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Abstract.  The stochastic response surface method (SRSM) and the response surface method (RSM) are 
often used for structural reliability analysis, especially for reliability problems with implicit performance 
functions. This paper aims to compare these two methods in terms of fitting the performance function, 
accuracy and efficiency in estimating probability of failure as well as statistical moments of system output 
response. The computational procedures of two response surface methods are briefly introduced first. Then 
their capabilities are demonstrated and compared in detail through two examples. The results indicate that 
the probability of failure mainly reflects the accuracy of the response surface function (RSF) fitting the 
performance function in the vicinity of the design point, while the statistical moments of system output 
response reflect the accuracy of the RSF fitting the performance function in the entire space. In addition, the 
performance function can be well fitted by the SRSM with an optimal order polynomial chaos expansion 
both in the entire physical and in the independent standard normal spaces. However, it can be only well 
fitted by the RSM in the vicinity of the design point. For reliability problems involving random variables 
with approximate normal distributions, such as normal, lognormal, and Gumbel Max distributions, both the 
probability of failure and statistical moments of system output response can be accurately estimated by the 
SRSM, whereas the RSM can only produce the probability of failure with a reasonable accuracy. 
 

Keywords:  structural reliability; stochastic response surface method; response surface method; polynomial 

chaos expansion; performance function; probability of failure 

 
 
1. Introduction 

 

Numerous uncertainties exist in mechanical and geometrical properties of structural systems 

and applied loads, which should be considered in the structural design. It is widely accepted that 

reliability analysis can quantitatively measure these uncertainties (Melchers 1999, Ang and Tang 
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2007). Many methods and algorithms have been developed to analyze complicated structural 

reliability problems, especially for reliability problems with implicit performance functions (Tang 

et al. 2012). However, some limitations (i.e., expensive computational efforts, difficulty in dealing 

with nonlinear and implicit performance functions) exist in the traditional methods so that some 

practical reliability problems at small probability levels and with implicit performance functions 

cannot be effectively solved. For example, Monte Carlo simulation (MCS) is usually employed to 

estimate the probability of failure (Ditlevsen and Madsen 1996), but an innate disadvantage of the 

MCS is its prohibitive computational costs for the cases with small probability of failure or 

computationally intensive deterministic finite element (FE) analysis. Both first order reliability 

method (FORM) and second order reliability method (SORM) are not directly applicable to 

reliability problems with implicit performance functions (Hasofer and Lind 1974, Der Kiureghian 

et al. 1987). In order to overcome these limitations, the response surface method (RSM) and 

stochastic response surface method (SRSM) emerge as alternatives and have been developed and 

widely applied to structural reliability problems with implicit performance functions. 

The RSM is a statistical technique proposed by Box and Wilson (1951) to evaluate the 

operating conditions of a chemical process at which some response has been optimized. In the 

literature (Faravelli 1989, Bucher and Bourgund 1990, Gavin and Yau 2008, Nguyen et al. 2009, 

Li et al. 2010, Milani and Benasciutti 2010, Basaga et al. 2012, Roussouly et al. 2013), the RSM 

has been extensively applied to structural reliability problems. The SRSM based on a probabilistic 

collocation method (PCM) can be interpreted as an extension of the response surface method. The 

SRSM was originally applied to uncertainty analysis for ocean and geophysical models, and 

environmental and biological systems (Tatang et al. 1997, Isukapalli 1999). Recently, this method 

has been applied to reliability problems in structural and geotechnical engineering (Sudret 2008, 

Huang et al. 2009, Li et al. 2011, Mao et al. 2012, Li et al. 2013a, b). Later the SRSM based on a 

linearly independent PCM was proposed by Li and Zhang (2007) and applied to uncertainty 

analysis of groundwater and solute transport, which can greatly reduce the uncertainties of 

selecting collocation points and improve the calculation accuracy and efficiency. Sudret (2008) 

and Mao et al. (2012) also emphasized the linearly independent principle that the number of 

sample points selected should lead to an invertible information matrix in global sensitivity analysis 

and probabilistic analysis. Li et al. (2013b) further studied the calculation accuracy and efficiency 

of the SRSM based on the linearly independent PCM. 

