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Abstract.  At present, the time of easy oil and gas is over. Now, the largest part of fossil fuels is 
concentrated in the deepest levels of tectonic structures and in the sea shelves. One of the most cumbersome 
operations of their extraction is the bore-hole drilling. In connection with austere tectonic and climate 
conditions, their drivage every so often is associated with great and diversified technological difficulties 
causing emergencies on frequent occasions. As a rule, they are linked with drill string accidents. A key role 
in prediction of these situations should play methods of theoretical modelling. For this reason, there is a 
growing need for development and implementation of new numerical methods for computer simulation of 
critical and post-critical behavior of drill strings (DSs). In this paper, the processes of non-linear deforming 
of a DS in cylindrical cavity of a deep bore-hole are considered. On the basis of the theory of curvilinear 
flexible rods, non-linear constitutive differential equations are deduced. The effects of the longitudinal non-
uniform preloading, action of torque and interaction between the DS and the bore-hole surface are taken into 
account. Owing to the use of curvilinear coordinates in the constraining cylindrical surface and a specially 
chosen concomitant reference frame, it became possible to separate the desired variables and to reduce the 
total order of the equation system. To solve it, the method of continuation the solution by parameter and the 
transfer matrix technique are applied. As a result of the completed numerical analysis, the critical states of 
the DS loading in the cylindrical channels of inclined bore-holes are found. It is shown that the modes of the 
post-critical deforming of the DS are associated with its irregular spiral curving prevailing in the zone of 
bottom-hole-assembly. The possibility of invariant state generation during post-critical deforming is 
established, condition of its bifurcation is formulated. It is shown that infinite variety of loads can 
correspond to one geometrical configuration of the DS. They differ each from other by contact force 
functions. 
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1. Introduction 

 

Improvement of technology and techniques for drilling deep oil and gas bore-holes is one of the 

most important problems of the modern mining industry. In this technology, the dominant position 

is acquired by the rotor method. Even now depths of the bores drilled by this way achieve several 

kilometers, but the problem of extraction of oil and gas from deeper tectonic levels continues to be 

urgent. 
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In its use for drivage of vertical deep bores, when a rotational moment TOB (torque on bit) is 

applied to the top edge of the drill string (DS) and a force on the drill bit WOB (weight on bit) is 

created by its weight, the system functioning can be attended by occurrence of a series of 

mechanical phenomena exerting a detrimental affect on the whole working process. Among these 

are 

(1) the DS stability loss at its lower part following the buckling mode typical for a rod 

stretched, compressed and twisted simultaneously (Lubinski 1987, Kwon 1988, Mitchell 2007, 

Mitchell and Miska 2006); 

(2) excitation of longitudinal and bending vibrations under action of non-stationary 

perturbations of technological character (Gulyayev and Borshch 2011); 

(3) excitation of the DS whirling vibration conditioned by the bit structure, geometrical 

imperfections, and imbalance of the whole system and its parts; 

(4) initiation of the DS torsion (stick slip) vibration at its accelerating and braking, as well as a 

result of their self-excitation by non-linear friction forces of discontinuous interaction between the 

bit and processed rock (Gulyayev and Glushakova 2011). 

Similar effects occur in drill strings operating in curvilinear bores (Gulyayev et al. 2011, Huang 

and Pattillo 2000). 

The noted phenomena can lead to emergencies accompanied by the DS tube rupture, the bit 

capture or penetration of the tube segments into the rock in the zones of their contact and rubbing, 

deflection of the bore axis from vertical and its distortion. 

The efforts to simulate theoretically static and dynamic behavior of the DS in the drilling 

process are associated with the necessity of integrating differential equations of their equilibrium 

and vibrations in the range of large length of the DS. These problems possess essential analytical 

and computational difficulties stemming from the system dependence on complicated combination 

of static and dynamic force factors acting on the DS in its working. 

The most typical critical phenomena of the DS loading is its stability loss. There are two 

dissimilar approaches to its analysis, which differ by targets, statements, methods of solutions and 

results. 

The first one consists in study of Eulerian stability of the DS and it is associated with the 

statement of the Sturm-Liouville boundary value problem for the equations of the rotary DS quasi-

static equilibrium Gulyayev et al. (2009, 2010) solved this problem via the use of the transfer 

matrix technique. As a result, the eigen-values were calculated and eigen-modes were built for the 

whole length of the DS. Previously, it was not stated and solved owing to essential theoretical and 

calculation difficulties. 

The principal source of these difficulties is the non-uniform field of internal longitudinal forces 

in the DS formed by gravity forces of the bit, stabilizers and the DS itself, as well as the vertical 

reaction of the bit contact interaction with the destructed rock medium (WOB). These forces make 

an essential impact on the DS stability and vibrations as it occurs in elongated structures. 

Of essential importance is also the DS rotation with the resulting generation of centrifugal and 

Coriolis’ inertia forces (Gulyayev et al. 2009), but in the DS they are realized in more complicated 

forms because proceed in combination with other mechanical effects.  

In analysis of the DS behavior, less attention is generally focused on action of a torque bringing 

the DS into rotation and serving to produce the moment cutting the rock (TOB). However, 

notwithstanding the fact that it is uniform along the DS length, its influence on the DS deformation 

is one of the most essential, because the most conspicuous change of the buckling and vibrating 
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modes are connected with its presence. These modes acquire shapes of irregular spatial spirals 

with varying diameters and pitches. Besides, as shown by Gulyayev et al. (2009), Gulyayev et al. 

(2010), wavelets of very small lengths and amplitudes are superimposed on these spirals. Taking 

into account the TOB action leads to essential complicating the problem statement, since the DS 

element displacements in the two relatively perpendicular planes appear to be interconnected and 

the total order of the differential equations doubles. In reference (Ziegler 1968), the problems 

about stability of twisted rods prestressed by constant internal longitudinal forces are stated and 

solved analytically. If the forces change along the DS, the analytical solution cannot be 

constructed. 

