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Abstract. A method of analysis is proposed for curved multicell box girder grillages. The method
can be used to analyze box girder grillages comprising straight and/or curved segments. Each segment
can be modelled by a number of beam elements. Each element has three nodes and the nodal degrees
of freedom (DOF) consist of the six DOF for a conventional beam plus DOF to account for torsional
warping, distortion,distortional warping, and shear lag. This element is an extension of a straight element
that was developed earlier. For a more realistic analysis of the intersection regions of non-colinear box
girder segments, the concept of a rigid connector is introduced, and the compatibility requirements between
adjoining elements in those regions are discussed. The results of the analysis showed good agreement
with the shell finite element results, but the proposed method of analysis needs a fraction of the time
and effort compared to the shell finite element analysis.
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1. Introduction

Box girder grillages are sometimes used as bridges for modern roadway systems. The individual
bridge segments may be straight or curved in plan and they may have single-cell or multicell
cross-section. Fig. 1 illustrates a typical highway interchange where a single wide bridge bifurcates
into two narrower bridges. It is the objective of this paper to address the analysis of box girder
bridges belonging to this kind of structure. Such structures are difficult to analyze under the
effect of general loading because conventional grillage methods of analysis are not capable of
accounting for some important structural actions that are characteristic of thin-walled box girders.
Conventional grillage analysis considers extension, flexure and torsion, but cross-sections of thin-
walled box girders may warp out of the sectional plane and distort in the sectional plane. Also,
shear lag effect may be significant in wide flange cross-sections and should be considered in
design. For those reasons some bridge design codes (OHBD 1983) prohibit the use of conventional
grillage analysis in the case of certain types of box girder bridges. As a consequence of the
stated complexities, it has become customary to use finite strip or facet shell finite element
idealizations to obtain box girder deformations and stresses. In spite of the rapid progress in
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Fig. 1 Typical box girder assemblage.

high-speed computation, however, due to the large number of degrees of freedom needed for
proper modelling, detailed three dimensional finite element analysis of box girders is still too
expensive and time consuming. Thus, it is important to develop a suitable box beam element
that includes all of the above structural actions and which could be used to model box girder
grillages.

In the past several investigations have been undertaken to develop such elements. Bazant
and El Nimeiri (1974) developed a skew thin-walled box beam finite element for curved single-
cell box girders in which distortion and torsional warping were considered. A similar approach
was adopted by Mikkola and Paavola (1980) while Zhang and Lyons (1984) developed a thin-
walled multicell box beam finite element. They considered only one distortioned mode even
for multicell boxes and they modelled shear lag using the simplified concept of effective width.
Sedlacek (1968), and Roik and Sedlacek (1970) used rigorous analytical procedures to extend
Vlasov’s thin-walled beam to multicell boxes by considering the effects of cross-sectional distortion,
distortional warping and shear lag. Based on this extended theory, Razagpur and Li (1991 and
1994) developed two multi-cell box girder finite element models, one for straight box beams
based on exact shape functions, and the other for curved box beams based on conventional
polynomial shape functions. In a previous study it was shown how straight box girder grillages
can be modelled (Razagpur and Li 1990) using the proposed method. It is the purpose of the
present paper to extend the application of these elements to the analysis of multicell horizontally
curved box girder grillages, comprising straight and/or curved segments, and to show how one
can model the intersection regions of box girder segments in order to avoid some of the complexi-
ties inherent in those regions.
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(b)

Fig. 2 Geometry of curved multicell beam box element.
(a) Curved multicell beam box finite element
(b) Multicell box cross-section and local coordinate system

2. Mechanics of curved muiticell box girders

Fig. 2 illustrates a typical multicell box girder, and its flange and web plates. In addition
to the element coordinate system x, y and z shown in Fig. 2(a), for each plate a local coordinate
system z, s and 7 is introduced, Fig. 2(b), in such a way that the z-axis and the element axis
would be parallel and the s and wn-axes would be tangent and normal to the middle plane
of the wall plate, respectively. Note that z is a curved circumferential axis and that the position
of origin 0 of the x, y and z axes is arbitrarily selected but is assumed here to lie on the middle
plane of the top slab. The wall contour coordinate, s, is measured from point 0 and is assumed
positive counterclockwise.