The basic ideas of these two methods are to employ a meta-model to approximate the actual 

system output response. Nonetheless, there still exist several differences between them such as 

basic principles, computational procedures, the methods of fitting the performance function, and 

accuracy and efficiency in estimating the probability of failure and statistical moments of system 

output response. To our best knowledge, only Lin et al. (2009) performed a preliminary 

comparison between the SRSM and RSM, focusing on the comparison of the basic principles and 

procedures. Furthermore, the capabilities of the SRSM and RSM in fitting the performance 

function, and estimating the probability of failure as well as statistical moments of system output 

response are not explored extensively. Finally, a systematic comparison between the SRSM and 

RSM may provide some guidance for engineers to select the reliability methods in a more 

reasonable way. 

The objective of this study is to explore the capabilities and differences between the SRSM and 

RSM regarding fitting performance function, accuracy and efficiency in estimating the probability 

of failure as well as statistical moments of system output response for structural reliability 

problems. The applicability of the SRSM and SRM under several special cases is also discussed. 
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For comparison, two optimal response surface methods, namely the SRSM based on a linearly 

independent probabilistic collocation method and the RSM using a vector projection sampling 

technique are selected, otherwise the comparisons will not be meaningful. These two methods are 

introduced briefly in Sections 2 and 3. Then they are compared in detail in two typical examples in 

Section 4. 

 

 

2. Stochastic response surface method based on a linearly independent 
probabilistic collocation method 
 

The basic idea of the SRSM is to employ a meta-model to represent the system output response 

whose input uncertain parameters are modeled by random variables. Standard normal variables are 

usually chosen as input random variables due to the mathematical tractability. According to the 

Cameron-Martin Theorem (Cameron and Martin 1947), any elements from the Hilbert space L
2
(R, 

) can be well approximated using the multi-dimensional Hermite polynomial chaos expansion 

(PCE). The system output response Y is expanded on an orthogonal multi-dimensional Hermite 

polynomial basis as follows (Isukapalli 1999, Huang et al. 2009, Li et al. 2011, Jiang et al. 2013) 
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where Y is the vector of the model output response values;  
1 1 20 , ,, , ,

ni i i ia a a a  are unknown 

coefficients to be determined, in which n is the number of random variables used to represent the 

uncertainty of the model inputs;  
1 2
, , ,

ni i iU U U  iU  is an independent standard normal random 

vector resulting from the transformation of the physical random vector Xi; 
1 2

( , , , )
nn i i iU U U   are 

the multi-dimensional Hermite polynomials of degree n. 

The PCM is based on the idea of a chaos transformation used in the polynomial chaos methods, 

which offers a computationally inexpensive alternative for uncertainty analysis of complex models 

(Tatang et al. 1997, Isukapalli 1999). The PCM is often used to determine the unknown 

coefficients of the Hermite PCE. A linearly independent PCM is adopted in this study (Li and 

Zhang 2007, Mao et al. 2012, Li et al. 2013b), which can satisfy the condition that the Hermite 

polynomial information matrix has a full rank with less probabilistic collocation points or Latin 

hypercube sampling points used (Roussouly et al. 2013, Jiang et al. 2013). In addition, a non-

intrusive analysis is achieved where existing deterministic FE codes or commercial FE software 

can be used directly without modifications. 

In this respect, the SRSM based on the linearly independent PCM consists of the following five 

steps: 

(1) select probabilistic collocation points or Latin hypercube sampling points Ui in the 

independent standard normal space (U space), Ui=(ui,1, ui,2, ∙∙∙, ui,n), in which i=1, 2, …, Np, Np is 

the number of samples, to satisfy the principle that the information matrix is linearly independent 

by rows (see references (Mao et al. 2012, Li et al. 2013b) for a more detailed presentation);  

(2) convert the collocation point vector as selected Ui to the physical random sample vector Xi 

using the Nataf transformation which are then taken as input parameters for the deterministic FE 
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model (Nataf 1962, Li et al. 2012, Li et al. 2013c);  

(3) calculate the model output response vector Y, Y= (y1, y2, …, yNp)= [M(X1), M(X2), …, 

M(XNp)], at the sample points selected using the FE codes or software, where M(·) relates the 

relationship between the model output responses and model inputs;  

(4) back substitute U and Y into Eq. (1), establish a system of linear algebraic equations in 

terms of the unknown coefficients a, and solve it to obtain the coefficients of the Hermite PCE 

using a singular-value matrix decomposition method;  

(5) once the unknown coefficients a are determined, substitute the system output response by 

an analytical meta-model PCE, the probability of failure and statistical moments, probability 

distribution function (PDF) and cumulative distribution function (CDF) of system output response 

can be readily estimated by using the direct MCS on the explicit meta-model PCE. 

