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Fluid viscous device modelling by fractional derivatives
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Abstract. In the paper, a fractional derivative Kelvin-Voigt model describing the dynamic behavior
of a special class of fluid viscous dampers, is presented. First of all, in order to verify their mechanical
properties, two devices were tested the former behaving as a pure damper (PD device), whereas the
latter as an elastic-damping device (ED device). For both, quasi-static and dynamic tests were carried
out under imposed displacement control.

Secondatrily, in order to describe their cyclical behavior, a model composed by an elastic and a damping
element connected in parallel was defined. The elastic force was assumed as a linear function of the
displacement whereas the damping one was expressed by a fractional derivative of the displacement.
By setting an appropriate numerical algorithm, the model parameters (fractional derivative order, damping
. coefficient and elastic stiffness) were identified by experimental resuits.

The estimated values allowed to outline the main parameter properties on which depend both the
elastic as well as the damping behavior of the considered devices.

Key words: fractional derivative Kelvin-Voigt model; pure damper (PD device); elastic damper (ED
device); fractional oscillator.

1. Introduction

The calamity which occurred in Japan in 1994 also recently evidenced the importance of
aseismic design. Every year, earthquakes cause significant life loss and structural damage in
many countries of the World. In attempts to mitigate the effects of seismic actions on buildings,
bridges and potentially vulnerable contents, many aseismic construction designs and technologies
have been developed.

In this context, seismic isolation is a relatively recent and evolving technology which consists
essentially of installing mechanisms capable of decoupling the ground motion from the structural
one (Buckle and Mayes 1990, Korenev and Reznikov 1993, Kelly 1993, Skinner, Robinson and
McVerry 1993). This decoupling is achieved by increasing the flexibility of the system, along
with providing appropriate damping.

The use of fluid viscous devices for seismic isolation of buildings and bridges represents a
very interesting new vibration control strategy. Operating on the principle of fluid flow through
orifices, these devices consist of a moving piston in a steel cylinder filled with polymeric material,
obtained by applying special chemical processes to silicon and other components (e.g., hydrocar-
bons).

First used in the 75 mm French artillery rifle of 1897, after the Second World War they
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were introduced as shock dampers and vibration isolation systems in mechanical applications
and civil realizations such as aerospace and railway hardware. Since only ten years ago they
have been proposed for seismic isolation of buildings and bridges. Regarding this, in 1985 Huff-
mann (Huffman 1985) presented a system of helical steel springs and viscous dampers. Soon
after in 1992, Makris and Constantinou (Makris and Constantinou 1990) analyzed a kind of
viscous dampers produced in the United States characterized by a hollow piston movable in
all directions.

The devices considered in this paper represent a special class of fluid viscous dampers. Their
piston element is rod-shaped, its head being of greater section, and without holes. The dimension
design of every element and the chemical composition of the silicon material determine the
mechanical behavior of the device which can be a pure damper, an elastic-damping device,
or an elastic system.

In order to efficiently use these systems for seismic applications, an appropriate analytical
model needs to be defined which interprets the dynamic behavior; this problem hasn’t been
solved yet. '

In literature, two main models representing the polymeric materials’ rheological behavior are
proposed: the non-linear Kelvin-Voigt model, and the fractional-derivative Maxwell model. The
former is characterized by a prestressed spring, and a dashpot to which corresponds a viscous
law: ¢sgn(v)lv(®)|% where “¢” is a constant coefficient, “v” is the velocity, and “@” is an exponent
less than one (Terenzi 1994); the second, proposed by Makris and Constantinou (Makris and
Constantinou 1990, Makris 1992), simulates the force-displacement behavior of U.S. fluid viscous
dampers by using fractional derivatives (or “generalized derivatives”, Nashif 1985).

In this paper, two types of fluid viscous devices produced in France are analyzed. On the
basis of experimental survey results, a fractional-derivative Kelvin-Voigt model is proposed. Introduced
in a step-by-step integration procedure, it allows to evaluate the dynamic response of structural
systems isolated by these kinds of devices.

