, and Runge-Kutta
schemes. Using the NPC method (Liu, Williams and Kennedy 1993), an estimated value of
A can be obtained from Eq. (8) due to predictions of D and D. The corrections to D can then
be found by substituting this approximate A into Eq. (5). In spite of its availability, the method,
however cannot keep the conservation of a Hamilton system and always causes errors due to
the difference approximations. Zhong’s (1993) high precision integration method has been found
applicable to both initial and boundary value problems and more important, this method can
give a nearly exact solution for many of the linear problems and maintain the conversation
of a conservative Hamilton system. The method is therefore used here to the solution of the
ADE:s.

3. Formulation of the high precision integration scheme

To derive the scheme, it is necessary to transform the Eq. (5) into a first-order form. By
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introducing the following variables u=MD+CD/2 and v={D", u"}7, the Eq. (5) can be written
as

v=Hv+f ©

{0 (4 4
where f={ p_pry g f [A3 AJ’
A=—M'C2, A.=M"", A;=CM 'C/4—K, and A,=—-CM /2.

Since H is a constant matrix, from the theory of ordinary differential equation, the homogeneous
solution of Eq. (9) can be expressed as

vi®)y=exp [H-(t—1y)]co (10)

in which ¢, 1s constant vector to be determined by initial conditions. Let v” be the particular
integral of the inhomogeneous term, then the general solution of Eq. (9) has the form

v=vitvr=exp [H-(t—t)ley+ v’ (11)

The vector ¢, can then be readily derived from Eq. (11) by taking t=1t, as ¢y=v(t)— v’ (t), so
that

v=exp (Hf) [(v(t)—Vv"({ts)]+ v’ (12)

Let t be the constant time step size. Then the explicit recursive formula for the general solution
at (k+ Dth time step, ie. t=t,+k+ 1)z is

Viei=exp (H9lvi—v{1+vi,. (k=012 ) (13)

The key part of the precise integration is the calculation of exp (H-t) because the accuracy
of Eq. (13) depends on how accurate the matrix exponential exp (H* 1) can be evaluated. Because
of their wide applications, the matrix exponential is described in many literature (see Golub
and Loan 1983). The efficient and precise calculation method for exp (H- 1), ie. the 2V algorithm
was presented in the paper by Zhong (1993) and it has the form

exp (H-D=[exp (H t/n))'=[exp (H*Ar)]" (14)

where Ar=1t/n, n=2" and N is a positive integer.

The At will be a very small interval even for a small value of N, for example take N=20,
then Ar=1/1048576. From the point of view of structural dynamics, this value of Ar is much
less than the highest modal period of any conventional idealised structure.

Further calculation of exp (H- 1) concerns the Taylor expansion of exp (H-Ar) that may be
written as

2 3 4
exp (H-At)zH—HAHLg—'AIL +i’—§%’l+ %A—’Lz IR, (15)
2 3 4
where ROZHA1+L%'Atl +LI§'AQ +iﬂ4'étl.
Let R,':2R,'\1+R,‘71R,'—1 (J: 1, 2, ey N), then
exp (H-9=lexp (HA)] = [(I+R)1*'=I+Ry (16)
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The truncated error of the expansion Eq. (15) can be estimated as (H- Ar)’/S! . Suppose H=Y,
[ulY!, where Y/Y,=1I, Y, and Y, are respectively, the left and right eigenvector matrices of H,
and [ul=diag {1 18 -} is the eigenvalue matrix, and it follows , by using expansion Eq.
(15), that

exp (H- At~ Y,(I+[/1]At+2—1' [ p]2Az2+3—1, [ p]3Az3+4—1, [ A Y] (17)

Then the truncated error from the ith eigensolution corresponding to u is (uAfy/5!. Let ¢
be the allowed truncated error, then |u|Ar<(120€)"° or |ulr<2Y(120¢)"”. If inherent damping
is not considered, |yl is, in fact the ith angular frequency of the structure, ie. |ul=w. This

gives, by substituting a)i:—z;i, where T; is the ith natural period of the structure, that

T o1l 15
<27 (1209 (18)

Since 2¥~' is a very large number, the step size t can take a very large value even for a small
number & When N is large enough, the accuracy will not be dominated by r in the sense
of numerical computation. For example, if take £= 107", which exceeds the precision the computer
can represent, and N=20, then % <160. This means that there is no significant truncated
error can be induced by Eq. (15) even time step size is 160 times of the ith natural period
of the structure. The higher modes should be considered, but in practice, the contributions of
the high modes to the solution will be damped out because of inherent damping of the structure.