 

 

3. Response surface method using a vector projection sampling technique 
 

The basic idea of RSM is to employ a closed-form response surface function (RSF) based on a 

quadratic PCE to fit the performance function. By this way, a complicated implicit reliability 

problem can be changed to a simple explicit reliability problem. The accuracy and efficiency of 

RSM depend mainly on the shape of RSF and the position of experimental sample points. To avoid 

excessively complicated reliability analysis and reduce computational costs of deterministic FE 

analysis, the RSF should be as simple as possible under the premise of well fitting the performance 

function.  

The RSM based on a quadratic PCE using a vector projection sampling technique can yield 

good convergence and accuracy, and less computational costs are required for response surface 

construction and the deterministic FE analysis. This method was first proposed by Kim and Na 

(1997) based on a linear polynomial chaos expansion. Das and Zheng (2002) subsequently 

improved this method and generated the response surfaces in a stepwise fashion. This RSM is 

employed in the present study. The RSF based on a quadratic PCE without cross-terms is often 

adopted and expressed as follows, 

2

1 1

n n

i i i i

i i

a b x c x
 

   Y                              (2) 

where X=(x1, …, xi,…, xn)
T
 is the vector of input sample points in the physical space; a=(a, b1, … 

bn, c1,…, cn)
T
 is the vector of unknown coefficients with a size of 2n+1. The Bucher and 

Bourgund’s sample design method summarized in Bucher and Bourgund (1990) is often adopted to 

determine the unknown coefficients in Eq. (2). However, the RSM without cross-terms may not be 

sufficiently accurate for some reliability problems with performance functions including cross-

terms (Bucher and Bourgund 1990). Therefore, the RSF based on a quadratic PCE with cross-

terms is also adopted for comparison, 

1
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where a=(a, b1, … bn, c1,…, cn, d1,2,…, dn-1,n)
T
 is the vector of the unknown coefficients. In this 

case the size of unknown coefficients is increased to (n
2
+3n+2)/2, and an efficient D-optimum 

sample design method summarized in Cheng and Li (2009) is adopted here to determine the 
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unknown coefficients in Eq. (3). In the subsequent sections, the RSM based on the quadratic PCE 

without cross-terms using the vector projection sampling technique is called RSMncross, while the 

RSM with cross-terms is called RSMcross unless stated otherwise. 

In this regard, the RSM using the vector projection sampling technique mainly consists of the 

following five steps:  

(1) select the sample points Xi in the physical space (X space) and determine the values of ui, 

ui+fi, and ui-fi for each basic variable during the first iteration, where ui and i are the mean and 

standard deviation of the ith variable, respectively; f is a sampling parameter, the value of which is 

determined according to a quantitative standard proposed by Kim and Na (1997); 

(2) evaluate the values of the performance function at the sample points Xi, determine the 

unknown coefficients a, construct a trial RSF, and convert the physical random vector Xi to the 

independent standard normal random vector Ui using the Nataf transformation (Nataf 1962, Li et 

al. 2012, Li et al. 2013c) and search for the design point u* using the FORM optimization method 

in Eq. (4) developed by Hasofer and Lind (1974), 

   

minimize 

subject to 0

u

G x G u




 

                           (4) 

(3) generate the new sample points based on the tentative design point value u* by using the 

vector projection technique. The vector projection of a unit vector on the nonzero vector along the 

response surface obtained in the preceding iteration will be used herein, which is the orthogonal 

projection of the unit vector onto a straight line parallel to the response surface (Kim and Na 

1997); 

(4) repeat steps (2) and (3) and obtain the final RSF and design point until a convergence 

criterion on the probability of failure or design point is satisfied; 

(5) estimate the probability of failure and the statistical moments, the PDF and CDF of the 

system output response on the final RSF and design point by using the direct MCS or importance 

sampling method (Melchers 1989).  

