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Abstract.  A finite element model for predicting the entire nonlinear behavior of reinforced high-strength 
concrete continuous beams is described. The model is based on the moment-curvature relations 
pre-generated through section analysis, and is formulated utilizing the Timoshenko beam theory. The 
validity of the model is verified with experimental results of a series of continuous high-strength concrete 
beam specimens. Some important aspects of behavior of the beams having different tensile reinforcement 
ratios are evaluated. In addition, a parametric study is carried out on continuous high-strength concrete 
beams with practical dimensions to examine the effect of tensile reinforcement on the degree of moment 
redistribution. The analysis shows that the tensile reinforcement in continuous high-strength concrete beams 
affects significantly the member behavior, namely, the flexural cracking stiffness, flexural ductility, neutral 
axis depth and redistribution of moments. It is also found that the relation between the tensile reinforcement 
ratios at critical negative and positive moment regions has great influence on the moment redistribution, 
while the importance of this factor is neglected in various codes. 
 

Keywords:   high-strength concrete; beams; moment redistribution; finite element method 

 
 
1. Introduction 

 

The advance in construction material technology has made it possible to manufacture 

high-performance concretes, featured by great improvement with regard to mechanical 

characteristics, workability and durability. Due to its attractive advantages, high-strength concrete 

has been broadly used in special structures, such as cross-sea bridges, where the strength, 

durability and serviceability are of particular concern. Also, the utilization of high-strength 

concrete in normal constructions is expected to be popular. 

It is well known that high-strength concrete is more fragile when compared to normal-strength 

concrete. The fragility of high-strength concrete gave rise to some doubts of its use in structures, 

since the ductile capacity of the structures is very important from a point of view of structural 

safety, particularly in high seismic regions. Over last 15 years, many experimental and theoretical 

studies have been conducted to examine the ductile behavior and plastic rotation of reinforced 

high-strength concrete beams (Arslan and Cihanli 2010, Bernardo and Lopes 2004, 2009, Carmo 
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and Lopes 2005, 2008, Cucchiara et al. 2012, Kassoul and Bougara 2010, Ko et al. 2001, Kwan et 

al. 2004, Lopes and Bernardo 2003, Lopes and Carmo 2006, Pam et al. 2001, Yang et al. 2012) 

and columns (Foster 2001, Foster and Attard 2001, Tan and Nguyen 2005, Campione et al. 2006, 

2012). The studies generally showed the high-strength concrete members have sufficient ductility 

to guarantee their structural safety provided that an appropriate choice of the amount and location 

of the reinforcement is made, and that the general rules adopted for normal-strength concrete 

structures can also be applied to high-strength concrete structures. 

So far, most of the previous works concerning the behavior of high-strength concrete structures 

focused on statically determinate structures such as simply supported beams. In fact, in practical 

engineering, the statically indeterminate structures, such as frames and continuous beams, are 

more common. Due to the existence of redundant restraints, the behavior of continuous beams may 

introduce different aspects, which implies that the overall behavior of the structures can be quite 

different from that of simply supported beams. In continuous beams, some redistribution of 

moments might take place when the constituent materials begin to exhibit inelastic behavior. The 

redistribution of moments is a very important characteristic of continuous beams and should be 

well taken into consideration in the ultimate design of such type of beams. However, the moment 

redistribution behavior as well as other flexural characteristics of continuous high-strength 

concrete beams is yet to be well understood, since few studies on this topic are available (Carmo 

and Lopes 2005, 2008). 

This article presents a finite element (FE) model developed to predict the complete response of 

continuous high-strength concrete beams from zero loads up to the ultimate. The FE method is 

based on the moment-curvature relations and is formulated using the Timoshenko beam theory. 

The proposed analysis is used to reproduce the experimental results of a series of two-span 

continuous high-strength concrete beam specimens. A parametric study is carried out on 

continuous beams with practical dimensions. Emphasis of the numerical evaluation is placed on 

the effect of tensile reinforcement and the redistribution of moments in continuous reinforced 

high-strength concrete beams. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Stress-strain diagram for unconfined concrete in compression 
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Fig. 2 Stress-strain diagram for confined concrete in compression 

 

 

2. Material constitutive laws 
 
2.1 Stress-strain law for concrete in compression 
 

In this study, the stress-strain behavior for unconfined concrete is simulated using the model 

recommended by Eurocode 2 (EC2) (CEN 2004) and Mode Code 1990 (MC90) (CEB-FIP 1990). 

