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An efficient six-node plate bending hybrid/mixed element
based on mindlin/reissner plate theory
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Abstract. A new efficient hybrid/mixed thin~moderately thick plate bending element with 6-node
(HM6-14) is formulated based on the Reissner-Mindlin plate bending theory. The convergence of this
element is proved by error estimate theories and verified by patch test respectively. Numerical studies
on such an element as HM6-14 demonstrate that it has remarkable convergence, invariability to geometric
distorted mesh situations, to axial rotations, and to node positions, and no “locking” phenomenon in
thin plate limit. The present element is suitable to many kinds of shape and thin~moderately thick
plate bending problems. Further, in comparison with original hybrid/mixed plate bending element HP4,
the present element yields an improvement of solutions. Therefore, it is an efficient element and suitable
for the development of adaptive multi-field finite element method (FEM).
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1. Introduction

It is known that the application of plates is widespread in practical engineering, so it is very
important to find an efficient method which will overcome difficulties encountered in plate bend-
ing problems. The idea of plate bending for FEM was applied in the early sixties. At that
time, the various difficulties that were encountered were not fully appreciated. For these reasons.
the topic remains one in which research is active to the present day. To overcome shortcomings
of displacement FEM, as the constraint condition a major problem for which a solution must
still be found is approached for nearly incompressible materials and plate elements allowing
for independent transverse displacement and cross-section rotations, hybrid stress FEM was initiat-
ed by professor Pian in 1964. In 1982 a new and more general method for formulating the
assumed stress hybrid element was suggested by Pian and Chen, and hence, in principle, one
could improve the properties of an element and enhance the solution accuracy. Based on this,
they put forward a new formulation-Hybrid/Mixed finite element-in 1983. The birth and develop-
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ment of hybrid/mixed FEM have a great deal of importance for the study of plate, shell and
other problems. However, 6-node hybrid/mixed plate elements so far have not, to the authors’
knowledge, been reported. A recent paper (Masa Hayashi, et al. 1993) about 6-node and 10-node
element concerns, as a matter of fact, the series expansion method and not FEM. Analysis
results were only similar to those of 8-node Serendipity displacement finite element which did
not possess many of the qualities of the hybrid/mixed plate element. A study of 6-node hybrid/mi-
xed plate element is necessary to develop adaptive multi-field FEM in which variable node
elements are often used. The present study was undertaken with this background in mind.

The authors present a new hybrid/mixed element (HM6-14) based on the Reissner-Mindlin
plate theory and the principle suggested by Pian, TH.H. and Chen, D.P. in 1983, and prove
its convergence according to error estimate theory and verify it based on the patch test. The
calculated results show that HM6-14 has better convergence than 4-node hybrid/mixed element
HP4, is free from “locking” effect in thin plate limit, insensitive to geomtric distortion and nearly
invariable to axial rotations and node positions.

2. Variational formulation of hybrid/mixed FEM based on the Reissner/Mindlin theory

In this paper, 6-node quadrilateral element is deduced by the Reissner-Mindlin theory and
the hyrid/mixed FEM.

2.1. Basic definitions
Firstly, basic definitions about displacement, stress and strain distributions are given as follows.

2.1.1. Displacement

w
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Where W is transverse displacement in z direction, 6, and 6, represent the normal rotations
about x and y directions, respectively, ¥,., y. are shearing strain components in rectangular coordi-
nates, u,, u; are compatible displacements in terms of nodal displacement ¢ and incompatible
displacement in terms of additional internal displacement parameters A, respectively.

2.1.2. Strain
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2.1.3. Stress
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Where M,, M, are bending moments in x and y directions respectively and M,, is twisting moment
with respect to the x axis.

2.2. Variational functional and finite element formulation

According to Pian, TH.H. and Chen, D.P. (1983), the hybrid/mixed functional for an element
may be written as:

R= fy [— %O’TS o+M"(Du,)— (D" o) u ,{l dv “)

where § is elastic compliance matrix. Substituting Egs. (1), (2) and (3) into Eq. (4), we obtain
the following equation.