For simplicity, we shall start with the kinematics of deformation of a single cell box girder
with curvature y. The displacement components w(s, z), v{s, z) and v,(s z) in the z, s and »
directions, respectively, of a point S(s, z), Fig. 2(b) can be written as (Razagpur and Li 1994)

w(s, 2)=wotyb—x(6,+wox)— (8’ — 6 x)—wif' —wa ' — @l —ws 1 (1a)
V(s 2)=Yuo+ ¥avo+p(s)6.+ ¥, B (Ib)
Vu(s 2)= 8 ue+ v+ X6)0.+ 2 8 (o)

where uo, v, and w, are the x, y and z displacements of reference point 0, 6, and 8, are the
combined flexural and shear rotations of the cross-section about the x and y, respectively, 6,
is the angle of twist, A(s) is the distance from 0 to the tangent of the middle plane at S, w
is the torsional warping function (sectorial coordinate) with respect to pole 0, and prime over
the symbols denotes derivative with respect to z. The third and fourth terms of Eq. (1a), respectively,
account for the fact that in a curved box girder circumferential extension of the box axis causes
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Fig. 3 (a) Shear lag warping functions.
(b) Distortional modes of multicell box girder

‘rotation about the y-axis while rotation about the x-axis produces twisting (Li 1987). The latter
is the well-known coupling of bending and twisting actions in a horizontally curved bar.

In Eq. 1(a) to 1(c) besides the generalized displacements uq, vo, Wy, 6., 6, and 6, we observe
the generalized displacements 8 and 7; (i=1, 3), or their derivatives. The quantity S is the angle
of distortion of the box section and wj is its associated warping function; 7; is a function which
describes the variation of shear lag warping as a function of z, while the functions w,; (=1,
3) describes its variation with coordinate s. It should be emphasized that shear lag is considered
to be important only in the top and bottom slabs and their overhangs. Following Reissner’s
hypothesis (1938), functions @; are assumed to be parabolic as illustrated in Fig. 3(a).

The functions ¥, ¥, 2, and 2, are actually the direction cosines of s and n, respectively,
with respect to x and y, while ¥, and {2, are functions which describe the s and » components
of the displacement of point S due to distortion f. In Eq. 1(a) to 1(c) it is implicit that R/6=>10,
where R is the radius of curvature of the box girder and b is the width of the top slab. As
shown by Li (1987), when the preceding condition is satisfied, it is sufficiently accurate to assume
that the neutral axis of a curved box coincides with its centroidal axis and the centroidal radius
represents the curvature of the entire cross-section.

Egs. 1(a) to l(c) may be cast in matrix form as:
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wis, z)={®} {D}+{®,} (DY (2a)
v,(s 2)={¥HD} (2b)
v,(s 2)=1{2} {D} (2¢)
where
{D}={uo, vo, wo, 65, 6,, 0., B, M\, T, uNd (3a)
{@,)}=[0, 0, 1—xx), @+wx)., —x, 0,0, 0, 0, 0] (3b)
{®,)1=[0,0,0,0,0, —®, —ws —@), —&y —os] (3¢)
{¢l=[¥, ¥, 0, 0,0, p@s), ¥, 0, 0, 0] (3d)
(2}=[0, £, 0,0, 0, 2 2, 0, 0, 0] (e)

Note that {@}, {@.}, {¥} and {2} are functions of s only while {D} is a function of z alone;
hence, the box displacements are conveniently expressed using the separation of variables.

In a multicell box, extension, bending and twisting can be expressed in terms of the same
generalized displacements as used for a single cell box, but the shear lag and distortion would
require consideration of additional deformation modes. The procedure for shear lag is the same
as before, i.., parabolic warping functions @, will be used for each slab plate (top and bottom
of each cell and for each slab overhang). Hence the total number of displacement functions
n, for shear lag warping is k=2j+ 1, where j=total number of cells in a single spine multicell
box, Fig. 3(a). For multicell cross-sections symmetric with respect to the y-axis, k=(2j—1) (Razaq-
pur and Li 1994).