The stress-strain diagram is shown schematically in Fig. 1, and is expressed as follows 
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in which σc and εc are the concrete stress and strain, respectively; fcm is the mean compressive 

strength (in MPa); fck is the characteristic cylinder compressive strength (in MPa); εc0 is the 

concrete strain at peak stress; Ec is the modulus of elasticity of concrete (in GPa). Eq. (1) is valid 

for 0<|εc|<|εu|, where εu is the ultimate concrete compressive strain determined by 
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4( ) 2.8 27[(98 ) /100]u cmf   ‰   for 50 MPackf               (7b) 

To facilitate the numerical modeling, it is assumed that, at initial loading, the concrete in 

compression is linear elastic until the elastic stress and strain meet the curve equation represented 

by Eq. (1), as illustrated in Fig. 1. 

MC90 also defined a model for confined concrete, which is a modification of the unconfined 

model by adjusting the magnitude of some key parameters, namely, the concrete strength, the 

strain at peak stress and the ultimate strain, as shown in Fig. 2. In the absence of more precise data, 

the relations between the parameters for confined concrete and those for unconfined concrete may 

be expressed as follows 

 
* (1.0 2.5 )cm cm wf f     for 2 0.05 cmf    (8a) 

 
* (1.125 1.25 )cm cm wf f     for 2 0.05 cmf    (8b) 

 
* * 2

0 0 ( / )c c cm cmf f    (9) 

 
* 0.1u u w      (10) 

where 
*

cmf , 
*

0c , and 
*

u  are the confined strength, confined strain at peak stress and confined  

ultimate strain, respectively; ωw is the volumetric mechanical ratio of confining steel; α is the 

effectiveness of confinement, equal to αnαs, where αn depends on the arrangement of stirrups in the 

cross section and αs depends on the spacing of stirrups; and σ2 is the effective lateral compression 

stress due to confinement. 

 
2.2 Stress-strain law for concrete in tension 
 

The stress-strain behavior for concrete in tension is modeled by a linear-elastic law prior to 

cracking and by a bilinear tension-stiffening law after cracking, as shown in Fig. 3, where ft is the 

tensile strength and εcr is the cracking strain, equal to ft/Ec. The tensile strength is determined in 

terms of the recommendation by EC2: 

for concrete class not higher than C50/60 

 
2/30.3t ckf f                                (11a) 

for concrete class higher than C50/60 

 2.12ln(1 /10)t cmf f                           (11b) 

 
2.3 Stress-strain law for reinforcing steel 
 

The stress-strain behavior for reinforcing steel in both tension and compression is modeled by a 

bilinear elastic-hardening law, as shown in Fig. 4, where σs and εs are the steel stress and strain, 

respectively; fy and fsu are the yield strength and ultimate tensile strength of reinforcing steel, 

respectively; Es is the modulus of elasticity of reinforcing steel; and εsu is the ultimate steel strain, 

which is taken as 0.075 in this study. 
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Fig. 3 Stress-strain diagram for concrete in tension 

 

 

 

 

 
 

 

 

 

 

 

 
 

 
Fig. 4 Stress-strain diagram for reinforcing steel 

 

 
3. Moment-curvature relations 

 

To establish the moment-curvature relations of reinforced concrete sections, the sections are 

divided into many concrete layers and reinforcement layers, as shown in Fig. 5. The strain in each 

concrete layer is assumed to be constant, and equal to the value at the center of the layer. Each 

reinforcement layer represents the steel bars at the level of the layer. The analysis assumes that a 

plane section remains plane after deformation, and that the reinforcement perfectly bonds with the 

surrounding concrete. Based on these assumptions, as shown in Fig. 5, the axial strain at any fiber 

of the cross sections is given by 

 y    (12) 

where ϕ is the section curvature, and y is the distance from the neutral axis. 
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Fig. 5 Section and strain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Moment-curvature diagram for reinforced concrete section 

 

 

Assuming that the cross sections are subjected to bending moment M (zero axial force), the 

axial and flexural equilibriums of the sections can be respectively expressed as 

 0 ci ci sj sj

i j

A A                              (13) 

 ci ci ci sj sj sj

i j

M A y A y                           (14) 

where σ is the stress and A is the area; the subscript ci represents each concrete layer and sj 

represents each reinforcement layer; the summation is made for all concrete or reinforcement 

layers. 