Based on above computational procedures of two response surface methods, it can be observed 

that a non-intrusive analysis can be achieved on the genuine meaning, and both the probabilistic 

analysis and deterministic FE analysis are accomplished independently in the SRSM. This feature 

enables us to conveniently apply FE codes or commercial FE software to deal with complicated 

realistic reliability problems. Furthermore, the multi-dimensional Hermite PCE adopted in the 

SRSM to construct the RSF is expressed as independent standard normal random variables which 

can approximate any elements in the Hilbert space (Cameron and Martin 1947). Also the sample 

points selected can guarantee that the information matrix has a full rank and is well-conditioned 

when determining the unknown coefficients. In contrast, several iterative response surface 

adjustments are required for the RSM to determine unknown coefficients, and the previous 

iterative results including the tentative probability of failure, tentative RSF and design point are 

used in the next iteration. The RSF based on the quadratic PCE expressed as the physical random 

variables is adopted in the RSM. Thereby some ill-conditioned and convergence problems may 

appear when fitting the elements in the Hilbert space and iteratively constructing the approximate 

response surfaces.  

However, the influences of these differences in the computational procedures between the 

SRSM and RSM on the fitting of the performance function, the accuracy and efficiency of estimating 

the probability of failure as well as statistical moments have not been investigated sufficiently.  
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Fig. 1 Comparison of probabilities of failure obtained from different methods with x1 and x2 

being normal random variables 

 

 

Therefore it is necessary to perform an elaborate comparison between the SRSM and RSM, and 

explore their capabilities and differences through several examples covering a broad range of 

nonlinear structural reliability problems. 

 

 
4. Numerical examples 
 

4.1 Example # 1: a nonlinear performance function 
 

A highly nonlinear performance function is considered in the first example. It has been studied 

by Kaymaz and McMahon (2005) and Cheng et al. (2008). The performance function is expressed 

as 

3 2 3

1 2 1 1 2 2g( , ) 18x x x x x x                              (5) 

To account for the effect of the tail distributions of the random variables, two cases are 

considered for random variables x1 and x2. The first case is that both random variables follow the 

normal distribution. The means of x1 and x2 are 10 and 9.9, respectively, and the standard deviation 

is 5 for both. The second case is that both random variables follow the exponential distribution, 

and their means are 10 and 9.9 for x1 and x2, respectively. It is also assumed that the correlation 

coefficient, x1,x2, between x1 and x2 ranges from -0.5 to 0.5. 

For the first normal case, the probabilities of failure obtained from the 2nd and 3rd order 

SRSMs, RSMncross and RSMcross for various values of correlation coefficient x1,x2 and the 

corresponding numbers of performance function evaluations are shown in Fig. 1. For comparison, 

the results obtained from MCS with 10
6
 samples are also provided in Fig. 1, which can be taken as 

the exact solutions because the MCS with 10
6
 samples can accurately estimate the pf exceeding 10

-4
 

at an accuracy of COVpf = 10% (Milani and Benasciutti 2010). It can be observed that both the 3rd 

order SRSM and RSMcross can produce satisfactory reliability results. On the contrary, the RSM 

based on a quadratic PCE without cross-terms using the vector projection sampling technique 

116

javascript:void(0)


 

 

 

 

 

 

Capabilities of stochastic response surface method and response surface method 

(referred to as RSMncross) leads to unsatisfactory reliability results. Such finding is significantly 

different from that reported in Gomes and Awruch (2004). The probabilities of failure obtained 

from the 2nd order SRSM differ greatly from the exact solutions. 

As mentioned previously, the probability of failure is calculated based on the final RSF. 

Applying the SRSM and RSM when x1,x2= 0, the final approximate RSFs can be obtained. For 

consistency, the final approximate RSFs using different response surface methods in Eqs. (6)~(9) 

are all expressed as standard normal variables u1 and u2 that are transformed from the physical 

variables x1 and x2 in the performance function. They are given by 

   
(2nd order) 2 2

1 2 1 2 1 2 1 2g ( , ) 4682.299 2865 2345.15 997.5 1 742.5 1 283.494SRSM u u u u u u u u           (6) 

   

     

(3rd order) 2 2

1 2 1 2 1 2

3 3 2

1 2 1 1 2 2 1 2 2

g ( , ) 4682.3 2865 2470.15 +997.5 1 742.5 1

                           500 125 3 125 3 125

SRSM u u u u u u

u u u u u u u u u

     

      

 
 

(7) 

2 2

1 2 1 2 1 2g ( , ) 1384.02 756.41 616.43 178.84 142.01RSMncross u u u u u u               (8) 

2 2

1 2 1 2 1 2 1 2g ( , ) 1835.63 993.99 794.59 187.59 121.17 98.13RSMcross u u u u u u u u           (9) 

