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Abstract.   Material damping affects the dynamic behaviors of engineering structures considerably, but up 
to till now little research is maintained on influence factors of material damping. Based on the 
damping-stress function of steel, the material damping of steel beams is obtained by calculating the stress 
distribution of the beams with an analytical method. Some key influence factors of the material damping, 
such as boundary condition, amplitude and frequency of excitation, load position as well as the 
cross-sectional dimension of a steel beam are analyzed respectively. The calculated results show that even in 
elastic scope, material damping does not remain constant but varies with these influence factors. Although 
boundary condition affects material damping to some extent, such influence can be neglected when the 
maximum stress amplitude of the beam is less than the fatigue limit of steel. Exciting frequency, load 
position and cross-section dimension have great effects on the material damping of the beam which maintain 
the similar changing trend under different boundary conditions respectively. 
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1. Introduction 

 

Damping, which dissipates energy, is important to dynamic structural analyses (Lazan 1968, 

Nashif et al. 1985, Osiński 1998). Existing of high damping means that more energy is dissipated 

in the system, thus the deformation and stress amplitude will be reduced effectively. In general, 

there are several types of damping that exist in structures (Rainieri et al. 2010), one comes from 

structures themselves (internal damping) and another from the added energy dissipation devices 

(Lin et al. 2003). Neglecting other types of damping, internal damping in material is an important 

property of structures and how to choose the damping value should be emphasized for proper 

structural dynamic analysis and design.  

There are two kinds of damping theory widely adopted by researchers and engineers in 

structural dynamic analysis and design so far (Crandall 1970, Bert 1973). One is the viscous 

damping model which is linear and supposed to be determined only by the instantaneous 
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generalized velocity. In the structural dynamic analysis, the damping matrix is assumed to be a 

linear combination of system‟s mass and stiffness matrices, which is the so-called „proportional 

damping‟ or „Rayleigh damping‟ introduced by Rayleigh (1877). Since the proportional damping 

matrix can be diagonalized simultaneously with the mass and stiffness matrices by real normal 

modes, a proportionally damped system can be decoupled into a set of principal single-degree-of 

-freedom (SDOF) systems. The linear differential equations of motion in viscous damping theory 

are easy to be solved. However, there is an inherent deviation existing in the viscous damping 

theory that the viscous damping model implies energy dissipation per cycle is linearly proportional 

to the frequency. It is a well known result that the energy dissipation per cycle of many materials is 

a consequence of internal friction, and a number of experiments indicate that it is essentially 

frequency independent (Lazan 1968). This observation led to the introduction of the complex 

damping model, proposed by Myklestad (1952), Bishop (1956a, b), which has alternative names 

such as hysteretic damping (Bishop 1956b, Inaudi et al. 1995, Lin et al. 2009, Chen et al. 2008, 

Maia 2009), structural damping (Gounaris 1999), and material damping (Lazan 1968, Bert 1973). 

In the complex damping theory, the damping force was proportional to restoring force and the 

phase was the same with that of velocity. In forced vibration to harmonic excitation of 

single-degree-of-freedom systems, damping force is given by 

idF KX                                 (1) 

where  is hysteresis damping factor, K denotes system stiffness, X stands for system displacement 

and i 1  . Obviously the energy dissipation in hysteresis damping system is not associated 

with exciting frequency and agrees well with the experimental data. 

Until now no uniform theory or formula is applied in calculation of material damping in forced 

vibration because damping is an obscure property and the origin of energy dissipation cannot be 

defined clearly. It is found that the damping can be usually described by the ratio of dissipation 

energy to total strain energy and defined as the loss factor, that is, the hysteresis damping 

coefficient (Lazan 1968) 