The distortion of a multicell box is somewhat complicated; however, Maisel (1982) showed
that a conservative estimate of distortional warping stresses could be obtained if shear deforma-
tions in the planes of the walls were neglected in the distortional analysis. Based on that assump-
tion, he indicated that the distortional warping of a multicell box can be approximated by decom-
posing the actual distortion into j linearly independent distortional modes, each of which can
be characterized by a warping function ws; (=1, j) and the associated distortional angle S.
For single spine box girders, j is 'equal to the number of cells in the box, Fig. 3(b). Note that
B is measured from an arbitrary reference wall.

In the light of the preceding discussion, and by reference to Eq. 2(a) to (c), the displacement
components of a point on the middle plane of a wall of a multicell box girder can be written
in the form of Eq. 2(a) to 2(c), as in the case of a single cell box, but the pertinent vectors
will be

{D}=1uo, vo, wor 6 8, 6, Bi, B s B Ty My =, MdT (4a)
{®d(s)}=[0, 0, 1—xx), +wy), —x, 0,0, ---, 0, 0, --~, 0] (4b)
{@}=[0,0,0,0,0, —© —wn —@n ", —Qp —O1n —@ s — Wyl (4c)
(¥=[¥. ¥ 0, 0,0, pGs), ¥r, ¥ro 3, W, =+, ¥y 0, 0, -+, 0] (4d)
{=[0, 2,0, 0,0, 2 2, 2, =, 2 0, 0, ---, 0] (4e)

By comparing the vectors in Eq. 4(a) to 4(e) with the corresponding vectors in Eq. 3(a) to 3(e)
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where
0
[Baz{m—_nm}} (%)
{Dy}
{@}
B1=y 0o (9b)
{@}+{¥}—-2n{0)}
(@} —n{2)
[B:]= 0 (%)
0
The stress-strain relationship is given by
{o}=[E1{el=[E1((B/] {D}+[B.] D} +[B;1 {D}") (10)
where {o} is the vector of normal and shear stresses and [E] is the elasticity matrix, ie.
{ot=lo, o, %" (11
I E, V.E, 0
[E:]=1—_'—‘I: VE, E, 0 :| (12)
"Wl o 0 (1-wwe

where E, and E, are Young's moduli in the longitudinal and transverse directions respectively;
v, and v, are the Poisson’s ratios in the z and s directions, and v,E.= v, E,. Note that in conventional
beam theory o, is generally assumed to be negligible.

3. Finite element formulation

The ordinary differential equation governing axial extention of an Euler-Bernoulli beam is
second order while those governing bending and Wagner’s torsion are fourth order. It can be
shown (Razaqpur and Li 1991) that the governing equations of distortion and shear lag are
also fourth order. In the present analysis, we will use Timoshenko’s beam theory; hence, the
generalized displacements required to model the foregoing actions would be those given in Eq.
4a), where the rotations 6, and 6, are considered to be independent variables. In the following
we will develop a three node multicell box beam finite element employing the generalized displa-
cements of Eq. 4(a).

Consider a one dimensional beam element with three nodes as in Fig. 2. Its stiffness matrix
and nodal load vector are first developed based on the degrees of freedom for three nodes.
Subsequently, a static condensation technique can be used to eliminate the degrees of freedom
corresponding to the middle node 2. The complete vector of element nodal degrees of freedom,
{D}* is given by

{D}P:[ula Uy, Uy, Vi, Va, V3, Wy, Wa, Wi, exla 6)(29 9,\‘39
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for a single cell box girder, we observe that the extension, bending and twisting of a curved
multicell box girder can be represented by the same six generalized displacements as in a single
cell box, but the distortion and shear lag require consideration of a greater number of deformation
modes as represented by Bi(i=1, j) and n; (i=1, k).