The moment-curvature relations of beam sections are generated by incrementally varying the 

prescribed curvature starting from zero value. The ultimate failure of the sections occurs when the 

compressive concrete or tensile reinforcement reaches its ultimate strain. The procedure for 

determining the complete moment-curvature relation of a cross section is summarized as follows: 

(1) Increase the value of the curvature (initial curvature of zero) with a small step; 
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(2) Determine the strains in steel and concrete using Eq. (12) based on an assumed initial or the 

previous neutral axis depth (generally, the initial position of the neutral axis can be taken as the 

position of the centroidal axis); 

(3) Assess the stress in each concrete or reinforcement layer based on the stress-strain laws of 

the materials; 

(4) Calculate the total axial force contributed by the concrete and reinforcement using the right 

side of Eq. (13); 

(5) Check the axial equilibrium of the section; if the equilibrium is not satisfied, adjust the 

position of the neutral axis until the unbalanced axial force is vanished; 

(6) Compute the bending moment using Eq. (14); 

(7) Repeat from step (1) until failure of the section. 

The typical moment-curvature diagram for a reinforced concrete section is shown 

schematically in Fig. 6. During the whole loading process, the moment-curvature response would 

experience three stages. The first stage is characterized by elastic behavior and is finished by 

concrete cracking. This is followed by the second stage up to steel yielding and then the third stage 

until the ultimate failure. In the case of unloading, it is assumed that the moment decreases linearly 

with the curvature, and the slope of decrease is equal to the elastic flexural stiffness (EI)ela, as 

shown in Fig. 6. 

 
 

4. FE method 
 

The FE method is formulated using the Timoshenko beam theory. In this theory, it is assumed 

that a plane section normal to the centroidal axis before deformation remains plane but does not 

remain normal to the centroidal axis after deformation because of the effect of transverse shear 

deformations. In a two-node element, the transverse displacement w and rotation θ can be 

expressed as functions of their respective nodal displacements 

 1 1 2 2w N w N w  , 1 1 2 2N N                          (15) 

Where 1 2( ) /N x x l   and 2 1( ) /N x x l  , in which l is the original length of the beam 

element; x1, x2 are the coordinate values for the element nodes, and x2  x1 = l.  

The curvature   and shear strain   can be expressed respectively as follows: 

 1 2
1 2

d dd

d d d

e

b

N N

x x x
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 1 2
1 2

d d
[ ]

d d
s

N N
N N

x x
  B                         (20) 

The bending moment M and shear force Q  can be expressed respectively as follows: 

 ( ) ( ) e

bM EI EI  B u                           (21) 

 ( / ) ( / ) e

sQ GA k GA k  B u                        (22) 

where EI is the flexural stiffness, which is obtained from the pre-generated moment-curvature 

relation; GA is the shear stiffness, which is assumed to be unchanged during the loading process; k 

is the shear correction factor to allow for cross-sectional warping. In this study, the value of k is 

taken as 1.2 for a rectangular section. 

Based on the virtual work principle, the following element force equilibrium equations can be 

established 

 
T Td de

b s
l l

M x Q x  P B B                          (23) 

where P
e
 is the element equivalent nodal loads 

 
T

1 1 2 2{ }e Q M Q MP                         (24) 

Substituting Eqs. (21) and (22) into Eq. (23) yields element stiffness equations 

 ( )e e e e e e

b s  P K u K K u                          (25) 

where 

 
T ( ) de

b b b
l

EI x K B B                            (26) 

 
T ( / ) de

s s s
l

GA k x K B B                           (27) 

The forms of
e

bK  and 
e

sK  are evaluated using the one-point Gauss quadrature rule. 

