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Abstract.  This research work deals with the development of a new Triangular finite element for the linear 
analysis of plate bending with transverse shear effect. It is developed in perspective to building shell 
elements. The displacements field of the element has been developed by the use of the strain-based approach 
and it is based on the assumed independent functions for the various components of strain insofar as it is 
allowed by the compatibility equations. Its formulation uses also concepts related to the fourth fictitious 
node, the static condensation and analytic integration. It is based on the assumptions of tick plate‟s theory 
(Reissner-Mindlin theory). The element possesses three essential external degrees of freedom at each of the 
four nodes and satisfies the exact representation of the rigid body modes of displacements. As a result of this 
approach, a new bending plate finite element (Pep43) which is competitive, robust and efficient. 
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1. Introduction 

 

Complex shell structures are frequently encountered in various fields. The development of 

simple and efficient finite elements for the analysis of these structures is a major thrust of 

scientific research in solid mechanics. Nevertheless, problems are often encountered, making 

difficult the achievement of the assigned objectives. Many finite elements are developed for 

solving these problems, but most of them have remained ineffective in the analysis of arbitrary 

geometric configuration. Isoperimetric elements are the most successful among those available in 

the literature due to their ability to successfully modeling curved structures. Only the phenomenon 

of shear locking leaves these elements unsuitable for the analysis of plates with distorted mesh. 

Despite the use of reduced integration and stabilization techniques of finite element in order to 

overcome this problem, the developed formulations did not converge to the solutions given by the 

theory of thin plates and often confront the problem of singularity of the stiffness matrix.  

A brief review of the literature allows us to identify, but not limited, some recent work by 
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researchers to address these problems: 

• Development of a plate element by (Barik et al. 2002) that has the qualities of an element in 

terms of isoperimetric modeling capability with any mesh size, and without the disadvantage of 

the shear locking phenomenon. 

• The amendments made by Chinosi (2005) at the boundary conditions for Reissner-Mindlin 

plates; prevent free boundary conditions to address the problem of convergence towards the 

reference solution for plates of small thickness. 

• The triangular shell element with six nodes based on the approach MITC developed by (Do-

Nyun et al. 2009) characterized by quality spatially isotopic element and the absence of zero 

energy modes. 

The objective of this research is the formulation of shell finite elements based on the “strain 

approach” whose purpose is to overcome these difficulties on one hand, and the construction of 

finite shell elements which are simple and effective for the analysis of complex structures, on the 

other hand. To do this, we have enriched our approach with the concepts and development 

techniques based on the adoption of the “strain approach”, the introduction of a “fictitious fourth 

node”, the elimination of the degree of freedom corresponding to the “fictitious fourth node” by 

static condensation and the use of “analytic integration” to evaluate the stiffness matrix. Early 

works (Himeur 2008) led to the construction of triangular membrane finite elements which can be 

easily combined with inflected elements (slabs, beams and shells). 

This ongoing work is a continuation for our research whose main focus this time is on the 

development of plate finite triangular elements. The new triangular finite element based on the 

strain approach for plate bending with transverse shear effect inflected with a fictitious fourth node 

the culmination of this above mentioned work. We call it «Pep43». This element is formulated by 

using the strain approach. The interpolation functions of the deformation fields‟ i.e., displacements 

and stresses are developed by using Pascal‟s triangle. It is a triangular element to which we added 

a fourth fictitious node positioned outside and away from the triangle. This position, outside, is 

thus chosen to avoid the relaxation of the stiffness matrix resulting in an overestimation of the 

nodal displacements. The degrees of freedom corresponding to the fourth node are then eliminated 

by the static condensation of the stiffness matrix at the elementary level. So the main interest of 

this fictitious node lies on the enrichment of the displacement field (p refinement i.e.: increase in 

the degree of the polynomial interpolation), which consequently leads to a greater precision in the 

approximation of the solution. The corresponding variational criterion is that of the total potential 

energy. The analytical integration for the evaluation of the stiffness matrix is highly interesting to 

avoid the loss of convergence phenomenon observed in isoperimetric elements which use 

numerical integration and are very sensitive (their convergence is conditioned by a regular mesh - 

undistorted). This formulation is based on the assumptions of the Reissner-Mindlin plate theory. 