U

U





2

1
                (2) 

where U is the total strain energy and ∆U is the dissipation energy of damping. The key is how to 

determine the dissipation energy of damping. Based on experimental data of different materials 

including metal and polymer, etc, Lazan (1952, 1968) concluded that the dissipation energy of 

material damping is mainly influenced by three factors, that is, stress amplitude, load history and 

temperature. The influence of load history and temperature on different materials is so complicated 

that it is difficult to summarize them with a uniform equation, but under medium and high stress 

the energy dissipation is proportional to the logarithm of stress amplitude. Therefore, Lazan (1968) 

proposed the following function, that is, the damping-stress function 

nJU   )(                                 (3) 

where ∆U(σ ) is the dissipation energy of material damping, σ is stress amplitude and J and n are 

material constants. As n changes across the fatigue limit of steel, the following equation obtained 

by Lazan (1968) is adopted in this paper for the dissipation energy of material damping of steel 
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83.2 )/(41360)/(6895)( ffU                     (4) 

where σf  is the fatigue limit of steel. The material damping of structures can be calculated with the 

stress distribution in members and the damping-stress function. The stress distribution function of 

structural members only depends on the member dimension and cross section shape but 

independent of the material. Since the damping-stress function depends on material property but 

independent of member dimension and loading methods, the function can be obtained by simple 

experiments. Lazan (1952), Cochardt (1953, 1954), Yorgiadis (1954) and Hart (1975) calculated 

the damping value of materials with simple shapes. Kume (1982) derived the bending stress 

distribution function of cantilever beams on the basis of the deformation participated by single 

mode and then obtained loss factors of different modes without considering damping existing. By 

the finite element method, Gounaris (1999, 2007) divided structures into beam elements, assumed 

an initial loss factor in dynamic equilibrium and obtained the loss factor and structural response 

iteratively with stress distribution function and the damping-stress function. In addition, based on 

the study of material damping and stress amplitude relationship proposed by Lazan (1968), the 

damping-stress functions of reinforced concrete and concrete filled steel tube members were 

proposed by Wen (2008), Wang (2010). The solution method for the structural dynamic response 

with stress related complex damping was also discussed by Wang et al. (2008). 

At present, few studies are maintained on the influence factors of material damping. There were 

limited experiments on the material properties including the damping-stress function and influence 

of temperature on material damping, etc., which are quite essential to the analysis of material 

damping. Moreover, the influence of system factors on material damping, such as boundary 

condition and loading methods has not been analyzed thoroughly. Although Lazan (1952), Kume 

(1982) presented the material damping of cantilever beams, other boundary conditions were not 

included. In addition, some influence factors such as loading methods, beam‟s cross-sectional 

dimension and shape, were merely considered in maximum stress amplitude roughly and the 

changing law has not been discussed.  

In this paper, by adopting the damping-stress function proposed by Lazan (1968), the influence 

factors on the material damping for a steel beam under harmonic excitation are further studied. 

The dynamic equations of stress-dependent damped beams with four types of boundary conditions 

under vibration are presented, the analytical solutions are obtained to determine the stress 

distributions and loss factors of the beams. In addition, the influence of various boundary 

conditions, exciting frequencies, load positions and beam‟s cross-sectional dimensions on the loss 

factors are also analyzed. 

 

 

2. Theory 
 

Total strain energy U of a member can be defined as  

dV
E

U
V

2

2

1 
 


1
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2 )/(
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1
mVVd

E
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2 )()/(
2

1
                         (5) 

where E is the Young‟s modulus of the member, σ is the stress amplitude, σm the maximum stress 

amplitude in the member, V is the volume of the beam and Vm is the bulk volume of the beam. 

The stress distribution function f (σ/σm) is then defined by 

)/(/)/()/( mmm dVVdf                          (6)  

When only one mode of vibration is considered, the deflection of a beam under harmonic 

excitation becomes 

 
pt

dxxpA

xxF
txw

l

lx
sin

)()(

)()(
),(

0

222

0 1









                    (7) 

where w(x,t) is the deflection of the beam, F0 is the amplitude of the exciting force, x denotes the 

co-ordinate along the longitudinal axis of the beam, x=l1 is the exciting point, p is the exciting 

frequency, ρ and A stand for the density and area of the cross section of the beam respectively, ω 

and l is the natural frequency and the total length of the beam alternatively, ϕ(x) is the modal 

function.  