= [~ mrspa—L s 0 mrouy +orou) - o7 O
where

Assume S+8=8

M=P,(x)B, Q=P (x)B, u,=Nx)q, u,=Z(x)A (6)
When Eq. (6) is substituted into Eq. (5), function 77z can be written simply as

m= =B+ H)B+ G+ Gg — BT0Ry+R) A ' 2
in which

H= j PIS,PdV H= f PIS.PdV G= j PI(DN)dV G,= f PT(DN)dV
V v Vv |4

R= f D"PY ZdvV RS:f(DTPS)T Zdv
Vv V
The stationary condition of m; then yields that

K¥9g=Q©, B=H 'Gq, oc=PH 'Gq

where

K9=[G+GIH+H1 '[G+G,1=G"H'G, G=G—RR'H'R)'R'"H"'G, R=R/+R,
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Table 1 Shape functions for the cases of Fig. 16 (II-VI).

Il II, V, VI v
Ns  05X(1—n)1+¢&) 05X(1—-&) 0.5X(1—1?)
Ne  05X(1—n3)(1—¢) 0.5X(1—n?) 05X (1— &)
(7
4 3
4 6 3 g
=
0 s 1
2
* 0 X
1 5 2
Fig. 1 A 6-node element under natural coordinate Fig. 2 A 6-node element under global coordinate
system (¢, 7). system (x, y).

3. A 6-node quadrilateral hybrid/mixed plate bending element

Assume,
xy 00 y? x?
0 xp 0 x% )
IX14

0
0x 0 2x
! ] ®)
2X14

N 0 O
N:[Ah A29 Y A()] Ai: NI 0 (l:l’ 2* tt 6) q:{QI, an "t q18}

N=025X(1+EEA+nm—05X(1~&)Y1—n) i=1, 2
N=025X(1+ &)1+ nm—05X(1—=F)1+nm) i=3, 4 )

As shown in Fig. 1, we have
Ns=05X(1—E)(1—n), Ne=05X(1—&X1+1)

but the shape functions are written as above Table 1 for the cases of Fig. 16 (II-VI).
where (£ 7) is the natural coordinate.

Zx)=0

Fig. 1 shows only a six-node element model. In fact this new element model contains certain
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Fig. 3 Two adjacent elements.
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Fig. 5 The symmetric quadrant of the square plate.

generalizations which are explained in the following sections. The convergence is very important
for a new element model, therefore, particular attention is given to this problem in the following
section.

4. The verification and the proof of solution convergence

4.1. The patch test

The patch test has often been used in finite element formulation in order to verify the converge-
nce quality of element. The ability of the element to maintain constant states of strain is an
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essential requirement for achieving convergence to the exact solutions the finite element mesh
is refined. As Fig. 6~Fig. 13 in the following section show, displacements and moments approach
the exact solution as meshes are refined, confirming that the element passes the test. The patch
test seems to be an efficient method which verifies the convergence of solution in engineering,
but in the strict sense, it is neither a sufficient nor necessary condition for the convergence
of solution (Stummel 1980, Zhong 1984). Therefore, the convergence of solutions for element
HMé6-14 will be proved by error estimate theories in the following section.

4.2. Proof of solution convergence based on error estimate theories

As can be easily seen, the matching of Eq. (8) and (9) leads to matrix G nonsigular, so
the solution of hybrid/mixed finite element exists (Zhou and Duan 1993). For hybrid/mixed
FEM, compatible displacement solution is continuous between elements; the continuity of stress
solution is only in elements but not between elements. Therefore, it is necessary to consider
stress error estimates on the boundary of adjacent elements whether or not they tend to zero

as the size of meshes are within the limits. These are sufficient and necessary conditions for
the convergence solution.

Def. 1 Reflection Ay is called k-linear if 4,: X*—Y is linear for every variable x;,(i=1, -
k).
Def. 2 The norm of k-linear form D* u(x) is defined as

b

IDXuoll = sup {ID*u(&i, &, -, &)

i1
1<igk

Let us consider adjacent elements, as shown in Fig. 3, without any loss of generality, where
%1 %@ denote variations corresponding to element (1) and element (2) respectively.

ocV— O-(Z)zp[H(l)* GO — @1 G(2):|q _p[H(l)—IR(I)_H(2)~1R(2)] A
:p[H(l)— ! (G(l)_G(2))+ (H“)‘l—HQ)_l)G(Z)] q
_p[H(!)' 1 (R(l)_R(Z))+(H(1)— 1 _H(2)-1)R(2)] A
=P[HY ' (GY—-G))+HY ' (HP—HV)H O G¥] q
—P[H(l)—' (R(l)_R(Z))+H(l)—1(H(2)_H(l))H(2)—1R(2)] A (10)