In an in order to validate the new «Pep43» element, we have undertaken a set of test cases. For 

each test case, the result is compared, on one hand, to the corresponding reference solution, and on 

the other hand, the solution is given by certain plate elements found in existing literature. On the 

whole, the approach in the present development has resulted in a competitive, robust and efficient 

«Pep43» plate finite element. This is visible, first, through its excellent convergence rhythm 

towards the reference solution, and secondly, through its behaviour performances towards other 

triangular plate elements in the existing literature: DKT, HCT (Batoz et al. 1990), C° (Belytschko 

1984), ANST3 (Guenfoud 1990), ANST6 (Guenfoud 1990), TRUMP (Argyris et al. 1977) and SRI 

(Sabourin et al. 2000).  
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Fig. 1 Triangular plate element with w, βx, βy degrees of freedom each node 

 

 
2. Basic equation of Reissner-Mindlin plate theory 
 

2.1 Displacement field 
 
In Fig. 1, the rotations around the two axes x and y are denoted θx and θy, and slopes in both 

directions are defined by the variables βx and βy with 

y x
            xy  

                        (1) 

Let the Reissner-Mindlin plate element shown in Fig. 1, be the field of displacements at any 

point in the Cartesian coordinate system, given by 
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The infinitesimal strain tensor is thus 
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The bending curvatures are given by equations 
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+ Fourth fictitious node 
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2.2 Kinematics compatibility conditions 
 

The kinematic compatibility conditions were established by St. Venant (1854) (Frey 1998). 

Their satisfaction is required to guarantee the uniqueness of the displacements. The compatibility 

equations are as developed as follows 
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2.3 Constitutive law 

 

In plane state of stress and for isotropic materials, generally accepted as hypothesis for the 

calculation of thin structures (beams, plates and shells), the stress–strain relationship equations of 

Reissner-Mindlin theory are given by 
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Where 

- Mx, My, Mxy, Tx and Ty represent the bending and twisting moments, transverse shear forces per 

unit length, respectively. 

- h, the plate thickness.  

- k, the „shear factor‟ usually taken as k=5/6, except where mentioned. 

- E, Young‟s modulus. 

- ν, Poisson‟s ratio. 

 

 

3. Formulation of the element “Pep43” 
 

3.1 Shape function 
 
For rigid body motions, bending curvatures are related to zero 

0Kx  ;   0K y  ;   0Kxy  ;   0xz  ;   0yz  ;               (7) 

Putting Eq. (7) into Eq. (3) and Eq. (4) and after integration, the displacement fields can be 

obtained as follows 

2ax      
3ay     y321 a-xa - aW                     (8) 

where a1 (arrow) of the rigid body along the normal (axis “z”), a2 and a3, are parameters 
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representing rotations θx and θy of the rigid body about axis “y” and “x” respectively.  

Eq. (8) represents the rigid body motions. The new element has four nodes (see Fig. 1): three 

vertices to which a fourth fictitious node has been added. Each node has three degrees of freedom, 

so the displacement fields, formulated by the use of the model deformation, have 12 independent 

constants (a1, ..., a12). The first three constants (a1, a2, a3) are used in Eq. (8) to represent rigid 

body motions. The other nines (a4 to a12) are used for expressing the displacement due to the 

straining of the element. They are divided into the deformation interpolation functions to satisfy 

Eq. (5) of the kinematics compatibility for plane elasticity. Thus, the deformation fields for higher 

modes are derived from Pascal‟s triangle as follows 

2
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Putting Eq. (9) into Eq. (3) and Eq. (4) and after integration, we obtain the displacements fields 

which are as follows 
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The final displacements field is obtained by substituting Eq. (8) to Eq. (10) 
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The displacement field given by Eq. (11) can be in a matrix form as follows 
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Knowing the nodal coordinates (xi, yi) corresponding to the nodes j (j = 1... 4) and applying the 

Eq. (12), the nodal displacements vector at the elementary level is given as follows 
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            is the nodal coordinate‟s matrix. The development of this matrix is shown in the  

 

 

 

appendix. 