2. Experimental tests

In order to define the mechanical properties of fluid viscous dampers, two devices the first
of which behaves as a pure damper (PD device), whereas the second is an elastic damper (ED
device), were tested.

The different ratio between the rod and the head piston, and the internal section of the outer
casing is one of the more important parameters characterizing the mechanical behavior of the
system. For example, in the case of the PD device, the piston goes through the cylinder filled
with the silicone-based elastomeric material. Moreover, the difference between the section of
the piston head and the internal section of the cylinder is very small. Thanks to these geometrical
properties, the system (Fig. 1) behaves like a pure damper. On the other hand, in the case
of the ED device (Fig. 2) with head section smaller than the one of the pure damper, the piston
doesn’t go through the outer casing, giving to the system a damping behavior as well as an
elastic one.

For both devices, quasi-static and dynamic tests were carried out under imposed displacement
control. Sinusoidal displacement time histories were applied in the tests, the characteristics of
which (frequency, displacement and velocity amplitude, number of cycles) are presented in Table.
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Fig. 1 Geometrical representation of the PD device and longitudinal section scheme.
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Fig. 2 Geometrical representation of the ED device and longitudinal section scheme.
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1, with reference to the PD device, and in Table 2, with reference to the ED system. In the
case of the first damper, thermal changes AT also occurring throughout the tests were surveyed.
On the whole, low ATs were observed (ie., -Table 1- in the 7PD test, characterized by 100 cycles,
a AT equal to 153°C was evaluated). It can be noted that the tests on the PD device were
started from the median position with respect to the cylinder, corresponding to the static equilib-
rium position without external forces. The median position was also imposed at the beginning
of the tests of the elastic damper, even though for this system designed as a single-acting device,
the static equilibrium position is the one characterized by the whole piston rod out of the casing.
This intermediate position was assigned in order to make the device operate in a double-acting
fashion by initially imposing a force equal to the internal pressure of the silicon fluid multiplied
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Table 1 Main characteristics of experimental tests carried out on the PD device

Test Frequency Amplitude  Velocity Time duration Number AT

name (Hz) (mm) (mm/s) (s) cycles °C)
1\PD 0.1 16.2 10.2 50 5
2PD 0.1 30.2 19 50 5
3PD 0.1 583 36.6 40 4
4PD 03 30.5 574 34 10 0.5
SPD 0.3 577 108.8 28 85 0.6
6PD 03 91.6 1727 27 8 2
7PD 0.5 17.8 559 200 100 15.3
8PD 0.5 333 104.5 100 50 16
9PD 0.5 335 105.2 100 50 1.2
10PD 1 104 65.3 5 S

Table 2 Main characteristics of experimental tests carried out on
the ED device

Test  Frequency Amplitude Velocity Time duration

name (Hz) (mm) (mm/s) (s)
1IED 0.1 17.5 11 90
2ED 0.1 22.5 14.3 90
3ED 03 17.5 33 34
4ED 03 20.0 376 34
SED 0.5 17.5 549 20
6ED 0.75 11.0 51.8 14
TED 1.0 16.5 1034 10
8ED 20 13.8 17 5
9ED 30 10.7 197.6 3

by the area of the rod section. Generally, the experimental results showed the elastic-damping
behavior and the thermal stability of the devices. With respect to the pure damper in Figs.
34, some displacement and reaction force time histories are presented whereas Fig. 5 shows
the relative hysteretical loops. This last figure points out the high damping stability.

With respect to the ED device in Figs. 6-7, some displacement and reaction force time histories
are presented whereas Fig. 8 shows the relative hysteretical loops. In this last figure, the stability
of the mechanical behavior was generally confirmed also for the elastic damper. The cycle shape
is that of a damping parallelogram rotated in the plane F-u (reaction force-displacement) with
respect to the elastic stiffiness. From a physical point of view, it can be noted that when quasi-
static inputs are imposed to the ED device, a force equal to the pressure of the silicon fluid
multiplied by the area of the rod has to be initially applied in order to move the piston. On
the other hand, when dynamic actions are imposed to the system the piston can move only
if the external force is equal to the sum of a damping force and the previously mentioned
elastic one. This last consideration especially suggested the identification of a Kelvin-Voigt model,
for which the elastic element is connected in parallel to the damping element.