In service, washing liquid (mud) required to remove the crushed particles of the destructed rock 

moves down inside the DS. It is known, that internal flows of liquids in tubes can lead to their 

divergent instability. But if liquid runs out from a free end of a tube, the forces generated by it are 

non-conservative and they generate flutter vibrations of the tube (as it sometimes occurs with free 

ends of hoses). Taking into consideration that the mud moves with moderate velocity but its 

density achieves 2 g/sm
3
, it can be concluded that its influence on stability and vibrations of the 

DS is perceptible too. Notice, that stability and vibrations of rectilinear and curvilinear (spiral) 

tubes under action of heterogeneous flows of liquids are considered in reference (Gulyayev and 

Tolbatov 2004). 

The second approach is related to consideration of a post-critical equilibrium of the DS inside 

the bore-hole. It is based on the assumption that the post-critical shape of the DS segment 

represents some regular or irregular cylindrical spiral with the prescribed radius, which is equal to 

the clearance between the DS and the bore-hole. Owing to this, it becomes possible to simulate the 

post-critical behavior of the DS through the statement of an inverse problem of the flexible 

curvilinear rod theory and to calculate internal and external (contact and friction) forces acting on 

the DS. It is generally assumed that only homogeneous external axial force, torque and wall 

contact force (WCF) are the dominant factors influencing on this phenomenon. Main peculiarities 

of the DS post-critical behavior are studied by Kwon (1988), Mitchell (2007), Mitchell and Miska 

(2006), Sun and Lukasiewicz (2006), Van der Heijden et al. (2002), Yongping and Youhong 

(2012), Zhao et al. (2010), and Fang et al. (2013). As a rule, their problem statements are based on 

assumption that in the post-critical states, the DS acquires regular spiral shape with constant pitch 

and then the main aim of these researches consists in acquisition of simple analytic solutions that 

are suitable for hand calculations. Similar approaches are also used in references (Krauberger et al. 

2007, Singh and Kumar 2008). In paper (Thompson et al. 2012), critical values of axial forces and 

torques are found, the corresponding contact forces are calculated. Good agreement with 

experimental data is noted.    

It should be remarked that in the process of the DS work all the considered factors act 

simultaneously with different values of parameters determining their magnitudes, for this reason 

the phenomena generated are characterized by wide variety and severity. Because of this, even 

general regularities of the proceeding of these phenomena have not been thoroughly studied until 

now. 

One of the causes of this fact is conditioned by large lengths of the DSs which change in 

operation. In this connection the fields of strains and stresses formed in the DSs in the course of 

their vibrations and stability loss have the form of short boundary effects where the most 

complicated and dangerous processes occur. 

As shown below, the differential equations describing these phenomena belong to the so called 
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singularly perturbed type. To obtain their correct solutions special high precision numerical 

methods should be used. 

In this paper, the second approach is used for investigation of post-critical deforming of 

elongated drill strings in cylindrical cavities of vertical and inclined bore-holes. The history-

dependent process of a drill string transforming is traced on the basis of non-linear analysis 

methods permitting to take into account the possibility to achieve the invariant (locked up) states 

of the system. In these states, an infinite variety of loads can correspond to one geometrical 

configuration of the DS. They differ each from other by contact force functions.  The examples of 

bore-holes with ideal rectilinear axial lines are considered, the possibility of variable clearance 

between the DS and bore-hole and influence of friction forces are discussed. The analysis results 

are given.  

 

 
2. Singularly perturbed problem of a long DS bending 

 

In mathematical physics, many differential equations simulating real phenomena contain 

different parameters. So, solutions of these equations are subject to wide variations with varying of 

their parameters. A. Poincare and A. Lyapunov appear to be the first ones who analysed the 

regular types of these equations including the ε parameter in their right-hand sides 

),,,( xxtFx    10  t                                                     (1) 

Here, the F function is differentiable with respect to t, x, x’ and ε in some neighbourhood of the 

value ε=0 inside the interval 0≤t≤1. Calculus of this type equations did not met with any 

difficulties and they were studied comprehensively. 

But Chang and Howes (1984) showed that the situation changes substantially, if the small 

parameter 0<ε<<1 is before the senior derivative 

),,( xxtfx       (2) 

because in this event Eq. (2) defines an intermediate group of phenomena located between 

solutions of two different equations 

),,( xxtfx   and ),,(0 xxtf   

The problems described by this type of equations are named singularly perturbed. Chang and 

Howes (1984) studied them proceeding from the positions of applied mathematics. They 

demonstrated, considering two-point boundary value problem, that the singularly perturbed 

problems are poorly conditioned and have solutions in the forms of boundary effects, possessing 

poor convergence of calculations. 

Studying the phenomenon of torsion autovibration of a drill string, Gulyayev and Glushakova 

(2011) found that Eq. (2) can determine nearly discontinuous relaxation oscillations with fast and 

slow motions. But singular character of differential equations does not need to be necessarily 

associated with the small multiplier before the senior derivative. As often happens, the singular 

perturbation can be implicit, for example, if it is caused by large size of the x function definition. 

Now, turn to the discussion of equations  
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which determine critical states of a DS in a vertical bore-hole (Gulyayev et al. 2009). Here z is the 

coordinate axis coinciding with the bore-hole axis; u(z), v(z) are the functions of the DS elastic 

displacements in the planes xOz, yOz, correspondingly; EI is the bending stiffness; T(z), Mz(zare 

the axial internal force and torque, correspondingly. 

These equations are specified in the domain 0≤z≤L (L>>1). Through high order, their severity 

considerably excesses complications of other singularly perturbed equations known in scientific 

literature. To appreciate the plausibility of this statement, introduce new independent variable Z 

with the equality Z=z/L. Then, Eq. (3) will acquire the form  
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By way of example, if L=5000 m, then 14

4
1016.0

1 
L

  and the first terms in (4) become 

negligibly small. For this reason, Eq. (4) are singularly perturbed in (0≤Z≤1), as well as Eq. (3) in 

(0≤z≤L). 