From Eq. (14), the value of parameters “ai” can be deduced and are given by 
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Substituting Eq. (15) in Eq. (12), we obtain the following relationship 
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  1][y)f(x, ][  AN  
represent the matrix of interpolation functions Ni. 

Putting Eq. (12) in Eq. (3) and Eq. (4), the relationship strain-displacement takes the following 

expanded form 
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Thus, the deformation matrix [Q(x, y)] is given as follows 
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3.2 Elementary stiffness matrix 
 

The internal virtual work for an elementary discredited element is given by the expression 
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Thus, the elementary stiffness matrix derived from the expression (22) is as follows 
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The Eq. (23) can be written 
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The evaluation of the expression  0K  is determined by analytic integration of the various 

components of the resulting matrix product     y)Q(x,.D.y)Q(x,
T  whose expressions take the form 

βα

αβ .yC..xH  . So the matrix [Ko] is evaluated by analytical integration of values               .  

Finally, the elementary stiffness matrix, to be considered at the assembly and construction of 

the global stiffness matrix of the structure, is obtained after condensation of the matrix [K
e
]. The 

static condensation is related to the degree of freedom of the fictitious fourth node. 

 

 

4. Validation of the element «Pep43» 
 

4.1 Patch-tests 
 
4.1.1 Rigid modes 
This test is performed on one single element. The main objective of this test is to check the 

representation of rigid body motions i.e., if a displacement field non-zero produces zero strain. To 

do this, three displacement vectors corresponding to each the rigid modes respectively were 

defined 

- {Uti} = {1 0 0; 1 0 0; 1 0 0} for translation rigid mode, 

- {Uxzi} = {-x1 1 0; -x2 1 0; -x3 1 0 for rotation rigid mode « xz », 

- {Uyzi} = {-y1 0 1 ; -y2 0 1 ; -y3 0 1} for rotation rigid mode « yz ». 

Then we verify for each of the above defined vectors the following equation 

 [K]{Ui}= {0}                              (25) 

   
x y

βα

x y

αβ .yC..xH
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(a) Stresses defined by 1nM  (b) Stresses defined by 1nsM  

Fig. 2 Stresses on the contour reflecting the constant stress state 

 
 

 

 

 

 

 

(a) First test (b) Second test 

Fig. 3 Equivalents node‟s forces 

 

 
The results show that for this element there is a good representation of rigid body motions, 

since the above condition is satisfied whatever the geometry of the element. 

 

4.1.2 Mechanic patch-test  
In this test, an assembly of four triangular elements on a rectangular domain having sides of 

2a=40 units and 2b=20 units. We impose on the contour of this domain stresses reflecting the state 

of the constant moments (or stresses).  

In the first test, stresses on the contour are in agreement with the field defined by 1nM  
(See 

Fig. 2(a)) in order to have 1 yx MM  throughout (See Fig. 3(a)).  

In the second test, stresses on the contour are in agreement with the field defined by 1nsM  

(See Fig. 2(b)) in order to have 1xyM  throughout (See Fig. 3(b)). These tests were made for 

thicknesses varying from 0.01 to 4.0 units.  

The other data are defined as follows: E=1000; ν=0.3; h=0.01–0.04–1.0– 4.0; W1=W2=W3=0 

After calculating the elementary stiffness matrix, assembly, taking into accounts the boundary 

conditions and resolution, the results (nodes 5) are given in Table 1.  