Considering the out of plane bending of the walls, the dlsplacement components of. an arbitrary
point of the cross section with coordinates (s, z n) can be expressed as:

wis, z n)=w(s z)—n %l (5a)
vi(s, z n)=vs z)—név—"o.,i(—zl (5b)
vu(s z n)=v,(s5 2) (5¢)

where n is the perpendicular distance of the point under consideration from the middle plane
of the wall. Substituting Egs. (2a) to (2c) into Egs. (5a) to (5¢), the following matrix equations
can be written

wis, z n)
{ V(s 2 n) }:{Al} {D}+ {4,} {DY (6a)
va(s 2z n)
(@)
{Al}={{Y’}—n{0}} (6b)
{2}
{@}—n{0)}
{Az}:{ 0 } (6¢)
0

where superscript dot denotes derivative with respect to coordinate s. Based on the small deforma-
tion theory of linear elasticity, the normal and shear strains may be determined using

_OWs z n)_ owls z) 3‘v (s 2)

oz 0z 0z* (72)
- _ oy, gs z) V;g z) (7b)
ow(s, z) ov(s 2) 2%, (s, 2)
B g oz 7 9205 79
Substituting Egs. (6a) to (6¢c) into Egs. (7a) to (7c), the strain vector can be obtained
&
& (=LB] {D}+[Bz:| {D}"H:B}] {D}" (8)

Vs
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Fig. 4 Typical intersection of box girder bridge assembladges in plan.
(a) Two colinear straight segments
(b) Straight segments joining a curved segment
(c) Segments intersecting at an angle
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In the above the first subscript represents the generalized displacement component or its deriva-
tive while the second subscript refers to the node number. It must be emphasized that vector
{DJ¢ represents nodal DOF which consist of the generalized displacements in vector {D} or
their derivatives. Since Timoshenko’s beam theory is used for bending analysis, for extensional,
flexural and torsional effects, C, continuity is required and thus parabolic shape functions N;
will be used.

N=2{E+E) =13 (14)
N=(1-8 =D (19)

where &=¢&, is the node number, and ¢ is a natural coordinate with value of —1, 0, +1 at
nodes 1,2 and 3 respectively. .

For distortional and shear lag effects, C; continuity is required, thus the following shape func-
tions are used. For nodes 1 and 3 (=1, 3)

Na=§ @528 -38) (=1 3) 16)
No=2£(1+6) (1= &) (17)

For node 2
Na=(1-8 (=2 (19)

Np=J &= &Y (19)
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where

_ox

J= e (20)

and N; are shape functions.
The element displacements, {D}, can be related to its nodal degrees of freedom, {D}, by

{D}=[N] {DF 1)

where [V] is the shape function matrix. The matrix [N] for the proposed element will have
the form

B [NJI [sz [ ]
N,
NV

[N]dj [N :]sl e
I [NV, 22)

in which

(NJ=[N, N, N3] (=1t 7)
[N];=[Ni Ni» N»y N» Ny Ny] (i=d1 to sk).

Substituting Eq. (21) into Eq. (8) gives
{e}=[B] (D (23)

where [B] is the strain-displacement matrix

(@} INT + (@) —n02h) [N
[B]={ . —nl@ N }
(&1} N+ () + (9] — 20162 [NT 24)

Y
The element stiffness matrix, (S, and the equivalent nodal load vector, {F}, can be found
from the virtual work principle

+1 f+1

3]
5= [ i ala= [ [ ree sz ana ©3)

—1J0

Fl= f VT A+ INTT AT () b

f (NI AP+ INT T4,y (T} dS

D (INT {4, 17+ [NTT{4,)7) {P} (26)

where {F}=[F,, F, F,]" and {T}=[T, T, T,}" are the body forces load vector and surface loads
vector, respectively; {P}=[P, P, P,]” is the applied concentrated loads vector, n and ¢ are natural
coordinates and | Jlis the Jacobian. Egs. (25) and (26) can be integrated using Gaussian integration.
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Once the element stiffness matrix and equivalent nodal load vectors have been found, the final
solution, such as the distribution of displacements and stresses within the structures can be
obtained by procedures commonly used in the finite element method.