3. Fractional oscillator model
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Fig. 5 Hysteretical loops.

Before presenting the model proposed to interpret the fluid viscous device mechanical behavior,
one may observe that the macroscopic approach of rheology works in terms of state equations.
Depending on the effect of external excitation, these equations describe the material behavior
to some degree of approximation. Several of the most important representations of state equations
are known as: the standard linear model, the generalized standard, and the generalized derivatives
model (Nashif 1985).
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Fig. 8 Hysteretical loops.

“Standard linear model” is the one which gives the following relationship between stress o

and strain ¢

do

o+a—— =Fg+ BE—‘(%

dt

ey

where a and B are two constants. This equation represents a more complex relationship than
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either Hooke’s law or the simple dashpot-spring combination, for which:
_ _de
o=FEet+Ef & )}

Relations (1) and (2) represent the real behavior of polymeric materials with difficulty. In fact,
by applying harmonically varying stress and strain, of the o=0pé” and e=g€e™ type, these
formulations are related by the following expressions:

ov=(E'(»)+iE"(0)) & 3
where:

E'(w)=real part of Young’s modulus,

E"(w)=imaginary or quadrature part of Young’s modulus.

In the model, the E' and E” variation with the circular frequency  is more rapid than the
experimentally observed one.

A better interpretation of this effect may be obtained by applying the generalized standard
model for which the o-¢ relationship can be written as:

U+Za,,dtn—E+EZB,, @)

where @, and B, are the n-th constants. The expression corresponding in this case to Eq. (3)
contains two functions E'(w) and E"(w) much more complicated than those characterizing the
former model. As shown by Eq. (4), the generalized standard model reduces the limitations
deriving from the standard linear one by introducing additional derivatives of o and & Neverthe-
less, it should be noted that generally, a considerable number of terms is needed to appropriately
represent the mechanical behavior of a real material over a wide frequency range.

In order to reduce the terms required, the derivatives of the integer order presented in Eq.
(4) can be replaced by fractional derivatives, that is:

a—f—Za,,dan-E-l-EZb—d—ﬂn )
where:

a,, b,—=constants,
0<a, <1, 0<B, <1=fractional derivative orders.

If the parameters are well chosen, more than one value of a, and b, is not often needed.
Eq. (5) represents the “generalized derivatives model”, generally proposed to interpret the rheologi-
cal behavior of polymeric materials.

With respect to the tested devices, starting from the experimental results, it was already noted
that the presence of an elastic component determines almost only the rotation of the damping
cycle in the plane F-u. This fact outlines the superimposition of the elastic and damping effects
in order to define the global mechanical behavior of the system. Moreover, the mean rotation
angle - the value of which is the same for every test - pointed out the independence from
frequency of the elastic force characterizing the considered device. Due to the silicon fluid which
resists to the coming piston, this behavior can be interpreted as a parabolic function of the
displacement such as the one representing the relation existing between the pressure and the
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volume variations of the material. Nevertheless, based on the fact that (Terenzi 1994) considerable
differences were not noted in the dynamic response deriving from a parabolic and a linear
elastic model, in the present context the elastic force was expressed as:

F.Lu@®))=ku(t) 6)

where k is the elastic stiffness.

Moreover, by considering the damping effect essentially due to the difficulty of the silicon
fluid to flow from one side of the casing to the other, and therefore to the shear stressed material
moving into the annular space around the piston head for which the stress-strain (z-y) relationship
is:

=G, Y()+c:Go D [¥(t)] @)

where G, is the shear modulus, ¢, is a damping coefficient, and g(0<g<1) is the derivative
order (known as the memory parameter), the dynamic behavior of the system can be written
as:

mu(t)+cD? Lu(@®) ]+ F, Lu() 1= F() ®)

Eq. (8), where m and c represents the moving elements mass, and the damping coefficient respecti-
vely, defines the dynamic equation of a “Kelvin-Voigt fractional oscillator model”. With reference
to the tested devices, the coefficient characterizing the relative mechanical behavior models were
identified based on the experimental results.