From these results it can be concluded that the element passes with success this patch test. 
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4.2 Cantilever beam subjected to point load at its free end 
 
This test checks the behaviour of the element in simple bending element based on the 

slenderness ratio (L/h). At the free end, the beam is subjected in the direction “Oz” to A point load 

of intensity P = 0.1.  

The other end is simulated as a perfect fitting (see Fig. 4). 

The geometrical, mechanical and loading data are given in Table 2. 

To see the influence of transverse shear on the behaviour of this new element, in this test case, 

the displacement “w” from point “A” in the direction of “Oz” for several values of the ratio L/h is 

simulated. The theoretical solution of the displacement “w” from point “A” in direction “Oz” is 

given as follows, with k =5/6: 


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w                            (26)  

The simulation results point “A” in the direction “Oz” is given in Table 3 and Fig. 5. 

The results obtained (See Table 3.) show the total absence of the transverse shear blocking 

phenomenon, since the displacement obtained are from the theoretical solutions regardless the 

slenderness (l/h ratio). It also can be seen from fig. 5 the robustness of the present new element 

 

 
Table 1 Results of “mechanical” patch test of element Reissner-Mindlin type 

Thickness h=0.01 h=0.04 h=1.0 h=4.0 

1 yx MM

 
 

1xyM  

)05(nodexM  -1 -1 -1 -1 

)05(nodeyM  
1 1 1 1 

)05(nodexyM  
-1 -1 -1 -1 

 

 
Table 2 Data for the cantilever beam in simple bending 

Length L=10 m 

Width b=1 m 

Thickness h=0.1 to 10m 

Young's Modulus E=1.2×10
6
N/m² 

Poisson Coefficient ν=0 

Loading P=0.1 N 

 

 

 

 

 

 

 

 

Fig. 4 Cantilever beam subjected to point load 
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Table 3 Displacement from point A along the axis “Oz” of the cantilever beams in simple bending 

L/h DSTM ANST6 DKTM Pep43 Theoretical Solution 

1 5.1×10
-7

 5.3×10
-7

 3.1×10
-7

 5.30×10
-7

 5.3×10
-7

 

2 2.9×10
-6

 3.0×10
-6

 2.5×10
-6

 3.05×10
-6

 3.1×10
-6

 

3 9.0×10
-6

 9.6×10
-6

 8.4×10
-6

 9.53×10
-6

 9.6×10
-6

 

4 2.0×10
-5

 2.2×10
-5

 2.0×10
-5

 2.19×10
-5

 2.2×10
-5

 

5 4.0×10
-5

 4.2×10
-5

 3.9×10
-5

 4.23×10
-5

 4.3×10
-5

 

10 - - - 3.3×10
-4

 3.3×10
-4

 

100 0.31329 - 0.31327 0.3300 0.3333 

 

 
 

Fig. 5 Relative errors of displacement “W” on point A in pure bending 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Twisting of square plate 

 

 

when compared to the existing elements in the literature. It should be noted that its convergence 

towards the solution is obtained with a meshing of twenty (20) elements.  
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4.3 Twisting of a square plate 
 

The plate in Fig. 6 is simply supported (W=0) at the corners B, C and D. A transverse force is 

applied at corner A.  

The geometrical, mechanical and loading data are given in Table 4. 

This problem was treated by Batoz et al. (1980), Clough and Tocher (1965), and Teodorecu 

(1982) in order to analyze other finite elements, is considered in the bearing evaluation of the new 

element in a constant twisting state. The exact solution obtained by the plate theory (thin theory) is 

given below 

WA (corner A) 0.2496 

WF (centre of plate F) 0.0624 

MX (throughout) 0.0 

MY (throughout) 0.0 

MXY (centre of plate F) 2.5 

The displacement results and the moments obtained in the case of the new element Pep43, are 
compared to other author's elements are given in Table 5.  

 
In this test, the results obtained with k=10

5
, show that the new element is robust. 