4. Box girder grillage

Through appropriate coordinate transformation, the finite element model developed in this
paper can be used to analyze multicell and multi-branch box girder structures. Consider the
box girder grillages in Fig. 4, which shows how two or three different segments join in a box
girder assemblage. Fig. 4(a) shows two straight box girder segments joined together while in
Fig. 4b) straight segments 1 and 3 join the curved segment 2, and in Fig. 4(c) segment 3 intersects
segments 1 and 2 at an angle. Combinations of these three types of intersecting box assemblages
may also occur in practice. The actual state of stresses in these intersection zones may be rather
complex and may need detailed finite element analysis using shell elements. The global effects
can be, however, considered using the method proposed herein.

First, modelling any complex three dimensional structure by a grillage of one dimensional
beam elements creates some approximations. The degree of approximation in part depends on
the relative dimensions of the beam elements. In building frames, joint dimensions are generally
ignored in analysis because they are thought to be much smaller than the pertinent beam and
column lengths. In the case of box girder grillages, using the centerline dimensions of each
box girder segment to construct the grillage may introduce spurious element dimensions because
in reality box girder segments may not be collinear, in which case they join each other at
the outside surfaces of their webs, and the extra length from the outer web to the centerline
may be quite large. Hence to improve the modelling, it is proposed to use the actual length
of each box girder segment in the analysis.

If the ends of the segments do not actually meet, for the purposes of modelling they are
assumed to be connected by means of a rigid arm, subject to the inter-element compatibility
requirements to be discussed below. The compatibility conditions of the joints connecting the
individual box girder elements are dependent on the type of connection. In Fig. 4(a), elements
1 and 2 are both straight elements and have the same cross section and their ends actually
meet; hence there is complete structural and geometric continuity at the elements intersection,
thus compatibility would be enforced for all the common nodal degrees of freedom. Fig. 3(b)
illustrates the case of a curved element meeting a straight element at an angle. In this case,
we enforce continuity of u, v, w, 6, 6, and 6. This degree of continuity is identical to that
required in conventional beam grillages. The other degrees of freedom, such as torsional warping
6., distortion f, distortional warping S/, shear lag n; and shear lag warping 7/, are treated
as local degrees of freedom, reflecting the local deformations of the individual cross sections.
Those degrees of freedom for which continuity must be enforced are therefore transformed to
a common global coordinate system. Fig. 4(c) is the combination of Fig. 4a) and 4(b), which
shows that between elements 1 and 2 full continuity is maintained while between element 3
and the preceding two elements only partial continuity is enforced as in Fig. 4(b).

After the elimination of the middle node degrees of freedom by static condensation for the
curved box beam element, the nodal degrees of freedom become
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{DJe=[u, vi, wi, 6, 6., 6., 0., B, B, o, B B, M, 7, = T, Ulkl,ﬁ
u3a V}a W3, 6)(3’ 0}737 9235 6’23» ﬂ13a ﬂ’Bs Tt ﬁj39 ﬂ’jSa Tle n'l3. T nk3a n’k3:|1 (27)

In the straight box girder finite element developed earlier by Razaqpur and Li (1991) element
nodes are assumed to be located along the centroidal axis of the box girder while for torsion
they are considered to be located on an axis parallel to the centroidal axis but passing through
the shear center. Furthermore, the straight element did not account for shear deformations. In
the present curved element, the nodes are located on an axis parallel to the centroidal axis
but going through an arbitrary point 0 in the top slab. In view of this difference in the position
of the nodes of the two types of elements, the continuity conditions at the junction of a straight
and a curved element satisfy the following conditions:

u=uy—y,6, (28a)

V=1, (28b)

W=wo—yvO+ @ 6.+ Wy fi+ -+ @y B wg mAF op i (28¢)
8.=6, (28d)

6,=6,+y.6. (28¢)

9=6 (280)

B=B (28g)

B=8 (28h)

m=n, (281)

m=" (289)

In which y. and y, are the y coordinates of the centroid and the shear center of the box cross-
section, respectively.