Since the matrixes which are given in this paper are composed of continuous functions, g exists,
and H, G, R are bounded; therefore, there exists a generalized constant C>0 such that

lo— @ <C (IGO -G+ [|HO—~HOl|+ | RO—R)))

Moreover
G“’—G‘Z’ZJ P(x, y)DN(x, y)dA—j P'(x, y)DN(x, y)dA4
n1 (923
h h h 2h
:j dy f P'(x, y)DN(x, y)dx— f dy f P'(x, y)DN(x, y)dx
0 0 0 h

h h h 'h
:f dyf P'(x, y)DN(x, y)dx—f dyf P'(x+h)DN(x+h, y)dx
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Fig. 6 Convergence of central displacement W, in the clamped plate under uniform loading (r=0.01).
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Fig. 7 Convergence of central moment (M,), in the clamped plate under uniform loading (#=001).
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Fig. 8 Convergence of moment (M,), in the clamped plate under concentrated loading (r=0.2).
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Fig. 10 Convergence of moment (My)s in the simply supported plate under
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Fig. 11 Convergence of central dis. W, in the simply supported plate under uniform loading (t=0.01).
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= j dy| [P'(x p)DN(x, y)—P'(c+h y)DNx+h, y)]dx
= j dy j PT(x p)IDN(, y)—DN(x+h, y)ldx

h h
+f dyf [P, y)—(P"(x+h, »)]DN(x+h, y)dx
0 0
There exists a generalized constant C such that
IGY=G@| <Ch®

Same deductions gives

|HO—H®|SCh®  [|[RY—RO|| <Ch?
From Eq. (10), we obtain
loW—o@||SCh?

Thus, 6P=0® as h—>0, namely, stress is continuous when the size of mesh is within limit.
Therefore, there exist a h,>0, stress o may be expressed by nodes stress when h<h,, According
to theorems in Zhou and Duan (1993), the hybrid/mixed finite element solution of element
HM6-14 is convergent. By the way, it is easy to achieve a convergence element, but it is very
difficult to achieve an element with fine qualities and high ratio of convergence.

5. 'Numeriwl studies

5.1. Square plate
5.1.1. Convergence of solution

The theories about six-node hybrid/mixed plate bending element have already been introduced
in the previous section. In this section, we will illustrate the efficiency of the present element
by numerical studies. Let us first introduce the following notations: v-Poisson’s ratio, E-elastic
modulus, z-thickness, SS-simply supported, CC-fixed supported, UL-uniform loading, CL-concent-
rated loading. Because of its symmetry we consider only the quadrant (Fig. 4 and Fig. 5) of
the square plate. The present element yields better results than those by 4-node hybrid/mixed
finite element LH4 (Pan 1985) and HM-11-2. Fig. 6~Fig. 13 show the convergence of central
displacement, and moments for clamped plate and simply supported plate under uniform loading
and concentrated loading.

5.1.2. Solution invariability to distorted mesh situations

Wy, M., M, of element HM6-14 have invariability (shown as Table 2) to distorted mesh situa-
tions (Fig. 14).
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Table 2 W,, M., M, to distorted mesh situation
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Fig. 14 The invariability of solution to distorted mesh situations.

Wo

2X2RM

2X2DM DM/RM M,0 2X2RM 2X2DM RM/DM
CCUL 954.0422 9731744 1.0200538 CCUL 0.0234763 0.0241398 09725143
SSUL 405043 3723.626 0919316 SSUL  0.0498284  0.0573507 0.8688368
MXB Exact 3X3DM Ex./DM MyB  2X2RM 2X2DM  RM/DM
CCUL —0.0513 —0.054749 0.9370034 CCUL —0.034487 —0.041556 0.8298219
SSUL —003246 —0.029098 1.1155406 SSUL —0.029821 —0041373 0.7207841
Wo Exact 3X3DM  Ex/DM M,0 Exact 3X3DM  Ex/DM
CCUL 1260 1253.89 099515 CCUL 00231 0022132 10437376
SSUL 4062 3797.687  0.9349286 SSUL 0.04789 0.042933 1.115459
Note: RM, DM denote regular mesh and distorted mesh, respectively.
Table 3 Results to axial rotation
a 0 15 30 45 60 75 90 180 270

HM/EXACT 1.0261413 1.134577 0.9634548 0.7197784 1.1560468 1.1028649 1.0261413 1.0261413 1.0261413

On the other hand, we don’t show the nodes locations in the structure mesh because arrange-
ment & orientation of nodes have few effect on the solutions for HM6-14 element, which will
be shown in following section (5.1.4).