So it can be concluded that when N=20 the computed v” is nearly the exact homogeneous
solution, thus the accuracy of the general solution of Eq. (9) mainly depends on the accuracy
of the particular solution v”. For unconstrained linear structure under simple dynamic loads,
the particular solution can be found analytically and in this case the general solution can be
considered as the exact solution of the structure. But for constrained structure the situation will
be much complicated and the particular integrals for the non-linear terms are only the approxima-
tion to the exact ones.

4. Particular solution of the ADEs

The particular solution v” is the algebraic sum of the particular integrals of the applied force
P(t) denoted as x(f), generalized constraint force E'A, as y(t), and the generalized force Q, as
2(t). Here the undetermined coefficients method is used to find these particular solutions. It
should be pointed that the calculation of x(r) is independent of the integration scheme, this
means that the accuracy of the general solution of the structure can be conveniently improved
via the improvement of the accuracy of P(z), making it possible to incorporate an adaptive mecha-
nism in the algorithm.

4.1. Particular integrals of the applied force P(t)

@) If PO=rotritrt 4 +r,t", where r; (i=0,1,--, m) are constant vectors, then we
take
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x(t)=ao+a1t+a2t2+ """ +amt’" (19)
in which

a,=—H7'r,
am*IZH_l(mam‘rm~l)
a, »=H '[(m—Da, —r,-]

(20)

a=H"'Ga;—r,)
a :H_1(2a2—r1)
a():H_l(a1~ro)

(i) If P(®)=r, sinBt+r, cosOt, where 0 is constant, and r, and r, are constant vectors, then
we take

x(t)=a, sinOt+a, cosOt (2D
where
a,=(0I+H? ' (6r,—Hr)
ay=—( 01+ H)~ (O, —~Hr2)} @2)
(iii) If P())=ré", where b is a constant and r a constant vector, then we take
x()=ae" (23)

where a=(bI—H)'r.

If P(f) is the sum of any two or all of above special forms, the particular integral is then
the appropriate sum of the individual particular integrals.

The x(z) is exact integral if the above P(¢) is the exact expression of the applied force, otherwise,
e.g. if the real applied force is fitted by the above special forms, then x(f) is only an approximation
of the particular integral of the applied force.

4.2. Particular integrals of the generalized forces

Expending the constraint force ET A at f, one has

ENED| +LER |y LLER |y 24)
% t 0 2 dt %
where
dE™A) _ dE” r dA
dt a ME 4
and
d(E'A) _ dLET dE" dA | dA
@ MTaa e

The multiplier A can be found from Eq. (8), as
A=S[EM '(P+Q—KD—CD)+R] (25
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and consequently

A=G(P+Q—KD—CD)+G{P+Q—KD—CD)+SR+SR (26)
A=G(P+Q—KD—CD)+2G(P+Q—KD—CD)
+G(P+Q—KD—CD)+SR+25R+SR @7)

where S=(EM 'E")"! and G=SEM"'
Similarly, the generalized force Q can be expanded as

01)= 00+ QXX —1) ++ Qe —107 29)

The high order derivative D involved in Egs. (27) and (28) can be calculated approximately
using numerical differentiation approaches. In this paper, the following three point formula is
employed

D= Z,(Dk —,—4D, -, +3Dy) 29)

The Egs. (24) and (28) , which can be used to evaluated the particular integrals as described
in Section 4.1, are quadratic approximations of E"A and Q, respectively. However, it is possible
to use higher order approximation of the nonlinear terms for some special problems.

In summary, the particular integral of E"A is

yO=ayt+at+a’ (30)

where
et foa AED, SED ]
aO:H"[al—E/r/l-FA%:—A)—tk—%—i%&lf]

and the particular integral of Q is

z)=aytait+ar 3D
where

a=— %H‘ 'Q

ale“l [2‘12"Q+Q[k]

aO:H‘[aI—QJr'th—%Qtﬁ].
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5. Algorithm and numerical examples

Fig. 1 is the flowchart of the algorithm. A demonstration of the effectiveness of the proposed
method is provided by a plane 14-bar truss and a slewing flexible beam. No inherent damping
is considered for both of the two examples.