An effort to regularize Eq. (4) with small parameter ɛ=1/L
4
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which, nevertheless, are of lower order and, for this reason, lose the basic features of the original 

Eqs. (3) and (4). In this case, simplified consideration of the DS deforming achieved by ignoring 

the equation terms with small parameter leads to the degeneration of the initial equations and to 

distortion of the simulation results. Indeed, now Eq. (5) describe equilibrium of a thread (or a 

string and thereby justify the drill string term) and they cannot be used for analysis of local 

bending of a DS or for modelling boundary effects. For this reason, the stability investigation of 

the long DSs and their post-critical buckling should be performed on the basis of complete systems 

of differential equations, though they are singularly perturbed and their solutions have poor 

convergence (Chang and Howes 1984). 

These conclusions were corroborated for eigen value problems of critical buckling of long 

vertical DSs (Gulyayev et al. 2009, 2010) and their free vibrations (Gulyayev and Borshch 2011).  
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Fig. 1 Schematic of cylindrical surface D constraining displacements of the DS axis line in the 

inclined bore-hole 

 

 

It was shown, that stability loss of a long DS is accompanied by its spiral curving prevailing in 

lower part, while free vibrations proceed with formation of running spiral waves. In what follows, 

the post-critical evolution of the DS shape will be considered. The non-linear theory of curvilinear 

flexible rods will be used. 

 

 

3. Statement of the problem about post-critical evolution of a DS shape 
 

Consider non-linear post-critical bending of a DS inside cylindrical cavity of a rectilinear bore-

hole. Assume that in the considered cases the surfaces of the DS and bore-hole are in contact along 

entire length of the DS. The bore-hole axis line is inclined to the vertical under angle β. Then the 

DS axis line L can displace relative to the bore-hole in some cylindrical surface D of radius 

a=r2−r1, where r1 is the DS radius and r2 is the bore-hole radius (Fig. 1). 

As the modern DSs located in deep bore-holes can be compared by condition of geometric 

similarity with a human hair, the following initial assumptions, typical for the theory of curvilinear 

flexible rods, can be accepted  

- the dimensions of the rod cross-section are very small in comparison with the length and radii 

of curvature and torsion of its axial line; 

- the displacements of the rod elements can be comparable with its length; 

- in the process of the rod bending, the length of its axial line does not change; 

- the function of internal axial force in the rod can be found from the conditions of equilibrium 

of all internal and external forces; 

- notwithstanding the possible large displacements of the rod elements, the curvature radii of its 

axial line are so large in comparison with the dimensions of the rod cross-sections that the bending 

strains of the rod remain small and elastic; 

- the ambient rock medium is absolutely rigid and is simulated as a constraint. 
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Introduce the Cartesian coordinate system O1x1y1z1 connected with the bore-hole and the 

reference frame O2x2y2z2. Axis O2z2 is vertical, axes O1x1 and O2x2 coincide. Draw coordinate lines 

u and v in the D surface, direct line u along the surface D generatrix and orient line v in the 

circumferential direction (Fig. 1). 

Position of the L curve in the D surface can be specified by three projections of the radius-

vector ρ(t) on the appropriate coordinate axes 

)(11 sxx  ,  )(11 syy  ,  )(11 szz                                 (6) 

with constraint 

22
1

2
1 ayx       (7) 

Here s is the natural parameter measured as a line L length from some origin point till the 

considered one. 

In 3D deforming, the DS is bent in two orthogonal planes, it is twisted and compressed 

(stretched) by axial force. So, the total order of constitutive equations based on presentations (6), 

(7) equals 12. However the problem statement can be essentially simplified if to analyze the 

deforming process in 2D space of the D surface and determine positions of the DS elements by 

two equalities 

)(suu  ,    )(svv                                               
(8) 

without use of constraint (7). Below it will be shown that in this case, the total order of the system 

can be reduced to six (sometimes, to four) through the use of a special moving reference frame. 

In modelling post-critical states of the DS, assume that it is no longer rotating, the centrifugal 

inertia forces equal zero and influence of washing liquid on the DS bending can be neglected. At 

the same time, as a result of its flowing and slight shaking of the DS in its small motion, the 

friction forces are alleviated and they can be also ignored. Then, the DS deforming is elastic and 

its stress-strain state is determined by the principal vectors of internal forces F(s), internal moment 

M(s) and the vector f(s) of external distributed forces, which consists of the gravity force vector 

f
gr

(s) and contact force vector f
c
(s). These forces and moments obey the equations of the DS 

element equilibrium  

f
F


ds

d
,  Fτ

M


ds

d

                                               
(9) 

where τ is the unit vector directed along the tangent to the L line. 

Analyze general properties of these equations. Firstly, they are invariant relative to any 

coordinate system and to supplement them with geometric equations, different approaches can be 

used. As the rod elements are considered to experience large displacements and rotations, it seems 

to be natural to apply the notion of finite rotation for their description. These variables are 

discussed in the papers by Argiris (1982), Atluri and Cazzani (1995), Ibrahimbegovic (1997). To 

accomplish this task, the approaches based on application of quaternions, Rodrigues’ parameters, 

and Euler’s angles can be also used. Nevertheless, as shown in Gulyayev et al. (1992), Gulyayev 

and Tolbatov (2004), in the case of study of elastic constraint-free curvilinear rod bending, the 

system of direction cosines of a moving trihedron can be more attractive, despite the fact that its 

nine components are redundant in comparison with other systems. The advantages of direction 

cosines consist in their simplicity and obviousness, they are useful for determination of any 
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orientation of a body and never degenerate.  

If the inertia moments of the rod cross-sections do not depend on orientations of their principal 

inertia axis (annulus, circle, quadrate, etc.), then the Frenet trihedron is the most convenient 

reference frame. Its tangent unit vector τ, unit vector of principal normal n and unit vector of 

binormal b are calculated by the formulae 

ds

dρ
τ  ,  

ds

d
R

τ
n  ,  nτb                              (10) 

Here, R is the curvature radius of the DS axis line. 

These vectors completely determine orientations of the rod elements under conditions of their 

arbitrary rotations. Their properties are expounded in (Dubrovin et al. 1992) 

Then, the Darboux vector can be introduced 

τbΩ TR kk 
                                                             

(11) 

which numerically equals the vector of angular velocity of the trihedron rotation at its motion with 

a unit linear velocity of its origin along the rod axis. Here kR is the axis curvature, kT is its torsion. 