 
4.4 Isotropic square plate 
 
This example was taken by many authors in the literature including (Batoz et al. 1990). 
This is an isotropic square plate of side a and thickness h. In this work several scenarios based 

on the boundary conditions of the plate and the type of loading were simulated. It is a question of 

studying the behaviour of the present new element, with different mesh sizes and a/h ratios. The 
displacements obtained at the plate center (Point C) are compared with the references solutions, as 
shown in tables 6-7-8-9.The trends of convergence are illustrated for various scenarios in the figs 
8- 9-10-11. 

 
 

Table 4 Data for a twisted square plate 

Side length L= 8.0 

Thickness h= 1.0 

Young's Modulus E=10000 

Poisson Coefficient ν = 0.3 

Loading P= 5 

 
Table 5 Simulation results of twisting of square plate 

Element type 
Deflection “W” at Moments 

Point A Point F MX et MY MXY 

Pep43 (2×2) 0.24960 0.06240 0.0 2.5 

SBRP (2×2) 0.24960 0.06240 0.0 2.5 

DKT 0.24960 0.06240 0.0 2.5 

HSM 0.24960 0.06240 0.0 2.5 

HCT (8×8) 0.25002 0.06254 0.0 2.5 

ACM (8×8) 0.24972 0.06244 0.0 2.5 

Exact Solution (Thin theory) 0.24960 0.06240 0.0 2.5 
 

803



 

 

 

 

 

 

Mohammed Himeur, Abdelaziz Benmarce and Mohamed Guenfoud 

  

 

 

 

 

 

 

 

 

 

Fig. 7 Isotropic square plate 
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Fig. 8 Ratio of displacement “Wc/Wref.” on point C - isotropic square plate, simply supported on all four 

sides 

 
 
4.4.1 Isotropic square plate requested by a uniformly distributed load 
 
 

Table 6 displacement (= 100WD/qa
4
) on point C isotropic square plates, simply supported on all four sides, 

with D=Eh
3
/12(1−v

2
) 

 
a/h=10 a/h=100 

R4 SBRP SBH8 Pep43 R4 SBRP SBH8 Pep43 

2×2 0.23169 0.35869 0.35935 0.03583 0.00446 0.06733 0.08817 0.0004 

4×4 0.36519 0.43106 0.43161 0.25869 0.01727 0.31151 0.31235 0.0505 

8×8 0.43142 0.45245 0.45299 0.40000 0.06128 0.39616 0.39628 0.2369 

16×16 - - - 0.43752 - - - 0.3928 

32×32 - - - 0.46137 - - - 0.4054 

ref 0.46169 0.4062 
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Fig. 9 Ratio of displacement “Wc/Wref.” on point C - isotropic square plate clamped at its four sides 

 
Table 7 Displacement (= 100WD/qa

4
) on point C isotropic square plates, clamped at its four sides, with 

D=Eh
3
/12(1−v

2
) 

 
a/h=10 a/h=100 

R4 SBRP SBH8 Pep43 R4 SBRP SBH8 Pep43 

2×2 0.06989 0.09032 0.09089 0.02377 0.00101 0.00270 0.00273 0.0002 

4×4 0.11518 0.13836 0.13871 0.08323 0.00367 0.05584 0.056235 0.0031 

8×8 0.13954 0.14757 0.14789 0.13700 0.01322 0.11789 0.11797 0.0483 

16×16 - - - 0.14758 - - - 0.1186 

32×32 - - - 0.15030 - - - 0.1254 

Ref. 0.15046 0.126 

 

 
4.4.2 Isotropic square plate requested by a point load applied at its center 

 