The stiffness equations for the structure are assembled in the global coordinate system from the 

contribution of all the beam elements. After applying a proper boundary condition, the nonlinear 

equilibrium equations are solved by the incremental-iterative method. The iterative scheme for an 

incremental step is summarized as follows: 

(1) Form or update the element stiffness matrices, and assemble them into the structure 

stiffness matrix; 

(2) Solve equilibrium equations for displacement increments, and add them to the previous total 

to get the current nodal displacements; 

(3) In the local coordinate system, compute the element curvature using Eq. (16) and element 

shear strain using Eq. (17); 

(4) Use the moment-curvature relation to determine the bending moment M and to update the 

flexural stiffness EI, and use Eq. (22) to compute the shear force Q; 

(5) Determine the element end forces using the right side of Eq. (23) and then assemble them 

into the internal resisting loads; 
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Fig. 7 Details of experimental beams 

 
Table 1 Amount of longitudinal reinforcement in experimental beams 

Beam As1 (mm
2
) As2 (mm

2
) As3 (mm

2
) As4 (mm

2
) 

V1-0.7 157 (2Ø 10) 157 (2Ø 10) 383 (2Ø 10+2Ø 12) 157 (2Ø 10) 

V1-1.4 314 (2Ø 10+2Ø 10) 157 (2Ø 10) 383 (2Ø 10+2Ø 12) 157 (2Ø 10) 

V1-2.1 452 (2Ø 12+2Ø 12) 226 (2Ø 12) 559 (2Ø 10+2Ø 16) 157 (2Ø 10) 

V1-2.9 628 (2Ø 16+2Ø 12) 402 (2Ø 16) 854 (2Ø 12+2Ø 20) 226 (2Ø 12) 

V1-3.8 804 (2Ø 16+2Ø 16) 402 (2Ø 16) 854 (2Ø 12+2Ø 20) 226 (2Ø 12) 

V1-5.0 1030 (2Ø 16+2Ø 20) 402 (2Ø 16) 854 (2Ø 12+2Ø 20) 226 (2Ø 12) 

 

 

 (6) Compute the out-of-balance loads for the next iteration. 

 

 
5. Numerical application 

 
5.1 Experimental beams 
 

In an experimental program conducted in Coimbra (Carmo 2004, Carmo and Lopes 2005, 

2008), a group of 6 reinforced high-strength concrete continuous beams, designated as V1-0.7, 

V1-1.4, V1-2.1, V1-2.9, V1-3.8 and V1-5.0, were tested up to failure. The main variable of the test 

was the amount of tensile reinforcement at the negative moment region, which varied from 157 

(V1-0.7) to 1030 mm
2
 (V1-5.0). The specimens were of a rectangular section with width of 120 

mm and depth of 220 mm, and were 6000 mm long with two spans symmetric with respect to the 

center line crossing the center support, as illustrated in Fig. 7. 

The layout and amount of reinforcement (As1, As2, As3 and As4) are presented in Fig. 7 and Table 

1. The longitudinal reinforcement consisted of 10, 12, 16 or 20 mm deformed steel bars having 

average yield strength of 569 MPa and tensile strength of 669 MPa. The shear reinforcement 

consisted of 6 mm stirrups with spacing of 100 mm in the outer shear spans, and of 8 mm stirrups 
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with spacing of 100 mm in the inner shear spans. The average concrete strength at 28 days for the 

specimens is 71 MPa. The product αωw in Eqs. (8) and (10) is taken as 0.016 in the analysis to 

consider the confinement of concrete. More details about the specimens have been reported 

elsewhere (Carmo 2004, Carmo and Lopes 2005, 2008). 

 
5.2 Analysis and comparison 
 

The proposed model is used to perform the analysis of the experimental beams. Due to 

symmetry, half of the beam is considered and divided into 19 beam elements (1 element for the 

part outside the end support, 9 elements with equal length for the part between end support and 

loading point, and 9 elements with equal length for the part between center support and loading 

point). The self-weight of the beams is converted into uniform load (0.66 kN/m).  

It is observed that over the entire loading process, all the analyzed beams but V1-5.0 experience 

sequentially five typical phases, namely, the onset of concrete cracking at the center support (first 

cracking), the onset of concrete cracking at the span critical section located at the loading point 

(second cracking), the beginning of reinforcement yielding at the center support (first yielding), 

the beginning of reinforcement yielding at the span critical section (second yielding), and crushing 

of concrete. For Beam V1-5.0, the first yielding appears at the span critical section, followed by 

the second yielding at the center support. 