Since instability may rise due to the use of acceleration constraint Eq. (3), a modified constraint
is adopted. For the purpose, we introduce penalty functions |®|” and |®|¢ to damp out errors
in the integration. The modified constraint is then represented as

ED+R+ x, sgn(®D)| D7+ k, sgn( D) D=0 (32)

where sgn is a signum function, x; and k, are positive real numbers, and p and ¢ positive
integers.

The accuracy of the present method is assessed by the violations of the holonomic constraints
and the comparison with the NPC is made.

5.1. Plane truss structure

Fig. 2(a) shows a plane truss with 14 bars. The properties of the bars are: Young’s modulus
E=2.1X10"N/m?, density p=7800.0 kg/m’, and cross-section area 4=9.0X10"*m?’ Two loading
cases, one p(f)=10000 sin 20¢N) and the other p(r)=10000 (N), are considered. Two constrai-
nts

(1) ¢E(ua_ex)2+(va_ey)2_r2:0
where u, and v, are the displacements of node ¢ in X and Y directions, respectively, and e,=0.05 m,
e,=00 and r=005m, and

(ii)) d=v,—0005 sin 27r=0

are considered, respectively. The constraint (i) defines a circular slot at (e,+5.0, e,+1.0) with
radius r (see Fig. 2(b)) while the constraint (ii) enforces v, to vary sinusoidally.

To investigate the accuracy and effectiveness of the present method, the constraint error, represe-
nted by & is defined, eg. for the constraint (i)

e=[\V(u,— e+ (va—e, ) —rl/r100%

and for the constraint (i) simply

e=vy,—0.005 sin 27m.

The static initial condition, ie., D(0)=D(0)=0 is considered for the dynamic truss with the
constraint (i). For the constraint (ii), let D(0)=0 and make D(0) being consistent with this constraint
at 1=0.

Figs. 3 and 4 show the percentage errors of the constraint (i) for the two loading cases. It
is shown that the present method gives much smaller errors than NPC does when the modified
Eq. (32) is used, ie. p=¢=1, x,=10000 and x=1000. Both of the two methods are unstable
if the stabilization term k; sgn(®)|Pl7+x, sgn(P) P is ignored.

Tables 1 shows a comparison of the results obtained by the present method and that by
NPC method for the constraint (ii). It can be seen that the results by present method are much
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Form K, M, and C
Sett, N, ki, k2, p,and g
Determine D(0) and D(0)

Calculation of
H,H'and
exp(H 1)

Description of (" Modification )
constraint Eq.(3) \ of constraints

Evaluate particular /" More accurate
. | . .
integrals v/, © approximation

| for P(t), E™ and @

P LFmd vist from Eq. (13) J

! <t T

Calculate Dy+i,
D,,, and D,,,

Fig. 1 Scheme for high precision integration of constrained dynamic structures.

(b)

Fig. 2 Constrained truss.
(a) Plane truss; (b) circular slpt constraint for node a as the constraint (I).
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Fig. 3 Percentage errors of the constraint (i) subject to p(r)= 10000 sin 20¢ (N) with N=20 and t=0.0001
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Fig. 4 Percentage errors of the constraint (i) subject to p(f)=10000 (N) with N=20 and r=0.0001 sec.

Table 1 Comparison of errors of constraint (ii)
(t=0.0001 sec, N=20, p=¢=2, x;=10°, x,=10%

Time Violation of @ by present method Violation of @ by NPC method
Same results for the p=10* sin 20(N) p=10* (V)
(ms) two loading cases
200 1.2X107" 9.5X107? 25X107°¢
400 62X107" 12X10°8 —-63X10°¢
600 1.3x10°M 80X107° —63X107°¢
800 301077 14X107% 43X107¢
1000 7.8X10°M 99Xx107° 51x10°¢

Table 2 Comparison of errors of the constraint (ii) subject to
p(H=10000 (N). (z=00001 sec, N=20, and x;=xx=0)

Time Violation of & by Violation of @ by
(ms) present method NPC method
200 78X 1077 67X107*
400 1.6X107° 1.3X107?
600 23X1077 20X107?
800 3.1X1077 2.7X1072

1000 38X1077 3.3X10°?
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more accurate than those obtained by NPC. In the computation the higher order derivative
of the Lagrangian multiplier A is evaluated by numerical differentiation and used to approximate
the generalised constraint force in Eq. (24) up to the third term.