 
Table 8 Displacement (= 100WD/Pa

2
) on point C isotropic square plates, simply supported on all four sides, 

with D=Eh
3
/12(1−v

2
) 

 
a/h=10 a/h=100 

R4 SBRP SBH8 Pep43 R4 SBRP SBH8 Pep43 

2×2 0.73584 1.06060 1.06336 0.143308 0.01342 0.18284 0.25566 0.001504 

4×4 1.12951 1.29855 1.30142 0.803125 0.04846 0.84496 0.85630 0.193668 

8×8 1.34606 1.39877 1.40198 1.213846 0.16901 1.11641 1.11674 0.716010 

16×16 - - - 1.312500 - - - 1.085048 

32×32 - - - 1.414375 - - - 1.111154 

ref 1.44267 1.16 
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Fig. 10 Ratio of displacement “Wc/Wref.” on point C - isotropic square plate, simply supported on all 

four sides 
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Fig. 11 Ratio of displacement “Wc/Wref.” on point C - isotropic square plate clamped at its four sides 

 

 

4.5 Circular plate 
 
This example was used by many authors in the literature including (Batoz et al. 1990). In this 

work several scenarios based on the boundary conditions of the plate under uniform loading f, 

were simulated. In this study, we have considered three meshing, i.e., 4, 16 and 58 (Fig. 12). Each 

circular plates have a radius r =5 and a thickness h = 0.5, a Poisson’s coefficient ν = 0.36. 

The displacements obtained at the center of the plate (Point C) were compared with the 
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Table 9 Displacement (= 100WD/Pa
2
) on point C isotropic square plates, clamped at its four sides, with 

D=Eh
3
/12(1−v

2
) 

 
a/h=10 a/h=100 

R4 SBRP SBH8 Pep43 R4 SBRP SBH8 Pep43 

2×2 0.32949 0.39200 0.39486 0.095096 0.00458 0.01064 0.01078 0.000951 

4×4 0.57104 0.65236 0.65482 0.360851 0.01690 0.24039 0.24204 0.013793 

8×8 0.71499 0.74211 0.74492 0.630240 0.06043 0.51183 0.51216 0.229216 

16×16 - - - 0.719231 - - - 0.504663 

32×32 - - - 0.806587 - - - 0.525096 

Ref. 0.77775 0.56 

 

 

Fig. 12 Circular plate 
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Fig. 13 Ratio of displacement “Wc/Wref.” on point C - circular plate 

 

 

reference solutions (Batoz et al. 1990). In this case, a ratio (wc/wref) was used as a comparison 

criterion. 

Trends of convergence are illustrated for clamped and supported side in Fig. 13.  

For supported plate, the reference solution is 
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For clamped plate, the reference solution is 

  1
64D

f.r
w

4

efr
                             (28)  

 

 With     and  

 

 
 
5. Conclusions 

 

In this work, we have presented a new triangular bending finite element in the perspective of 

linear static and dynamic analysis, also for the geometric non linear of curved structures (arch and 

shell) analysis. The adopted approach and the development of concepts and techniques used have 

allowed coming to a competitive, robust and efficient finite element for the treatment of thin and 

thick plates. It is an element which shows undoubted advantages which plead to its use. The 

presence of the fictitious node and the adoption of the “deformation” approach have given the 

opportunity of enriching the displacement fields, and consequently, a greater accuracy in the 

approximation of the solution by avoiding the complexity of the classical theories. The reduction 

of elementary stiffness matrices by the means of the “static condensation” technique, action related 

to the degrees of freedom of the fictitious node, by which solving enormous systems of equations 

can be avoided, therefore, non negligible savings of time are recorded. The use of analytical 

integration in the evaluation of the stiffness matrix, gave this new element a competitive 

behaviour. These results were remarkable in the convergence tests carried out where a rapid trend 

towards the solution on the contrary to the isoperimetric elements (using numerical integration) 

have been noticed. Furthermore, our element has passed successfully the patch-tests related to the 

constant deformations state (stiff modes and constant modes). Besides, it was noticed a lack of the 

blocking connected to the transverse shear. 
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Appendix A. 
 

Formulation of the matrix of rigidity at the elementary level 
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Appendix B. 
 

Nodal Coordinate Matrix [A] 
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