4. The fractional differintegral

The adopted following notation:

d'f
dx” ©)
and,
2 X1
d[x]’ den 1f dx, > f dXiJOf(xO)de (10)

indicate the n-th derivative of a function f with respect to x when » is a non negative integer,
and the multiple integration with zero lower limit, respectively.
Based on the identity:

f 1) dy=f0“af<y+a) dy (11)

we define:

d[x a] n jdxn 'j dxy-2* fzdxlfalf(xo)dx() (12)

in order to extend the symbolism to lower limits other than zero.
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The ordinary definition of derivative in terms of backward difference, suggests the following
general formula for n-th derivative:

d"
dx{ —gir;{[éx] " Z (- }( .)f(x—jéx)} (13)
By considering the Riemann integral we obtaln
a’f  _ jt+n— el
Tx—al allvlfgo {[5~x] Z ( ] )f (x J6~x)}—

ww[RTEOTARY

where Syx=[x—al/N, N=1, 2, -
By embracing the notions of difference quotients and Riemann sums in a single Relation,
Eq. (13) can be modified as:

Z;{ = lim {[6Nx]’ Z [— ]f< .)f(x—j&vx)} (15"

SN x>0

and, since <;1 =0 if j>n when n is integer:

i e I WIS ) 15

where it was supposed that 6x tends to zero through discrete values and a<x plays a role
like lower limits. The comparison between Eq. (15”) and Eq. (14), permits to introduce the equation:

x—a |
af _ [ N ] 51U —9) [ x—a
e~ ™) F=g) ; TG+ 1) f(x—J[ ¥ D (16)

where:

g=integer of either sign,

I'=Gamma function.

Based on the Gruwald-Post approach, Eq. (16) can be considered as the fundamental definition
of differintegral of order g arbitrary. This definition involves the fewest restrictions on the function
to which it applies, and avoids explicit use of the notions of ordinary derivative and integral
involving only evaluations of the function itself.

In order to describe the numerical algorithm utilized to integrate the fractional oscillator,
a different definition was needed to be introduced. Starting from Leibniz’s theorem for differentia-
ting an integral:

1
[d(x a)] L f fOdy Tl & j x—yTf()dy (17)

the [n—1]-fold integratlon produced Cauchy’s formula for repeated integration:

n 1 *1 _ 1 x .
[d(x a)]‘ jdxn IJ "‘faf(xo)dxo—mfa =y 'f ) dy (18)
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Eq. (18) permits to define an integral of fractional order via an integral transformation called
the “Riemann Liouville integral”:
L P
| =] [x— dy q<0 19
[ [dx—a)¥ |,_,” T'(—q) a[x y1 7O dy g< (19

Eq. (19) is identical to Eq. (16) for ¢<0 (fractional integral) (Oldham and Spanier 1970) so
that the symbol []z-, can be dropped. For ¢>0 (fractional derivative) it should be utilized:

dif =Z [x—al*f% (@) f o) dy
dix—al® ~ &= Ik—q+1) F(n q) J, De—yl!

which yields results identical to those given by Eq. (16), also.

n>q (20)

5. Integration numerical algorithm

In literature many identification criteria of the parameters characterizing the fractional model
have been proposed. Among these, it can be mentioned the one presented by Enelund and
Olsson (1995) which is based on time domain expressions for the relaxation modulus (Bird,
Armstrong and Hassager 1987). In the present research the parameters of the proposed fractional
oscillator model were alternatively identified by employing the following procedure for both
tested devices. An integration numerical algorithm, similar to the one utilized by Koh and Kelly
(1990) to analyze the mechanical behavior of elastomeric isolation systems, was set-up. It allows
to calculate the fractional derivative of the displacement by applying the L1-algorithm previously
proposed by Oldham and Spanier (1974). In order to obtain a procedure valid for 0<g<1, Eq.
(20) can be utilized by assuming ¢=0 and n=1:

Zlgzj"gf—(g)) - q)f [ dy (y)] [xiyy]"
_T(ll__q)_{f (0)+JZO j:x)/N[ df (x—y)——]} N

As regards the integral in Eq. (21), the Ll-algorithm operates the following approximation:

Jx x Jjx
Jr(,'x+x)/1v|: df( y\ dy:l f(x_“ﬁ>“f<x—ﬁ”—]\7'> f(,'xﬂ)/)v—@—
. W X . b

F

N
f—f J LG+ 1) =] (22)

consequently obtaining for g-order fractional derivative the following formulation:

A XN TA=Dfy N i v e
& Te-g9| W '];)[ﬁ S LG+ D= ]] (23)

where one supposes that f is known at N+1 evenly spaced points in the range 0 to x with
=) and f,=f(x). Eq.- (23) can be written in the form:
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&f _ s
o N T e e

where:

=y L= =+ (1 =g )

)
_ 1
%" =g
_ 1 L \—a— =g g s 1yl o
(,,"_j_m“_q){(;ﬂ) (-1 1] 1<<n—1 (25)

As regards the fractional oscillator, by assuming the displacement u(f) (0<¢t<T) to be linear
in each subinterval [jh, (j+1)h] with j=1, 2, -+, n, from Eqgs. (24) and (25) with f(x)=u(),
Eq. (8) assumes the following form:

%(u,,+.—2u,,+u,,“1)+% > oju+ku,=F (nh) (26)
Jj=0

where the acceleration is expressed in accordance with the central difference algorithm. This
equation leads to a linear system the unknowns of which are the displacement at the discrete
time jh with j=1, 2, ---, n (Koh and Kelly 1990). It should be noted that the coefficient matrix
assumes a Gaussian form. The efficiency and the accuracy of the above integration procedure
were tested with reference to single-degree-of-freedom (SDOF) base-excited by sinusoidal inputs.
The maximum displacements and angle phases of its response evaluated by utilizing the numerical
algorithm were compared to the results estimated by applying an analytical procedure in the
frequency domain. Regarding this, it can be shown that a fractional derivative SDOF system
is characterized by the following frequency response function (FRF):

1 1
H=t —
K 1—(%) +i 4 Qrfy

where f, and f represent the natural frequency of the system and the frequency of the input
action, respectively. Moreover, i/ is the g-order power of the imaginary unit:

#=cos <—”1 )+i sin<ﬂ> (28)

27)

2 2
Several numerical tests were performed while varying f, f, and c; in Fig. 9, the comparison

between the numerical and analytical H(f) results referred to three ¢ values are shown. A notable
correspondence in all considered cases emerges.

6. Identification of parameters characterizing the PD device dynamic model

Preliminary numerical tests carried out in order to evaluate the dynamic response under sinu-
soidal inputs of fractional oscillators characterized by different g derivation order and damping
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Fig. 10 Comparison between experimental (—) and numerical (—-—) displacement time histories.

coefficient ¢, pointed out that the displacement amplitude results are dependent on the ¢ and
¢ values, whereas the displacement phase depends only on g.

Based on these considerations, with reference to the PD device, the identification of the parame-
ters characterizing the dynamic model was conducted by adopting the following criteria. By
introducing in Eq. (26) without elastic term, the experimental force time history as input action
F(¢), the identified ¢ value is the one which permitted to obtain a displacement result on phase
with respect to the corresponding time history experimentally imposed. In Fig. 10, a comparison
between the experimental displacement functions relative to the 4PD and 6PD tests and the
ones numerically obtained by assuming ¢g=0.8 was presented. The ¢ value identified in this
case was verified to be the same for all the other test results relative to the PD device (Table
3). The damping coefficient was then calibrated by imposing that the experimental damping
energy values should be equal to the numerical one. In Table 3, the estimated ¢ values correspon-
ding to each test are presented. With reference to the 4PD and 6PD tests in Fig. 11, a comparison
between the experimental and the numerical hysteretical cycles is proposed. This figure outlines
the good correspondence between the two results.
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Table 3 PD device model: parameter values resulting from the identification procedure