To simplify the analysis, it is assumed that the material is isotropic and Hook‟s law remains 

valid; the tensile Young‟s modulus is of the same value as the compressive; the cross section 

remains plane; the stress is uniform across the width of the beam; the material damping associated 

with shear stress will be neglected.  

According to the material mechanics, the relation of bending stress (σt(x,y,t)) and deflection 

w(x,t) of a flexural beam can be written as 

22 /),(),,( xtxwEytyxt                         (8) 

where y is the co-ordinate along the thickness of the beam. 

Substituting Eq. (7) into Eq. (8) gives 

ptyxCtyx ft sin),(),,(                           (9) 
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                       (10) 

2

2 )(
),(

dx

xd
Eyyx


                             (11) 

Then the stress amplitude becomes 

),(),( yxCyx f                              (12) 
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σm is the maximum stress amplitude found to be at the point (xm, ym)  

 
mxxfmm dxxdCEy


 22 /)(                       (13) 

From Eqs. (12) and (13), the equation of the constant stress contour line is  

   2222 /)(/)/(/)(),/( dxxddxxdyxy mxxmm m



            (14) 

In order to obtain the stress distribution function, the volume of the beam in which stress is less 

than σ is calculated, that is the volume stress function 


l

m

mm

dxxy
V

b

V

V

0
),/(

2
                         (15) 

where Vm is the total volume of the beam and b is the width of the beam. 

The stress distribution function is  

)/(/)/()/( mmm dVVdf                         (16) 

Similarly, dissipation energy ΔU can be defined as  

 
V

dVUU )(  

 
m

dfU
E

m


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2

1
                       (17) 

Using Eqs. (2), (5) and (17), the loss factor is obtained as 
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3. Influence of different factors on material damping of steel beams 
 

The model beam in reference (Gounaris 1999) is adopted for calculation and the data for 

analyzing different factors on material damping of steel beams are shown in Table 1.  

Excitation amplitude and frequency are selected as 4000N and 1000rad/sec respectively in 

order to remain the stress amplitude of the beam less than the fatigue limit. Besides, for the 

convenience of comparison of different boundary conditions, the load is located on the mid-span 

of the steel beams. 

 

3.1 Boundary conditions 
 

Four types of boundary condition in real engineering are selected: fixed ends, fixed-free ends, 

fixed-hinged ends, hinged ends. Calculated by the above method, the eigen functions, coordinates 

of points with maximum stress and expressions of loss factor under four types of boundary 
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Table 1 data for material damping calculation 

 Symbol Value Unit 

Beam height h 0.04 m 

Beam width b 0.1 m 

Beam length l 0.4 m 

Beam area A 0.004 m
2
 

Young‟s modulus E 2.06×10
11

 pa 

Fatigue limit σf 1.86×10
8
 pa 

Excitation amplitude F 4000 N 

Excitation frequency p 1000 rad/sec 

Load position l1 0.2 m 

Density ρ 7.8×10
3
 kg/m3 

 
Table 2 Mode functions of four types of boundary condition 

Boundary condition Eigen function Mode function 

Fixed ends 01coshcos  ll   
( ) (sin sinh )(cos cosh )

(cos cosh )(sin sinh )

x l l x x

l l x x

    

   

  

  
 

Fixed-free ends 01coshcos  ll   
( ) (sin sinh )(cos cosh )

(cos cosh )(sin sinh )

x l l x x

l l x x

    

   

  

  
 

Fixed-hinged ends 01cos  lthl   
( ) (sin sinh )(cos cosh )

(cos cosh )(sin sinh )

x l l x x

l l x x

    

   

  

  
 

Hinged ends 0sin l  xx  sin)(   

 
Table 3 Coordinate of point with maximum stress under four types of boundary condition 

Boundary 

condition 

First mode Second mode Third mode 

Coordinate Eigenvalue Coordinate Eigenvalue Coordinate Eigenvalue 

Fixed ends x=0, y=h/2 4.730041 x=0, y=h/2 7.853205 x=0, y=h/2 10.995608 

Fixed-free ends x=0, y=h/2 1.875104 x=0, y=h/2 4.694091 x=0, y=h/2 7.854757 

Fixed-hinged 

ends 
x=0, y=h/2 3.926602 x=0, y=h/2 7.068583 x=0, y=h/2 10.210176 

Hinged ends x=l/2, y=h/2 3.141593 x=l/4 6.283105 x=l/6 9.424778 

 