The so-obtained final RSF in Eq. (7) using the 3rd order SRSM is just the same as the 

performance function in Eq. (5) through space transformation, whereas the final RSFs in Eqs. (6), 

(8) and (9) significantly differ from the performance function. By taking the values of the final 

approximate RSFs in Eqs. (6)~(9) as zeros, the final approximate response surfaces can be 

obtained from the SRSMs and RSMs and shown in Fig. 2. They are given both in the physical X 

space and independent standard normal U space in order to consider the effect of the tail 

distributions of random variables. The approximate response surfaces in these two spaces for this 

case are similar since only independent normal variables are involved. The actual limit state 

surface and the design point are also given in Fig. 2. It can be observed that the actual limit state 

surface cannot be well fitted by the RSMncross and RSMcross in the entire spaces as by the 3rd 

order SRSM, but it can only be well fitted in the vicinity of the design point, x*=(1.753, 1.893), 

through iteratively adjusting response surfaces. In contrast, the response surface obtained from the 

2nd order SRSM significantly differs from the actual limit state surface in the entire spaces. This 

explains why the RSMncross and RSMcross can produce more accurate probabilities of failure 

than the 2nd order SRSM. It can also be concluded that the probability of failure mainly reflects 

the accuracy of the RSF fitting the performance function in the vicinity of the design point. 

Additionally, the number of performance function evaluations or deterministic FE runs is chosen 

in this study as a criterion to measure the efficiency of the SRSM and RSM (Duprat and Sellier 

2006, Cheng and Li 2009). As seen from Fig. 1, the SRSM with an optimal order PCE (3rd order 

SRSM) based on the linearly independent PCM is much more efficient than the RSMncross and 

RSMcross. Only 10 performance function evaluations are needed, while 120 and 324 performance 

function evaluations are required for the RSMncorss and RSMcross to iteratively construct 

response surfaces, respectively. 

The statistics of system output response (mean value, standard deviation, skewness and 

kurtosis) can also be obtained during reliability analysis when the SRSM and RSM are adopted, 

which are employed to further compare the performances of these two methods. Table 1 shows the 

first four statistical moments of the performance function with the correlation coefficient x1,x2= 0. 
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Fig. 2 Comparison between approximate response surfaces and the actual limit state surface in the X 

and U spaces with x1 and x2 being normal random variables 

 
Table 1 Comparison of statistical moments obtained from different methods with the correlation coefficient 

x1,x2= 0 for Example #1 

Methods Mean value Standard deviation Skewness Kurtosis 

2nd order SRSM 4682.1 4112.3 1.41 5.79 

3rd order SRSM 4682.5 4232.0 1.89 8.81 

RSMncross (Bucher and Bourgund’s 

sample design) 
1704.9 1028.3 0.93 4.2 

RSMcross (D-optimum sample design) 2144.6 1315.6 0.94 4.21 

MCS 4682.5 4232.0 1.89 8.81 

 

 

Note that the results obtained from the 3rd order SRSM are also the same as those obtained from 

the MCS. In contrast, the results from the RSMncross and RSMcross are significantly different 

from those from the MCS. Their relative errors in standard deviation are up to 76% and 69%, 

respectively. It confirms that the statistical moments of the performance function reflect the 

accuracy of the RSF fitting the performance function in the entire space and they cannot be 

accurately estimated by the RSM. 

In comparison with the RSM, another obvious advantage of the SRSM should be highlighted 

here. For some very complicated practical problems involving small probability of failure or 

computationally intensive deterministic FE analysis, as it is nearly impossible to obtain the exact 

solutions using the MCS, thereby there may be no reference standards to verify the quality of 

results. However, a convergence analysis is available for the SRSM to obtain the exact solutions. 

(Isukapalli 1999, Mao et al. 2012, Li et al. 2013a). This can be achieved by comparing the 

coefficients of the sequential order PCEs (Li et al. 2013a) or the CDFs of system output response 

obtained from the successive order SRSMs (Mao et al. 2012). Table 2 shows the coefficients of the 

2nd, 3rd and 4th order Hermite PCEs used to judge whether the SRSM has achieved convergence. 