Nevertheless, usage of the moving reference frame connected with principal axes of the rod 

cross-section is more universal as it is applicable to the rods of arbitrary profile. In this case vector 

Ω is replaced by the vector  

kjiω rqp                                                              
(12) 

where i, j, k are the unit vectors of the introduced reference frame; p, q are the appropriate 

curvatures of the L line; r is its torsion. 

Then, the absolute derivatives dF/ds and dM/ds are calculated through the Darboux rule  

Fω
FF


ds

d

ds

d
~

,  Mω
MM


ds

d

ds

d
~

                                 
(13) 

Here dsd
~

 is the symbol of local derivative. 

Substituting (13) into (9) and projecting these vector equations onto the system oxyz axes, one 

obtains 









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zxyz

yzxy

xyzx

fqFpFdsdF

fpFrFdsdF

frFqFdsdF

                                                  

(14) 













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xyz

yzxy

yyzx

qMpMdsdM

FpMrMdsdM

FrMqMdsdM

                                               (15) 

In the framework of the formulated theory, the forces Fx, Fy, Fz are merely static factors and are 

determined by Eq. (14), while the moments Mx, My, Mz are represented in the form of elasticity 

equalities 

434



 

 

 

 

 

 

Theoretical modelling of post - buckling contact interaction of a drill string 

  

ApM x  ,  BqM y  ,  CrM z                                
 (16) 

where the bending stiffnesses A, B and torsion stiffness C are determined by the formulae 

EIBA  ,   0GIC 
                                            

(17) 

Here E is the DS material elasticity module in tension; G is its module in shear; I and I0 are 

axial and polar inertia moments of the DS cross-section area. 

Eqs. (14)-(17) should be complemented by appropriate geometric correlations. Then, the total 

order of constitutive equations of the theory of curvilinear flexible rods will be equal to twelve 

(Gulyayev et al. 1992). 

This system has a rather complicated structure which becomes harder if the rod movement is 

limited by a constraining surface. To overcome this difficulty, the approach used in classical 

mechanics for analogous equations will be used. Thus, insertion of relations (16) into Eq. (15) 

gives 

yFqrBC
ds

dp
A  )(  

xFrpCA
ds

dq
B  )(  

pqAB
ds

dr
C )(   

These correlations are analogous to equations of a rigid body motion relative to an immovable 

point considered in classical mechanics by Goldstain et al. (2011) if to replace the parameter s, 

curvatures p, q, r and stiffnesses A, B, C by the time t, angular velocity components p, q, r and 

inertia moments A, B, C correspondingly. This analogy is not only a mere and curious feature of 

Eqs. (14), (15) but suggests a prompt how to simplify the problem about bending a rod constrained 

by a cylindrical surface. Indeed, in the problem about nonholonomic rolling a rigid body on a 

curvilinear surface, the simplest equations are arrived by consideration of the moments with 

respect to the point of contact (Neimark and Fufaev 1972). In this case, the equilibrium equations 

are formulated in the movable coordinate system with the origin situated at the contact point and 

one of the axes directed normally to the tangent plane. 

Following this hint, analysis of the DS bending will be pursued in the moving right-handed 

coordinate system Oxyz with axis Ox oriented along internal normal to the surface D and axis Oz 

directed along the tangent to the curve L (Fig. 2).  

Choice of this reference frame permits to convert the problem difficulty associated with 

additional constraint (7) into advantage conditioned by the fact that the L curve lies in the D 

surface. In this case, it becomes possible to turn from three desired variables x1(s), y1(s), z1(s) in 

the 3D space to two variables u(s), v(s) in the D surface and to exclude constraint (7) from 

consideration. 

The second advantage of this approach consists in simplification of the procedure of the L  line 

curvatures calculation because in doing so, the values kR, kT and p, q, r become useless and new 

curvature parameters kx, ky, kz are introduced. They are expressed through the known curvatures of 

the D surface. 

Then, vector ω will be determined by the equality 

kjiω zyx kkk                                                           (18) 
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Fig. 2 Schematic of movable coordinate system Oxyz 

 

 

where kx and ky are the curve L curvatures in the planes yOz, xOz correspondingly; kz is its torsion. 

Plane yOz is tangent to the D surface, because of this, curvature kx coincides with the 

geodesical that for the L curve (Dubrovin et al. 1992). Its analytical presentation depends on the 

shape of the curve L projection on the tangent plane yOz at the considered point and on the surface 

D metrics which in the considered case is determined by the equality 

2222 )()()( dvaduds 
                                                      

(19) 

Then, the kx curvature can be expressed through the desired functions u(s), v(s) as follows 

)( uvvuakx                                                          (20) 

Here symbol prime denotes the procedure of differentiation with respect to s. 

Inasmuch as plane xOz contains unit vector i, normal to surface D, the ky curvature of the L 

curve coincides with the normal curvature of the D surface in the direction of the L curve. It is 

expressed through the principal curvatures kv=0, ku=1/a
 
of the cylindrical surface D with the use of 

the Euler formula 

 22 sincos uvy kkk                                                   (21) 

Here θ is the angle between the Oz axis and principal direction, appropriate to the kv curvature. 

In accordance with Eq. (21), one can gain  

2)(vaky 
                                                            

(22) 

Torsion kz for the cylindrical surface D is determined by the formula (Gulyayev et al. 1992) 

vuk z 
                                                              

(23) 

In the reference frame Oxyz, Eq. (9) take the form  

cgr

ds

d
ffFω

F


~

,  FkMω
M


ds

d
~

    (24) 
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Vectors f
gr

, f
c
 used in Eq. (24) have the components 

          

 

 vavuff

uvvaff

vff

grgr
z

grgr
y

grgr
x







sinsincos

sinsincos

cossin







 

         
cc

x ff  ,       0c
yf ,       0c

zf  

 

 

 

(25) 

Here f
c
(s) is the additional required variable; f

gr
 is the intensity of the distributed gravity force  

Fgf lt
gr )(        (26) 

where g=9.81 m/s
2
; ρt, ρl are the densities of the tube material and mud, correspondingly; F is the 

area of the DS tube cross-section. 