Fig. 8 shows the comparison between predicted and experimental results in relation to the 

load-deflection response of the beams. The finite element analysis (FEA) exhibits an 

overestimation of the pre-cracking stiffness and cracking loads of the beams. This can be 

explained that in the pre-cracking stage, the concrete may not display perfectly elastic behavior as 

assumed in the analysis, and that the concrete tensile strength calculated by Eq. (11b) may be 

overestimated. However, the overall responses predicted by the analysis agree well with the 

experimental ones for all beams except for V1-2.1. For Beam V1-2.1, the predicted ultimate load 

is obviously lower than the experimental value. This may be attributed to that the actual material 

property of tensile reinforcement in this beam is different from the value adopted in the analysis. 

 

5.3 Moment-curvature response 
 

The numerical results regarding the moment-curvature response at the center support section of 

the beams are shown in Fig. 9. The entire response is characterized by three stages separated by 

two points corresponding to concrete cracking and reinforcement yielding, respectively. Because 

the behavior in the first stage (elastic stage) is mainly controlled by the concrete, the responses in 

this stage and the cracking moments for the beams are almost the same. After cracking, the 

contribution of reinforcement becomes increasingly important, so the responses for the beams 

differ. The higher the amount of reinforcement, the stiffer the beam, as expected. 

The flexural curvature ductility, μϕ, of a section can be defined by 

 u

y







                                  (28) 

in which ϕu, ϕy are the curvatures at the ultimate limit state and at the beginning of tensile 

reinforcement yielding, respectively. 

A list of values of ϕy, ϕu and μϕ at the center support section of the beams is given in Table 2. It  
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Fig. 8 Comparison between predicted load-deflection response and experimental results for the specimens 

 

 

is seen that a higher amount of tensile reinforcement mobilizes a higher value of ϕy but a lower 

value of ϕu, leading to a much lower curvature ductility. 
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Fig. 9 Moment-curvature response for the specimens according to numerical prediction 

 
Table 2 Values of curvature ductility and curvatures at yielding and ultimate for the specimens according to 

numerical prediction 

Beam ϕy (10
-6

 rad/mm) ϕu (10
-6

 rad/mm) μϕ 

V1-0.7 20.33 121.91 6.00 

V1-1.4 21.76 98.73 4.54 

V1-2.1 23.01 92.97 4.04 

V1-2.9 25.20 89.92 3.57 

V1-3.8 26.48 77.58 2.93 

V1-5.0 27.91 55.12 1.97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Variation of neutral axis depth with applied load for the specimens according to 

numerical prediction 
 

0 20 40 60 80 100 120 140

0

10

20

30

40

50

60

70

80

90

M
o

m
e

n
t 
(k

N
m

)

Curvature (10
-6
 rad/mm)

 V1-0.7

 V1-1.4

 V1-2.1

 V1-2.9

 V1-3.8

 V1-5.0

20 40 60 80 100 120

0

20

40

60

80

100

120

140

160

 V1-0.7

 V1-1.4

 V1-2.1

 V1-2.9

 V1-3.8

 V1-5.0A
p

p
lie

d
 l
o

a
d

 (
k
N

)

Neutral axis depth (mm)

384



 

 

 

 

 

 

FE modeling of inelastic behavior of reinforced high-strength concrete continuous beams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Moment evolution with applied load for the specimens according to numerical prediction 
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5.4 Variation of neutral axis depth 
 

Fig. 10 shows the numerical results regarding the variation of the neutral axis depth at the 

center support section with the applied load. The evolution of the neutral axis depth can be 

characterized by four stages separated by three points corresponding to concrete cracking, 

stabilization of crack development, and reinforcement yielding, respectively. In the first stage, the 

position of neutral axis is at the place of centroidal axis of the transformed section and remains 

unchanged. This is followed by the second stage, characterized by a significant drop of the neutral 

axis depth with a small increase in the applied load. The behavior in the third stage is opposite to 

that in the second stage, that is, the movement of the neutral axis is insignificant while the increase 

in the applied load is great. After the tensile reinforcement in the center support section yields (in 

the last stage), a quick drop of the neutral axis depth with the applied load is observed. It is also 

observed that at the ultimate limit state, a higher amount of tensile reinforcement results in a larger 

neutral axis depth, as expected. 