Table 4 loss factor expressions under four types of boundary condition 

Boundary condition Loss factor expression 

fixed ends 
0.3 63.52e-5 2.88e-0.52m m       

fixed-free ends 
0.3 63.73e-005 3.45e-052m m       

fixed-hinged ends 
0.3 63.48e-005 2.10e-052m m       

hinged ends 
0.3 63.79e-005 3.52e-052m m       

 

 

condition with an analytical methods are shown in Table 2, Table 3 and Table 4 respectively. 

In the Table 2, βl is the relevant eigenvalue of the beam under different boundary condistion; in 

the Table 4, σm is the maximum stress amplitude in the steel beams.  
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Fig. 1 Comparative results of loss factors(the first mode of vibration) 
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Fig. 2 Comparison of loss factor under varied types of boundary condition 

 

 

To prove the validity of the proposed theoretical method, a comparative study was conducted 

between Kume‟s theoretical and experimental data (Kume 1982) and our analytical results. Only a 

cantilever beam has been studied in Kume‟s paper, the loss factors of a beam under various 

maximum stress amplitudes were provided, we calculated the corresponding loss factors under the 

same maximum stress amplitudes. As shown in Fig. 1, the comparative results indicate that the 

loss factors of the beam calculated by these two theoretical methods both increase with the 

increase of maximum stress amplitudes, and the proposed results were closer to Kume‟s 

experimental results. 

The loss factors of the beams under varied types of boundary condition are calculated, the 
results are shown in Fig. 2. It can be seen that the material damping of steel beams increases 
nonlinearly with the increase of the maximum stress amplitude of the beams because of energy 
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dissipation due to micro-plastic- deformation and crystal lattice dislocation. For example, when the 
maximum stress amplitude changes from 1Mpa to 102Mpa, the loss factor of the beams with 

hinged ends changes from 2.93×10
-3 

to 1.00×10
-2

, and when the maximum stress amplitude 
changes to 186MPa, the loss factor reaches 2.60×10

-2
. The loss factors of the beam under varied 

types of boundary condition are different as seen in Fig. 2. The loss factor of the beam with hinged 
ends is maximum and that of the beam with fixed-hinged ends is minimum, because the stress 
distribution in steel beam has great effect on loss factor besides material property. As for the same 
maximum stress amplitude, the volume of high stress in the steel beam with hinged ends is larger 

than that of the beam with fixed-hinged ends. As a result the dissipation energy and loss factor of 
the steel beam with hinged ends is more than that of the beam with fixed-hinged ends 
correspondingly. The difference under varied types of boundary condition is slight in low stress 
scope. When the maximum stress amplitude is less than 1.00×10

8 
Pa, the difference in loss factor 

between steel beams under varied types of boundary condition is around 7%~8%. The greater the 
maximum stress amplitude is, the more obvious the difference becomes. If the maximum stress 

amplitude reaches1.86×10
8 

Pa, that is the fatigue limit of steel, the difference in loss factors 
between the beam with hinged ends and that with fixed-hinged ends reaches 15.3%, which is 
induced by different stress distribution functions too. With the increase of maximum stress 
amplitude, the micro-plastic-deformation accumulates and the dissipation energy increases. For the 
steel beam with hinged ends, its proportion under a high-level stress is more than that in the steel 
beam with fixed-hinged ends, accordingly leading to that the proportion with micro-plastic- 

deformation and the energy dissipation in the steel beam with hinged ends are more as well. When 
the maximum stress amplitude becomes higher, the difference in the proportion with high-level 
stress and micro-plastic-deformation also becomes greater between the steel beams with these two 
types of boundary condition, finally resulting in a more distinct difference in the energy dissipation 
and loss factor. However, the absolute difference between the loss factors of the steel beam under 
varied types of boundary conditions is little. At the fatigue limit, the loss factor of the beam with 

hinged ends is only 3.45×10
-3

 more than that with fixed-hinged ends. Therefore, with the same 
maximum stress amplitude, varied types of boundary condition have influence on material 
damping of steel beams, but when the maximum stress amplitude is less than fatigue limit, the 
influence can be neglected.  