5.1.3. Invariability to axial rotation

x'=Xx cosa+y sina
y' =y cosa—x sina

Table 3 shows that HM6-14 is almost invariable to axial rotation
5.1.4. Invariability to node positions

Fig. 16 describes different types of 6-node element HM6-14. Results in Table 4 show that
HM6-14 has invariability to node positions.
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Table 4 Results to node positions

I 11 III v Vv VI Exact
Wo 1292938 1292938 1292.938 1407.377 1292.938 1564.07 1260

M)+ —0041814 —0.041834 —0041814 —0.048916 —0041834 —0.050608 —0.0513
M) 00294317 00294317 00294317 00284562  0.0294317  0.0356148 0.0231

g 1 3t % 37 M8 I

) 51' X 5 b |p6

T L 2, &5 2, ) 2t 2, L 5 2

I I il IV v o VI

Fig. 16 Different type HM6-14 elements.
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Fig. 18 The stability of solution in plate limit under CCCL.
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Fig. 19 The stability of solution in plate limit under SSUL.
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Fig. 20 30° simply supported skew plate
E=10° =001, v=02 uniform loading: ¢=1.0.

5.1.5. The stability of solution in thin plate limit conditions

Displacement FEM has “locking” effect while HM6-14 element for hybrid/mixed FEM has
none in the thin plate limite, as shown in Figs. 17-19.

5.2. Morley’s 30° simply supported skew plate

It is very difficult to obtain acceptable solutious for the Morley’s skew plate (Fig. 20) by use
of today's large scale general purpose finite element programs. In this case, errors of about
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Table 5 Displacement and bending moment
M, at the centre of the skew

plate.
W, M
Exact 0.0003582 0.004825
Exact/HM6-14 1411848 1.00456

[
T

e

>

Y
Fig. 21 Triangular plate.

Table 6 Central displacement and moment of tria-
ngular plate

Wo M, M,

HMo6-14 1043.666  0.0310625  0.032435
HM6-14/Exact 101444 1.290289 1.347299

@
©

Fig. 22 3-element mesh of triangular plate.

20% may be apparent even if 14X 14 meshes are employed. So far, the best way to solve this
problem is invoking adaptive FEM or using elements with special qualities. The authors adopt
the second way and achieve almost satisfactory results with only a 2X2 mesh (Table 5).

5.3. Triangular plate

Triangular plate is also often used in practical applications. For example, slump in the floor
of fuel reservoirs and silos are equilateral triangular plate, so it is necessary to study it. Now
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Fig. 23 Circular plate.

Table 7 W, of circular plate

W pnax CCUL SSUL

HMe6-14 9189709 3390.055

HMe6-14/Exact 0.9410262 0.85148
M

X
Fig. 24 9-element mesh of circular plate.

consider equilateral triangle plate shown in Fig. 21. It can be seen from Table 6 that the results
corresponding to #/L=0.01 with HM6-14 under the division shown in Fig. 22 are in close agree-
ment with exact solutions.

5.4. Circular plate

Fig. 23 is a circular plate. Numerical results (Table 7) are satisfactory under the SSUL and
CCUL condition and the mesh divided as Fig. 24.

6. Conclusions

A new 6-node hybrid/mixed finite element HM6-14 for the analysis of thin~moderately thick
plates has been presented. The presented element possesses many good properties. In general,
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the solution accuracy with this element will not be greatly affected when the element shape
is distorted from regular geometry. It can provide acceptable results even if coarse meshes are
used. In addition, the element has no extra zero-energy modes and shear locking as its thickness
approaches the thin plate limit. Numerical studies show the good convergence characteristies
of the element. Indeed, an efficient plate bending element has been established which is suitable
to the development of adaptive hybrid/mixed FEM due to its transition properties between lower
and higher order elements.
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