Based on Eqs. (18), (25) rewrite Eq. (24) in scalar form singly for the relations of force group 

       

gr
zxyyx

z

gr
yzxxz

y

cgr
xyzzy

x

fFkFk
ds

dF

fFkFk
ds

dF

ffFkFk
ds

dF







                                             (27) 

and moment group 

       

xyyx
z

xzxxz
y

yyzzy
x

MkMk
ds

dM

FMkMk
ds

dM

FMkMk
ds

dM







                                                 

(28) 

In Eqs. (28), moments Mx, My, Mz are calculated by the formulae 

xx kEIM  ,  yy kEIM                                                (29) 

With the use of Eqs. (20), (22), (23) and two first equations of system (28) the equalities can be 

gained  

  

    2

2

vvuEIMauvvu
ds

d
aEIF

uvvuvuEIMavvaEIF

zy

zx





                                 (30) 

Stemming from system (29), the third equation of system (28) can be rewritten in the form 

0 xyyx
z EIkkEIkk

ds

dM
    (31) 
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Then, the torque preserves its constant value 

constM z   

which is determined by corresponding boundary condition. 

Relations (20), (22), (23), (27)-(30) permit one to derive the constitutive system of six first 

order homogeneous differential equations 

      
  gr

yzxxz
y

fFkkvuvuEIMvvuaEI
ds

dF
 )(2

2
 

 

      
     gr

zxzyx
z fkvvuEIMavvaEIFk

ds

dF


2322  
 

      
    yz

x F
EI

vuaMva
EIds

dk 11 32
  

 

v
ds

dv
  

 

 
a

uk

ds

vd x 



 

 

 221 va
ds

du
  (32) 

Owing to application of the special reference frame Oxyz, it became possible to express the 

variables Fx and My through geometry parameters of the D surface, to exclude them from 

consideration, and to reduce the total order of system (32) to six which is twice as less as the order 

of the general theory of curvilinear rods, in spite of the fact that one extra unknown function f
c
(s) 

is added to the required variables of the problem. It is not incorporated into system (32) owing to 

its orthogonality to the tangent plane yOz and can be calculated from the formula 

dsdFfFvuFkf x
gr

xyzy
c      (33) 

after solving the problem. Its values are also usable as a check upon adequacy of starting 

assumption concerning overall contact between the DS and the bore-hole surface. If function f
c
(s)  

is positive overall diapason 0≤s≤S of the DS length, then the found solution is correct. If this 

condition is not satisfied throughout, the DS comes out the contact with the bore-hole surface and 

the obtained solution is not adequate. 

The second feature of Eq. (32) is that variables u and v are not present in it. For this reason, the 

v’ variable can be considered as desired one and the u’ value can be excluded with the use of 

equality  221 vau  . Then, the fourth and sixth equations will drop out and the system order 

will be reduced to four. But this procedure is not performed for the sake of simplicity of the 

Runge-Kutta method application. 

In realization of practical computations, system (36) is supplemented by six boundary 

conditions and initial conditions for every desired variable, corresponding, as a rule, to initially 

rectilinear shape of the DS. 
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(a) A rod bent by a 

moment 

(b) The bent rod inserted 

into a rigid clip 

(c) The bent rod 

loaded by force F 

(d) Scheme of active (F, 

M) and reaction f
c
 forces 

Fig. 3 Invariant state of a rod in a circular clip 

 

  

(a) Spiral rod in a cylindrical cavity (b) Active (Fz, My) and reaction f
c
 forces acting  

on the rod 

Fig. 4 Invariant state of a rod in a rigid cylindrical cavity 

 

 

4. Invariant states of the drill strings and their stability 
 

With the aid of Eq. (32), one of the important properties of post-critical deforming of the DS in 

the bore-hole channel has been gained. It consists in the existence of the so called invariant states 

of the DS wherein it becomes insensitive to a certain group of external actions. Inasmuch as such 

states are rare in occurrence in mechanics of deformable bodies and are not practically described in 

scientific literature, consider a simple example facilitating understanding of this phenomenon of 

the DS bending. Let bending moments M be applied to the ends of a rectilinear flexible rod. Under 

their action, the rod will take the shape of a circumference arc of radius a (Fig. 3(a)). Insert this 

rod with the moments into a rigid circular clip of radius a (Fig. 3(b)). In that event, contact 

interaction between the rod and clip is lacking and the distributed contact force f
c
=0. 

If thereafter external axial compressive forces F are applied to the ends of the deformed rod 

(Fig. 3(c)), then the same internal forces appear at every cross-section of the rod and, besides, the 

distributed forces f
c
=F/a of contact interaction come into being between the surfaces of the rod and 

the clip (Fig. 3(d)).Since, in this case, the stress-strain state of the bent rod remains unchanged, it 

is said to be invariant (insensitive) with respect to the external forces F.  

The considered example has a three-dimension analogue. Take a rectilinear elastic rod, put it 

into a cylinder cavity of radius a and, in the absence of gravity forces, axial force Fz, and torque 

Mz, apply to its ends the bending moments My and shear forces Fy, transforming it into a 

cylindrical spiral of radius a (Fig. 4(a)). In this event, the equalities v’=const, v”=0, kx=0, 

My=EIa(v’)
2
, Fy=−EIa(v’)

4
[1−(av’)

2
] follow from Eqs. (32), (33) and a normal distributed contact 

force f
c
=−EIa(v’)

4
[1−(av’)

2
] is brought about between the cylinder surface and the spiral. 

In line with Eq. (33), such elastic spiral with negative f
c
 can retain its shape only in the case, 

when it is wound up the cylindrical surface. But the most interesting feature of this system consists 
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in the fact that its equilibrium will not be violated if to apply an axial compressive forces Fz to its 

ends. Indeed, as Fz is present only in the first equation of system (33) and has the multiplier kx=0, 

then the spiral will not change its geometry for any Fz and only the contact force f
c
 will assume the 

new value 

zy
c FkvavEIaf  ])(1[)( 24

       
                                      (34) 

Since the first summand of Eq. (34) is negative and the second one is positive (for negative 

compressive force Fz<0), the states are possible when the contact between the spiral and cylinder 

surface is external (f
c
<0), internal (f

c
>0) and the contact interaction is absent (f

c
=0). 