 
5.5 Moment redistribution 
 

Fig. 11 shows the numerical results regarding the development of bending moments at the span 

critical section and center support with the applied load. The straight line in the graph represents 

the elastic values, which are calculated assuming the constituent materials are linear elastic. Due to 

redistribution of moments, the moment evolution in a beam might be influenced by cracking of 

concrete and yielding of reinforcement (formation of plastic hinges), while the extent of influence 

is dependent on the content of tensile reinforcement. For beams with low amounts of tensile 

reinforcement (Beams V1-0.7 and V1-1.4), the actual moment, computed by FEA, begins to 

deviate from the elastic value at the onset of cracking. This is followed by a stabilizing trend until 

yielding of the tensile reinforcement at the center support, which causes an accentuated trend of 

deviation between actual and elastic moments due to further redistribution of moments from the 

center support region to the span critical region. In comparison with Beam V1-1.4, the above 

observation is more obvious for Beam V1-0.7 due mainly to the larger stiffness difference between 

critical positive and negative moment regions. On the other hand, for beams with high 

reinforcement ratios, concrete cracking (for V1-2.1, V1-2.9 and V1-3.8) and/or reinforcement 

yielding (for V1-5.0) may not have a noticeable effect on the moment redistribution, as shown in 

Fig. 11. 

The degree of moment redistribution, β, can be expressed as 

 1 u

e

M

M
                                  (29) 

where Mu is ultimate actual moment, computed by FEA in this study; and Me is the elastic moment 

corresponding to the ultimate load. 

A summary of values of the actual and elastic moments and the degree of moment 

redistribution at the span critical and center support sections of the experimental beams is given in 

Table 3. It is observed that at the ultimate limit state, all specimens but V1-5.0 have positive 

(negative) redistribution at the center support (span critical section). Beam V1-5.0, in which the 

tensile reinforcement ratio at the negative moment region is higher than that at the positive 

moment region, on the other hand, shows a negative (positive) redistribution at the center support 

386



 

 

 

 

 

 

FE modeling of inelastic behavior of reinforced high-strength concrete continuous beams 

 

Table 3 Values of actual, elastic moments and the degree of moment redistribution for the specimens 

according to numerical prediction 

Beam 
Mu (kN·m) Me (kN·m) β (%) 

Span critical Center support Span critical Center support Span critical Center support 

V1-0.7 34.76 -20.12 28.35 -33.17 -22.63 39.34 

V1-1.4 34.76 -31.71 31.91 -37.52 -8.94 15.47 

V1-2.1 47.53 -44.10 43.96 -51.36 -8.12 14.15 

V1-2.9 68.12 -60.97 62.48 -72.45 -9.03 15.85 

V1-3.8 68.15 -72.31 65.99 -76.71 -3.28 5.74 

V1-5.0 67.61 -84.58 69.42 -80.89 2.61 -4.56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12 Details of the reference beam used for parametric evaluation 

 

 

(span critical section). This observation can be attributed to the fact that the moments are prone to 

redistributed from the weaker sections to the stronger sections. In addition, it is generally observed 

that the degree of moment redistribution decreases with the increase of the tensile reinforcement 

ratio. However, a higher tensile reinforcement ratio (V1-2.9) may exhibits higher redistribution 

than do lower reinforcement ratios (V1-2.1 and V1-1.4). This can be explained that the stiffness 

difference between critical positive and negative moment regions in V1-2.9 is larger than those in 

V1-1.4 and V1-2.1 The larger the stiffness difference, the higher the redistribution of moments. 

 
 
6. Effect of tensile reinforcement on the value of β 

 

In this section, a parametric study is carried out to examine the effect of tensile reinforcement 

on the value of β. A two-span continuous beam with practical dimensions as shown in Fig. 12 is  
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Fig. 13 Effect of ρs1 and ρs1/ρs3 on the degree of moment redistribution according to 

numerical prediction 

 

 

used to illustrate the results obtained from the analysis. Two important factors related to the tensile 

reinforcement are evaluated, namely, the tensile reinforcement ratio at the center support ρs1 or at 

midspan ρs3, and the ratio ρs1/ρs3. Three levels of ρs1/ρs3 are considered, namely, 0.67, 1.0 and 1.5; 

the factor ρs1 varies from 0.73% to 4% for ρs1/ρs3 of 1.0 and 1.5, and to 3.18% for ρs1/ρs3 of 0.67. 