 

3.2 Exciting frequency 
 

Fig. 3 shows the influence of exciting force frequency on loss factor. When p/w changes from 
0.1 to 2.0, influence of exciting frequency under four types of boundary condition on loss factor is 
presented in Fig. 3. 

The trend of loss factor varied with exciting frequency under different boundary conditions is 
similar. For a single mode vibration, when the p/w is less than 0.7, the loss factor is remains 
constant, and as the p/w is more than 0.7, the loss factor will increase slowly. But if the exciting 
force frequency is close to the natural frequency of the beams, the loss factor will increase sharply, 
because the inertia force induced by exciting force increases quickly when the excitation frequency 
is close to the natural frequency and it leads to high stress and great energy dissipation in the 
beams. It is shown that material damping is important to reduce forced vibration response and the 
stress amplitude near resonance frequency. Since the stress distribution with no damping is applied 
to the calculated the loss factor in this paper, the stress amplitude and loss factor at the resonance 
frequency will be infinite. In reality, the stress amplitude and material damping are coupling and 
will reach critical values finally which can be obtained by the iterative method (Gounaris 1999). 
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Fig. 3 Influence of exciting force frequency on loss factor 
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Fig. 4 Influence of load locations on loss factor 

 
 
3.3 Load locations 
 

The influence of load locations under four types of boundary condition of the beam on loss 

factor is shown in Fig. 4. 

Because of the symmetry of the beams with fixed ends or with hinged ends, the curve of loss 

factor is symmetric too. When the load moves from the end to the mid-span of the beam, the loss 

factor increases gradually, till at the mid-span, that is x/l=0.5, the maximum loss factor is obtained, 

because the maximum moment is generated and the maximum stress distribution appears. The 

trend is a little different for the beam with fixed-hinged ends, where the loss factor will increase 

nonlinearly as the load moving from the fixed end to the hinged end. However, the maximum loss 

factor appears at x/l≈0.56, where x is the length between the load position and the fixed end, and 

then the loss factor decreases gradually and will be zero at the hinged end. 
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Fig. 5 Influence of cross-sectional dimension on loss factor 

 

 

For the beam with fixed-free ends, the increase of moment and stress in beam leads to the 

nonlinear increase of the loss factor as the load moving from the fixed end to the free end. At the 

free end, that is x/l=1, the maximum loss factor is obtained.  

It is noted that with the same excitation amplitude, the material damping value of the steel 

beam with fixed ends is not always the maximum. When the load is located in x/l =0~0.09, the 

material damping of the steel beam with fixed ends is more than that with hinged ends. But the 

material damping value of the steel beam with fixed-free ends is maximum when the load is 

located in x/l =0.88~1.0. It is indicated that under the different conditions, different influence 

factors will operate in the change of material damping. 

 

3.4 Beam’s cross-sectional dimension 
 

When the A/h changes from 0.1 to 0.5, the influence of the cross-sectional dimension of the 

steel beam under four types of boundary condition on the loss factor is similar as shown in Fig. 5. 

With increase of the A/h, the loss factor decreases. For example, when the A/h changes from 0.1 to 

0.5, the loss factor of the beam with fixed ends decreases by 27%. Since the decrease of 

cross-section height means that the distance of points on cross section to neutral axis is reduced, 

lower stress will appear in the beam and less the loss factor is obtained under the same moment.  

 

 

4. Conclusions 
 

As analyzed above, the material damping of steel beams does not remain constant even in 

elastic scope under forced vibration. Although boundary condition has effect on material damping 

to some extent, such influence can be neglected when the maximum stress amplitude is less than 

the fatigue limit of steel. Exciting frequency, load position and cross-section dimension have great 

effect on material damping which maintains the similar changing trend under different boundary 
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conditions respectively. Therefore, as a complicated character of dynamic systems, material 

damping should be studied more comprehensively and profoundly further. 
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