The results without stabilization are depicted in Table 2. As expected, the result from the
present method is accurate and makes the constraint satisfied well whilst the result by NPC
is unacceptable for its poor accurate.

5.2. Slewing flexible uniform beam

The slewing flexible beam models systems such as spacecraft antenna, solar panel, robot mani-
pulators and crane arm for the optimal control purposes (Liu and Yang 1993, Liu and Wu
1996). The present flexible beam, as shown in Fig 5, is attached to a rigid hub and driven
by a motor. During rotation, the beam undergoes both nonlinear rigid-body rotational maneuver
and flexible body vibration. The beam is idealized with 5 beam elements and its governing
equation is derived based on the second kind Lagrangian equation.

The material properties of the uniform beam with cross section 0.03 mX0.03 m and length
[=1.0 m are given as: Young’s modulus £=2.1X10" N/m? density p=7800.0 kg/m’. The mass
of the hub is omitted. There is no external applied force. Suppose that the controlled movement
of the slewing angle 0 is described by

0={50.0 £ rad for 1<0.1 sec
—50.0(0.02—04 ¢+ rad for 0.1<r<0.2 sec

This represents a rotation with angular acceleration 100.0 rad/sec’ from 0.0 to 0.1 sec, and then

with angular deceleration 100.0 rad/sec’ from 0.1 to 0.2 sec. Differentiating with respect time
once and twice gives

5= {100.0 ¢t rad/sec for 1<0.1 sec
—100.0(—0.2+1) rad/sec for 0.1 <r<0.2 sec

and

Fig. 5 Model of slewing flexible uniform beam.
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Fig. 6 Comparison of the constraint errors for the slewing beam with N=20 and r=0001 sec.
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Fig. 7 Constraint errors due to different approximations of generalized forces for the slewing beam
(N=20 and t=0.001 sec).

9:{100.0 rad/sec? for t<0.1 sec
—100.0 rad/sec? for 0.1 <r<0.2 sec

A constraint enforcing the y-direction displacements at points 5 and 6 to satisfy P=v;—v=0
is considered. And for this constraint, error é=vs;—v, is employed to assess the integration
accuracy.

Static initial condition is considered.

Fig. 6 is the variations of constraint errors by the present and NPC methods. The stabilization
parameters p=¢ =2, k;= 10* and x,= 10" are used. With the estimated D from Eq. (29), the second-
order expansion of Eqgs. (24) and (28) are evaluated and used in the computations. As expected,
the results by present method is much better than that by NPC,

The influence of the expansion of generalized forces on the accuracy of integration is demonst-
rated by Fig. 7, where the results are evaluated by using first- and second-order approximations
respectively. The second-order information is obtained simply by the numerical differentiation
formula similar to Eq. (29). It can be readily found that the result with second-order expansion
is much better than that with first-order expansion. This gives an idea that the accuracy of
the present method can be improved from time to time without reduction of the time step
size and reconstruction of the matrix exponential which is considered as the core of the method.
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6. Conclusions

The high precision method for the solution of constrained structure has been presented. In
the method, the nonlinear terms and the constraint force of the ADEs are separated and referred
to as the right hand term, which weakens the linkage between the algebraic and the differential
equations and makes it easy to solve the ADEs. The 2" algorithm is used to calculate the matrix
exponential. This led to an exact homogeneous solution in the sense of numerical computation,
and therefore a high precise general solution has been achieved. The examples have shown
the high accuracy of the proposed method.

Further research is the evaluation of better approximation of the generalized force as well
as the constraint force. Since the calculation of the particular integrals of inhomogeneous terms
is independent of the key part of the integration scheme, an adaptive algorithm could be expected
through the improvement in the approximation. We leave this for future investigation.
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