189

PD Device
Test name IPD  2PD 3PD  4PD SPD 6PD 7PD 8PD 9PD  10PD
okN/mm)s? 7.8 53 32 2.3 1.28 0.92 29 1.53 142 33
q 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
100 : ' : 100
50
2 o £ o
- T -
-50 j
J .
-100t : s -100 . .
-40 -20 0 20 40 -100 -50 0 50 100
u [mm] u [mm]
(a) 4PD test (b) 6PD test
Fig. 11 Comparison between experimental (—) and numerical (—-—) hysteretical loops.
" Table 4 ED device model: parameter values resulting from the identification procedure
ED Device
Test name 1LED 2ED 3ED 4ED SED 6ED TED 8ED 9ED
¢ (kN/mm)s? 22 27 1.2 1.0 0.72 0.78 0.8 03 0.23
q 09 09 09 09 09 09 09 09 09
k(kN/mm) 1.537 1.486 1.579 1.476 1.60 1.641 1.645 1.665 1.730
20 T T
10+
E o
S \
.10+
20 2 4
t [s] t [s]
(a) 1ED test (b) 3ED test
Fig. 12 Comparison between experimental (—) and numerical (—-—) displacement time histories.

7. ldentification of parameters characterizing the ED device dynamic model

With reference to the ED device, the identification of the ¢ and ¢ parameters was conducted
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Fig. 14 ¢f curves interpolating the results identified from three series of tests in which equal amplitude
displacement time histories are imposed.

by applying the same criteria previously used for the PD system. In order to define the elastic
component in Eq. (8), based on the experimental results a least square procedure permitted
to evaluate a mean straight line with respect to each hysteretical cycle, the slope of which determi-
nes. the k value for the linear model Eq. (6). In Table 4, the k, ¢ and ¢ identification results
are presented. As shown, in general the scattering of every k value from their mean is less
than 10%. With reference to the 1ED and 3ED tests, in Figs. 12-13 a comparison between the
experimental results and the numerical ones is presented. As shown in these figures, the correspo-
ndence is acceptable also in the case of the elastic-damping model. With reference to the damping
coefficient, the values indicated in Tables 3 and 4 show a variability of the ¢ parameter depending
on the frequency. This effect is evidenced also in Fig. 14, where three curves c-f are proposed.
The interpolating curves there shown present the identification results obtained with respect
to three series of tests carried out by imposing to the PD device sinusoidal displacement with
different frequency f, but equal amplitude A.
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8. Conclusions

In the paper, the mechanical behavior of a special typology of fluid viscous devices was model-
led based on experimental test results and on a macroscopic rheological theory.

The results obtained by testing a pure damper as well as an elastic one showed that the
behavior of the considered devices is characterized by a high mechanical and thermal stability.
Moreover, the comparison between the hysteretical cycles of two systems pointed out the approp-
riateness of a Kelvin-Voigt scheme to interpret the superimposition of the elastic and the damping
effects. By applying a fractional derivative model capable of reproducing the rheological behavior
of polymeric materials such as the one contained in the tested devices, a fractional Kelvin-Voigt
model was then proposed. The identification of the parameters characterizing the elastic and
damping formulations (ie., fractional derivative order, damping coefficient, and stiffness values)
was carried out by means of a numerical algorithm purposely set-up. A comparison between
the analytical and experimental results pointed out that the model is effective to interpret the
dynamic behavior of the tested devices. However, from the identification phase emerged that
the elastic element stiffness is frequency-independent, whereas the damping coefficient ¢ is clearly
dependent on frequency and on amplitude of the displacement time-history. Further studies
concerning the theoretical modelling and the experimental as well as numerical analysis of
the mechanical behavior of the devices for different frequency ranges will be carried out as
future developments of the research.
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