Similar reasoning can be deduced for torque Mz. Really, as it follows from the third equation of 

system (32), if torque Mz is applied, only the force  

vuMkMF yyzy                                                      (35) 

changes, while other equations are satisfied identically. 

Thus, in the state under discussion, the considered system appears to be invariant (insensitive) 

with respect to constant axial force Fz and torque Mz. In the drilling practice, these situations are 

known as helical lockup. However, this does not mean that parameters Fz and Mz can acquire any 

values, because the elastic spiral can lose its equilibrium stability with their enlargement. In order  

to find critical values 
cr

zF  and 
cr
zM , linearize Eq. (32) in the vicinity of the analyzed state of the  

spiral equilibrium under action of constant force Fz and moment Mz. Let the spiral shape be 

determined by parameter v’=const. Then, one has constvau  22 )(1 , kx=0, Fy=a(Mz−EIu’ 

v’)( v’)
2
=const. These values satisfy Eq. (32). To check the system stability, give small 

perturbations δFy, δFz, δFx, δv, δv’, δu to the considered functions and put variables Fy+δFy, 

Fz+δFz, kx+δkx, v+δv, v’+δv’, u+δu into Eq. (32). After retaining the linear members relative to the 

perturbing variations in these correlations, the linearized equations 

       
vvavadsud

kaudsvd

vdsvd

FEIvEIMuvavuvadskd

kFvaMvuEIvvEIadsFd

kFvuMvuEIvvuEIadsFd

x

yzx

xyzz
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





















])/(1/[/

)/(/

/

)/1(]/2/)(3[/

])()[()(2/

])[()(2/

222

32

232

2

 

(36) 

are constructed. 

Assume that the length of the spiral axis line equals S and it is pinned at its ends. It is 

necessary to determine the values of parameters Fz and Mz such that linear homogeneous system 

(36) has non-trivial solutions. Taking into account equalities Fz=const, δkx=(a/u’)δv”, transform 

Eq. (36) to the simpler form  

   

yz

zzy

FaEIuvvavEIMvu-/dsvdδ

vuaFMvavuEIadsFd





)/(])()(3/2[

]/)(3[/

422

2




                       (37) 
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With allowance made for the chosen boundary conditions, solution of system (37) is built in the 

form 

sCF ny  cos1 , sCv n cos2 , sCv nn  sin2   (38) 

where γn=nπ/L, n=1, 2, 3, ...  

Substituting (38) into (36) and cancelling sin γns, cos γns, one gains 

        0}])()(3/2{[)/(

0]/)(3[

2
2422

1

2
1





CvavEIMvuCaEIu

CuaFMvavuEIaC

nz

zzz


 

(39) 

Equating the determinant of the matrix of system (39) to zero, one obtains the values of critical 

axial force 

                                     ]3)(2[)(23 2222
,  vavEIMvuEIF zn
cr

nz   

It is minimal at n=1, so 

]3)(2[)(23/ 22222  vavEIMvuLEIF z
cr
z                               (40) 

It is notable that the first term in the right-hand side of this equality represents the Eulerian 

critical value for the compressed pinned rod. Interestingly also, the torque Mz can enlarge or  

diminish the 
cr

zF  value depending on its orientation, while the last member always enlarges the 
cr

zF  module, because it is negative by the condition a
2
(v’)

2
<1. 

The performed analysis of invariant states of DSs in cylindrical cavities of bore-holes is 

performed under the assumption that the forces of gravity and friction are absent. Nevertheless, 

even with the use of such statement of the problem this analysis allowed to reveal one more 

important peculiarity of the DS behavior connected with the possibility of its sticking. In the 

neighborhood of this state, the problem of its computer simulation is also complicated as in this 

event indefinite assemblage of the right-hand members of the constitutive equations corresponds to 

its one solution and this solution becomes insensitive to changes of Fz and Mz. 

 

 

5. Techniques of the non-linear problem solving   
 

As indicated above, the severity of the stated problem on deforming of a curvilinear rod is 

caused by essential non-linearity of the constitutive equations and relatively small bending 

stiffness of the DS provided its length to be large. Therefore, the equations are singularly 

perturbed and their solutions may have appearances of boundary effects evolving with the change 

of external perturbations. To simulate these processes, the method of solution continuation by a 

parameter is used jointly with the Newton method.  

Represent Eq. (32) in the vector form 

 ,, sqfq       (41) 

where  Tsqsqsqs )(,),(),()( 621 q  is the six-dimensional vector function of the required 

variables )()(1 sFsq y , )()(2 sFsq z , )()(3 sksq x , )()(4 svsq  , )()(5 svsq  , )()(6 susq  ; 

 f  is the vector function of the right members of system (32);   is the parameter of the external 
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perturbation (load) intensity; prime symbol “ ’ ” denotes derivation procedure relative to s. Notice 

that introduced parameter λ may be both real and formal one, reflecting some quantitative 

characteristics of the deformation process. 

At every boundary s=0 and s=S of the interval 0≤s≤S of the variable s change, three boundary 

conditions are preset. Represent them in the vector form  

  0),0( q ,     0),( Sqψ     (42) 

Eqs. (41), (42) make up non-linear two-point boundary value problem depending on the   

parameter. Let solution q
(0)

(s) of system (41), (42) be known for some initial value λ= λ
(0)

. 

Selecting it as a basic one, increase parameter λ value by small increment δλ
(0)

. Then 

corresponding variation δq
(0)

(s) of the solution q
(0)

(s) can be found following from the linearized 

equation  

)0()0()0( 













f
q

q

f
q

ds

d
    (43) 

and boundary conditions  

  00 )0()0( 














q

q
,    0)0()0( 














ψ
q

q

ψ
S   (44) 

Here Jacobians qf  , q , qψ   and vectors f ,  , ψ  are constructed at 

the state  ss )0()( qq  , )0(  . 