In Eqgs. 28(a) to 28(j) the quantities on the left-hand side of these equations belong to the
straight box girder while those on the right-hand side belong to the curved box girder. Thus,
the transformation between the nodal degrees of freedom can be expressed as

{D¥=[T.1{DJ (29)
with

=l B ] 30

where the submatrix [z,] as follows
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The periods in the above matrix and in the following matrices signify null elements. The element
stiffness matrix and the nodal load vector for the straight element corresponding to the global
coordinate system can be obtained via

(Sl =[T. 1 [SaT[T.] (32)
{ng}e: [n'c]T{Fgl}e (33)

where [S,;] and {F,} are the stiffness matrix and nodal load vector of the straight element
in the local coordinate system.

"Next let us consider Fig. 4(c) in which ends a and b of the two intersecting segments do
not actually meet. If we connect these points by means of the rigid arm ab, then the transformation
matrix [7,,] needed to relate the degrees of freedom at point a in Fig. 5(c) to those at point
b is similar to Egs. (30) and (31) and is listed as follows:

—| [l
=) ] 349

where the submatrix [z,,] is as follows
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in which /, is the length of the rigid arm connecting a to b. The corresponding element stiffness
matrix and nodal load vector are therefore given by

[S, )= [T, 1 (S ) [T,] (36)
{F ) =[T, T {Fp) 37)

where [S,,] and {F,,} are the stiffness matrix and nodal load vector of element 2 in its local
coordinate system. For element 1 a similar transformation needs to be applied.

Note that in this particular case the global coordinate system coincides with the local coordinate
system of the curved element, thus no coordinate transformation is needed for the stiffness matrix
and nodal load vector of the curved element. Once the necessary transformations have been
achieved, the process of assembly of the structural stiffness matrix and load vectors proceeds
in the usual manner.

The accuracy that can be obtained with the proposed procedure will be demonstrated via
the following numerical example.

5. Numerical example

A concrete box girder grillage is analyzed, subjected to one Ontario Highway Bridge Design
truck (OHBD Code 1983) on each of the segments 1 and 3, Fig. 5. The box girder has diaphragms
only at the supports. It is assumed that the diaphragms endow the box with full torsional and
distortional resistance, but with no resistance to warping. The dimensions and loading of the
cross section are shown in Fig. 5. As indicated in Fig. 5, a rigid arm is used to model the
stiff behaviour of the intersection region. For each of branches 1 and 2, only one straight thin-
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Fig. 5 Multi segment box girder.
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walled box beam element with exact shape functions was used (Razagpur and Li 1991). For
branch 3, fifteen curved thin-walled box beam elements of the type described earlier were used.
Facet shell finite analysis was also carried out for the sake of comparison. A total of 268 shell
finite elements were used in the analysis, using the program NONLACS (1990).

Figs. 6(a) and 6(b) show the variation along the span of the longitudinal normal stress at
junction A, obtained from various beam theories and from the shell finite element analysis.
Figs. 7(a) and 7(b) show the longitudinal normal stress due to eccentrically placed trucks at
midspan of branches 1 and 3. The results are compared with the shell finite element analysis
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and with conventional beam theory. It can be seen that the proposed model results are in good
agreement with those of shell finite element, except near the junction of the three members
which is not unexpected because the basic theory upon which the present formulation is based
can not account for such local effects. On the other hand, the conventional beam theory gives
results that differ substantially from the shell finite element results. The maximum error in the -
normal stresses obtained from conventional beam theory and the proposed thin-walled theory
is about 40%.

6. Conclusions

The results in this study show that it is possible to model rather complex three dimensional
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Fig. 7 Longitudinal normal stress at different cross-sections of box girder assemblage.

box girder assemblages as a grillage of box beam elements. The proposed method applies to
both straight and curvedbox girders. The key to the accuracy of the results is consideration
of all the significant deformation modes of thin-walled box girders, including torsional warping,
distortion, distortional warping, and shearlag. Also, realistic idealization of the intersection regions
of non-colinear box girder segments, and the proper imposition of the compatibility requirements
in those regions would lead to improved assessment of the state of stresses and deformations
in the box girder segments. The preceding conclusions are based on the comparison of results
from the proposed method with those obtained from thin shell finite element analyses. Neglecting
the foregoing effects, as in conventional beam theory,can introduce significant error in the magni-
tude and distribution of longitudinal normal stresses.
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