The compressive reinforcement ratios at the center support ρs4 and at midspan ρs2 are taken as 

0.36%. The concrete is assumed to be unconfined. The material properties are assumed to be the 

same as those of the experimental beams described above, that is, the concrete strength is taken as 

71 MPa, and the steel yield strength is taken as 569 MPa. 

Fig. 13 illustrates the influence of ρs1 and ρs1/ρs3 on the degree of moment redistribution at the 

center support section. It is seen that the factor ρs1 affects the degree of moment redistribution 

differently, depending on the level of the ratio ρs1/ρs3. For ρs1/ρs3 of 0.67 (that is, the tensile 

reinforcement ratio at the center support is obviously lower than that at midspan), the degree of 

moment redistribution decrease slightly as ρs1 increases up to 1.55%; with continuing increase of 

ρs1, however, the degree of moment redistribution decreases quickly. For ρs1/ρs3 of 1.0 (that is, the 

tensile reinforcement ratio at the center support is comparable to that at midspan), the degree of 

moment redistribution decreases slowly as ρs1 increases. For ρs1/ρs3 of 1.5 (that is, the tensile 

reinforcement ratio at the center support is obviously higher than that at midspan), on the other 

hand, the variation of the degree of moment redistribution with varying ρs1 is not so obvious. 

Also, it can be observed from Fig. 13 that the ratio ρs1/ρs3 has great influence on the 

redistribution of moments. At a given level of ρs1, a higher value of ρs1/ρs3 leas to a much lower 

value of β at the center support section. The difference between the values of β for different ρs1/ρs3 

levels is particularly significant at low levels of ρs1. There can be positive or negative 

redistribution of moments at the center support, depending on the level of ρs1/ρs3. When ρs1/ρs3 is 

not greater than 1.0, the moment redistribution at the center support is positive. On the other hand, 

when ρs1/ρs3 is greater than 1.0, there may appear negative redistribution of moments at the center 

support. 
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Fig. 14 Variation of β with ρs1 in terms of FEA and various codes. (a) ρs1/ρs3 =0.67; (b) ρs1/ρs3 

=1.0; (c) ρs1/ρs3 =1.5. 

 

 

To take advantage of the ductility of continuous concrete members, the codes allow designers 

to use a linear elastic analysis with allowable redistribution of moments through the use of the 

coefficient β. 

In the ACI code (ACI Committee 318 2011), the modification of factored moments calculated 

by elastic theory shall not be more than 1000 εt percent, to a maximum of 20%, where εt is the net  
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Table 4 Predictions of moment redistribution by FEA and various codes 

ρs1/ρs3 
ρs1 

(%) 

Mu 

(kN·m) 

Me 

(kN·m) 

εt 

(%) 

c/d 

(%) 

β (%) 

FEA ACI CSA EC2 

0.67 

0.73 -432.11 -592.40 1.39 14.10 27.06 13.90 20.00 26.61 

1.55 -860.27 -1170.72 1.09 18.73 26.52 10.91 20.00 20.25 

2.36 -1271.24 -1615.23 0.73 27.29 21.30 0.00 16.35 8.47 

3.18 -1642.37 -1861.45 0.43 39.29 11.77 0.00 10.36 -8.02 

1.0 

0.73 -422.05 -463.73 1.41 14.08 8.99 14.09 20.00 26.64 

1.55 -836.92 -911.45 0.99 19.28 8.18 9.92 20.00 19.50 

2.36 -1247.55 -1349.72 0.73 27.34 7.57 0.00 16.33 8.40 

3.18 -1626.76 -1716.24 0.43 39.31 5.21 0.00 10.35 -8.05 

4.00 -1930.04 -1964.24 0.32 46.48 1.74 0.00 6.76 -17.91 

1.5 

0.73 -417.34 -375.76 1.57 13.95 -11.06 15.72 20.00 26.82 

1.55 -819.27 -731.16 0.87 20.17 -12.05 8.67 19.92 18.27 

2.36 -1221.08 -1085.97 0.66 28.18 -12.44 0.00 15.91 7.25 

3.18 -1593.53 -1428.47 0.40 40.05 -11.56 0.00 9.97 -9.07 

4.00 -1909.01 -1735.50 0.32 46.48 -10.00 0.00 6.76 -17.91 

 

 

strain in extreme tension steel. The moment redistribution can be made only when εt is not less 

than 0.0075 at the section where the moment is reduced. 