The δq
(0)

(s)  vector function can be found through the use of the transfer matrix method (Arici 

and Granata 2011, Gulyayev et al. 2009) in the form of superposition of particular solutions 

    )0()0(
Cq  sYs                                                            (45) 

where the )(sY  matrix  of fundamental solutions is calculated by the Runge-Kutta method, the 

δC
(0)

 vector is found from the conditions of satisfying Eq. (44). Thereafter, solution 

q
(1)

(s)=q
(0)

(s)+δq
(0)

(s), corresponding to the value λ
(1)

=λ
(0)

+δλ
(0)

, is built. 

Continuing this process further, one can find the q
(n)

(s) function for other values λ
(n)

 of the λ 

parameter. But it is essential to note, that solutions q
(n)

(s)  satisfy Eq. (42) within the limits of 

calculation errors. To compensate these errors, the residuals of Eq. (42) 

 )()()( ),0( nnn  qr  ,   )()()( ),( nnn S  qψr                             (46) 

are calculated at every n -th step, which are taken into account at the succeeding steps in the 

linearized boundary conditions 

  )()1()1( 0 nnn



 rq

q









  
,    )()1()1( nnn S 


 r

ψ
q

q

ψ









 
   (47) 

In numerical simulation of the DS post-critical bending, the value v(S) was selected as the 

leading parameter λ. To ensure calculation convergence its increment was chosen to equal 

δλ
(i)

=π/6000. In doing so, the segment 0≤s≤S was divided into 5000 integration steps. 
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6. Critical and post-critical buckling of a DS 
 

Of essential interest is also the problem on incipient buckling of a DS in an inclined cylindrical 

cavity of a bore-hole. Let the DS lie on the bottom v=0 of a cylindrical channel. The angle between 

the cylinder axis and vertical is β. The DS is subjected to action of the reaction force R, torque Mz 

and distributed gravity force f
gr

=g(ρt−ρl)e, where g=9.81 m/s
2
; ρt, ρl  

are the densities of the tube 

material and washing liquid, correspondingly; e is the area of the tube cross-section. Find the 

critical value of R and the mode of stability loss. With this aim in view, linearize Eq. (32) in the 

vicinity of the state u’(s)=1, v(s)=0, kx(s)=0, ky(s)=0, kz(s)=0, Fz(s)=g(ρt−ρl)e(L−s)cosβ−R. 

,)/1(/

,)/1(/

,/

x

yx
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xzy

kadsvd

FEIdskd

vafkFdsFd
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


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

  

0/

/

/







dsud

vdsvd

fdsFd gr
zz







                            (48) 

As the first and sixth equations of this system are not connected with other ones, they can be 

considered separately. Then, taking into account equalities δkx=aδv”, δFy=EIaδv” and denoting 

aδv=δy, one can gain 

0)/sin(cos])(cos[  yafyfyRsLfyEI grgrgrIV   (49) 

It should be pointed out that according to the equation structure, critical values of reaction R do 

not depend on the Mz torque, if the DS is located inside inclined bore-hole. 

Eq. (49) has not analytic solutions in closed form as the coefficient before δy” is variable. But 

if β=π/2 (horizontal bore-hole), it attains the simplest form 

0)/(  yafyRyEI grIV      (50) 

This equation is analogous to the equation of equilibrium of a beam on elastic foundation with 

elasticity coefficient k=f
gr

/a, though the rock medium is assumed to be absolutely rigid and to play 

role of a constraint. The noticed analogy is due to the gravity force f
gr

 acting downward on the DS 

in its buckling and moving upward on the bore-hole surface.  

In the case L→∞, the DS can lose its equilibrium stability with the sine mode 

)/sin(   scy   

where λ is the semi-wave length. 

It corresponds to the critical value  

afEIR grcr 2222 //       (51) 

To find its minimal magnitude, it is necessary to minimize 
crR  with respect to λ. Then, one 

attains 

aEIfRF grcrcr
z /2min  , 4

min / grfEIal   .  (52) 

For the values E=2.1∙10
11 

Pa, ρt=7.8∙10
3
 kg/m

3
, ρl=1.3∙10

3
 kg/m

3
, I=1.555∙10

−5 
m

4
, 

e=4.9612∙10
−3 

m
2
, this parameters are equal to l=25.25 m, N 10235.6 5cr

zF . 

Inasmuch as solutions (52) coincide with the results described by Fang et al. (2013), Mitchell 

(2008), Thompson et al. (2012), they can be assumed as one of confirmations of the elaborated 
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approach validity. 

If on the other hand, the bore-hole is inclined and has finite length, the mode of the DS stability 

loss acquires more complicated shape of a boundary effect at its lower end which is typical to 

singularly perturbed systems. To demonstrate this feature, Eq. (49) was solved with the use of the 

transfer matrix technique (Arici and Granata 2011, Gulyayev et al. 2009). The appropriate partial 

solutions of Eq. (49) were constructed by the Runge-Kutta method. 

In Table 1, the critical magnitudes of the R
cr

 force found for different combinations of L, β and 

a are presented. 

It is seen from these data that critical values of the compressive force R
cr

 are markedly 

inclination dependent and are practically unaffected by the L length of the DS. This is explained 

by the fact that buckling of the DS constrained by the bore-hole surface occurs inside a short 

segment of its length adjacent to the bore-hole bottom. 