In the CSA code (Canadian Standards Association 2004), the negative moment calculated by an 

elastic analysis can be increased or decreased by not greater than (3050c/d) percent, with a 

maximum of 20%, where c/d is the ratio of the neutral axis depth to the effective depth of a cross 

section. 

In EC2 (CEN 2004), the moments at the ultimate limit state computed by a linear elastic 

analysis can be redistributed by not higher than [0.56−1.25(0.6+0.0014/εu)c/d]
 

for concrete 

strength equal to or below 50 MPa, and by [0.46−1.25(0.6+0.0014/εu)c/d]
 
for concrete strength 

greater than 50 MPa. The maximum redistribution is 30% for high- and normal-ductility steel and 

of 20% for low-ductility steel. 

A comparison of the degrees of moment redistribution at the center support calculated by 

various codes with the FEA values is summarized in Table 4 and Fig. 14. It is seen in the table and 

Fig. 14(a) that for ρs1/ρs3 equal to 0.67, all the codes can well reflect the actual trend of the 

variation of β with varying ρs1, although the CSA code shows a smaller slope while EC2 exhibits 

an obviously sharper slope. All codes are conservative. However, the ACI code seems to be 

over-conservative over the entire range of ρs1, while EC2 may be over-conservative at high levels 

of ρs1. 

On the other hand, for ρs1/ρs3 equal to 1.0, the variation trends of β predicted by various codes, 

particularly by EC2, are more significant than that by FEA, as shown in Fig. 14(b). In addition, the 

CSA code is non-conservative over the entire range of ρs1, while the ACI code and EC2 may be 

non-conservative at low levels of ρs1. From Fig. 14(c), it can be observed that for ρs1/ρs3 equal to 

1.5, all the codes fail to reflect the actual trend of the variation of β. Also, all codes are 

non-conservative, except EC2 at a very high level of ρs1. 

Fig. 15 illustrates the effect of ρs1/ρs3 on the value of β according to predictions by various 

codes. Because either the parameter εt or c/d, which is used to calculate the degree of moment  
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Fig. 15 Effect of ρs1/ρs3 on the value of β according to code predictions 

 

 

redistribution in design codes, is almost independent of ρs1/ρs3, the great importance of the ratio 

ρs1/ρs3 as mentioned previously is neglected in all the codes. Probably, a different parameter that 

would be somehow related with ρs1/ρs3 could be more effective for practical design purposes. 

Therefore, the authors recommend that an extensive study should be carried out in order to find the 

best parameter to be included in the new simplified rules in codes. 

 

 
7. Conclusions 

 

A FE model based on the moment-curvature relations is developed to predict the nonlinear 

behavior of reinforced high-strength concrete continuous beams throughout the loading process. 

The moment-curvature relations of reinforced concrete sections are pre-generated through section 

analysis by satisfying the force equilibrium and strain compatibility. The FE method is formulated 

using the Timoshenko beam theory so as to take into account the effect of shear deformations.  

A group of six continuous high-strength concrete beam specimens, where the main variable was 

the amount of tensile reinforcement, is selected to calibrate the proposed model and to illustrate 

the results of a numerical evaluation. The results produced by the analysis indicate that the tensile 

reinforcement has significant influence on the behavior of continuous reinforced high-strength 

concrete beams, namely, the flexural stiffness, ductility, neutral axis depth and redistribution of 

moments. It is found that a higher tensile reinforcement ratio results in a greater flexural stiffness 

after cracking and a higher neutral axis depth at ultimate, but leads to lower ductile behavior and 

less redistribution of moments. 

A parametric study is conducted on two-span high-strength concrete continuous beams with 

practical dimensions to evaluate the influence of tensile reinforcement on the degree of moment 

redistribution. Two important factors related to tensile reinforcement, ρs1 and ρs1/ρs3, are examined. 

The study shows that the effect of ρs1 on the degree of moment redistribution is quite different for 

different levels of ρs1/ρs3. The ratio ρs1/ρs3 is found to be a very important parameter influencing the 
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redistribution of moments. However, the great importance of this factor is not reflected in various 

codes. 
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