 

 
Table 1 Critical value R

cr
 for drill strings in cylindrical channels of inclined bore-holes 

L, m β, degree 
a, m 

0,075 0.10 0.15 0.20 

50 

0 31 729 31 729 31 729 31 729 

15 135 575 120 455 103 439 29 905 

30 184 155 160 440 133 575 118 835 

45 216 175 189 399 156 050 137 005 

60 236 415 208 085 171 879 150 025 

75 248 119 218 540 181 159 157 869 

90 252 005 221 949 184 219 160 505 

100 

0 15 899 15 899 15 899 15 899 

15 130 670 114 729 95 749 84 329 

30 177 305 155 119 128 620 112 969 

45 208 745 182 259 150 945 132 145 

60 229 869 200 529 165 870 145 139 

75 242 135 211 225 174 549 152 735 

90 246 205 214 785 177 459 155 295 

250 

0 12685 12685 12685 12685 

15 130 539 114 529 95 529 84 199 

30 177 129 154 880 128 489 112 750 

45 208 559 182 109 150 720 132 015 

60 229 649 200 375 165 649 144 949 

75 241 945 211 030 174 369 152 519 

90 246 035 214 589 177 299 155 079 

500 

0 11 629 11 629 11 629 11 629 

15 130 539 114 529 95 520 84 199 

30 177 129 154 880 128 480 112 750 

45 208 559 182 109 150 720 132 015 

60 229 649 200 375 165 649 144 949 

75 241 945 211 030 174 369 152 519 

90 246 029 214 589 177 299 155 079 
 

444



 

 

 

 

 

 

Theoretical modelling of post - buckling contact interaction of a drill string 

  

 

Fig. 5 Boundary effects in the modes of stability loss of drill strings in inclined bore-holes 

(1−L=50 m, 2−L=100 m, 3−L=250 m, 4−L=500 m) 

 

 

Fig. 6 A sequence of 3D modes of post-critical deforming of the DS (a- R=51,245 N; b- R=113,350 

N; c- R =154,830 N; d- R=155,080 N) 

 

 

This peculiarity derives from existence of the last term in Eq. (49) and singular perturbation of 

the problem connected with the large length of the DS and its prestressing by tensile longitudinal 

force in the upper zone. To ascertain this assertion consider the modes of stability loss of the DSs 

of lengths L=50 (curve 1), 100 (curve 2), 250 (curve 3), and 500 m (curve 4) presented in Fig. 5 

for the case a=0.15 m, β=60°. All of them have the shape of a boundary effect, localized in the 

segment length l≈120 m. Though this effect completely covers the DS 50 m in length (the first 

curve in Fig. 5), the critical values R
cr

 do not essentially differ from each other (the R
cr

 values for 

these curves are framed in the Table 1). 

The found regularity of the boundary effect appearance agrees well with the phenomena of 

boundary effect generation in singularly perturbed systems (Chang and Howes 1984). It can be 

estimated as additional qualitative corroboration of the reliability of the proposed theory.  

The exception is the case when β=0 and the bore-hole is vertical. In this event the bore-hole  
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(a) Internal axial force diagram (b) Internal resultant bending 

moment diagram 

(c) Distributed contact force 

diagram 

Fig. 7 Diagrams of elastic (Fz, M) and reaction (f
c
) forces 

 

 

surface does not constrain the DS buckling, the critical values R
cr

 are low (see the Table), the 

modes of stability loss do not contain boundary effects and are typical for the stretched-

compressed rods. 

If to continue enlarging the R force after the buckling incipience, the DS begins to coil up into 

an irregular spiral with diminishing pitches in its lower part. This process was simulated with the 

use of the technique outlined in Section 5 for solution of non-linear Eq. (28). In Fig. 6, (a)-(d), the 

sequence of 3D modes of post-critical deforming of the DS 500 m in length is exhibited for the 

appropriate R values. It demonstrates the elaborated approach advantage consisting in the 

possibility to track the DS transformation process with allowance made for its history.  

The functions, characterizing the DS stress-strain state at R=133,440 N, are demonstrated in 

Fig. 7, (a)-(c). The Fz(s) function (Fig. 7(a)) is represented by a rectilinear line with minimal value 

(maximal modulus) at the lower end s=S. The resultant bending moment 22
vuR MMM   is 

shown in Fig. 7(b). It has comparatively small values in the largest segment of the domain 0≤s≤S 

and begins to enlarge steeply as the boundary s=S is approached. The boundary effect is much 

more pronounced for the function f 
c
(s) of contact interaction (Fig. 7(c)). It is positive throughout 

the whole diapason 0≤s≤S. Then, the unilateral contact constraint is stressed. 

Nevertheless, the simulated process of non-linear post-critical deforming of the DS generates 

particular interest because of its nearing to the invariant state at R→155,080 N and deterioration of 

the calculation convergence. Indeed, from the start the DS displacements enlarged noticeably with 

the R increase. But thereupon, the displacement increments became smaller and smaller, until it 

came to a standstill. 

In solving this non-linear problem, the questions of ensuring convergence of the step-type 

process described in Section 5 and calculation accuracy play important role. Notice, that in the 

joint use of the method of solution continuation by a parameter and Newton’s procedure, the 

solution reliability check is realized automatically. Since at every computing step, inaccuracies    

(residuals) )(nr  and )(nr  of Eq. (42) are calculated and thereupon they are compensated in  

linearized Eq. (47), the solution precision can be controlled by choice of the increments ∂λ
(n)

 and 

Δs. In the considered case, they were selected proceeding from the condition of guaranteeing 5-6 

correct ciphers in the largest calculated numbers. 
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 7. Conclusions   

 

• The problem about post-critical elastic bending of drill strings in cylindrical cavities of 

vertical and inclined oil and gas bore-holes is stated. 

• On the basis of the theory of curvilinear rods the non-linear ordinary differential equations 

describing contact interaction of the drill string tube with the bore-hole surface are deduced. It is 

demonstrated that application of specially selected movable coordinate system as a concomitant 

reference frame makes it possible not only to simplify essentially the constitutive equations, but to 

halve their order as well. 

• It has been found analytically that invariant states conditioned by the rigid constraint 

existence can be realized in the DS deforming when it is compressed to the bore-hole surface and 

is insensitive to increase of external forces. Possibility of their stability loss is established. 

• Computer simulation of critical states and elastic non-linear post-critical bending of the DSs 

in cylindrical bore-hole cavities with different inclination angles is performed. The evolving 

modes of their deforming are constructed, stress-strain states are analyzed, and distributed contact 

forces are calculated. 

• It is demonstrated that bending of the DS in a vertical well proceeds with shaping of a 

cylindrical spiral with variable pitch reducing as the lower boundary point is approached. In 

inclined bore-holes, the DS is compressed by the gravity forces to the bottom of the bore-hole 

channel and its axis line acquires the shape of a boundary effect with steeply enlarging functions 

of stress-strain state. An invariant state of the DS in respect to the axial force and torque can be 

achieved with their increase. 
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