As seen from Table 2, not only the absolute differences between the coefficients of the common 

terms of the 3rd and 4th order PCEs are smaller than a prescribed tolerance (≤10
-3

), but also the 

coefficients of the new added terms of the 4th order PCE all tend to zero (or a very small value).  
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Table 2 Comparison of coefficients of the 2nd, 3rd and 4th order Hermite PCEs for Example #1 

Terms of the PCE Coefficients 

Basis function Polynomial chaos 
2nd order PCE 

(6 evaluations) 

3rd order PCE 

(10 evaluations) 

4th order PCE 

(15 evaluations) 

ψ0 Γ0,0 4682.299 4682.299 4682.299 

ψ1 Γ1,0 (U1) 2865 2865 2865 

ψ2 Γ0,1 (U2) 2345.15 2470.15 2470.15 

ψ3 Γ2,0 (U1) 997.5 997.5 997.5 

ψ4 Γ0,2 (U2) 742.5 742.5 742.5 

ψ5 Γ1,1 (U1,U2) 283.494 500 500 

ψ6 Γ3,0 (U1)  125 125 

ψ7 Γ0,3 (U2)  125 125 

ψ8 Γ1,2 (U1,U2)  0 0 

ψ9 Γ2,1 (U1,U2)  125 125 

ψ10 Γ4,0 (U1)   0 

ψ11 Γ0,4 (U2)   0 

ψ12 Γ1,3 (U1,U2)   0 

ψ13 Γ3,1 (U1,U2)   0 

ψ14 Γ2,2 (U1,U2)   0 

 

 

However, the largest value in the coefficients of the new added terms of the 3rd order PCE is 125. 

This indicates that the 3rd order PCE has achieved convergence and its results can be regarded as 

exact solutions for reliability analysis, yet the 2nd order PCE not. The CDFs of the performance 

function as shown in Fig. 3 can be used to further determine the most optimal order PCE since the 

probability of failure is just calculated from the tail region of the CDF of the performance 

function. As seen from Fig. 3, it can further prove that it is reasonable to take the results of the 3rd 

order SRSM as exact solutions in this case, because there is no difference in the CDFs of the 

performance function associated with the 3rd and 4th order SRSMs. 

The second special case that both random variables follow the exponential distribution is 

investigated to further demonstrate the capabilities of SRSM and RSM. Fig. 4 illustrates the 

probabilities of failure obtained from different methods and the corresponding numbers of 

performance function evaluations. Unlike the first case, even if the sixth order SRSM is employed, 

it still can not produce accurate probabilities of failure. This can also be explained by the 

relationships between the approximate response surfaces and the actual limit state surface shown 

in Fig. 5. Unlike Fig. 2, the actual limit state surface in this case must be bounded by the interval 

x1∈(0, 2.62) as seen in the enlarged view in Fig. 5(a) due to the exponential variables involved 

(requiring both x1 and x2 greater than 0). Thereby the corresponding actual limit state surface in the 

U space is highly nonlinear as seen in Fig. 5(b) and it cannot be well fitted by the SRSM even 

when the 6th order SRSM is adopted. Compared with the first case, this limitation of the SRSM is 

mainly because the Hermite PCE in Eq. (1) used by the SRSM is an optimal method only for 

dealing with reliability problems involving random variables of approximate normal distributions 

(such as normal, lognormal, Gumbel Max, Beta, Weibull, Rayleigh distributions and so on). The 

SRSM with other orthogonal polynomial chaos such as Laguerre or Legendre polynomials should 

be adopted for the highly nonlinear performance functions involving strongly non-normal 
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variables (such as exponential, Gamma and uniform distributions) (Xiu and Karniadakis 2003, 

Eldred et al. 2008, Li et al. 2013b). Orthogonal polynomials are such that any two different 

polynomials in the sequence are orthogonal to each other under some inner product, which provide 

an optimal basis for different continuous probability distribution types (Eldred et al. 2008). In 

contrast, the actual limit state surface can still be well fitted by the RSMncross and RSMcross in 

the vicinity of the design point, x*=(1.801, 1.838) due to the strong local optimization performance 

of the RSM. Therefore, both the RSMncross and RSMcross can yield the probabilities of failure 

with a reasonable accuracy (Fig. 4). It should be pointed out that the results of the RSM can be 

used to test the accuracy and performance of the SRSM if the direct MCS with very large samples 

are not feasible in this case (e.g., large nonlinear FE models). It should be mentioned that there 

exist two branches in the final response surfaces for the RSM based on a quadratic PCE as seen 

from Figs. 2 and 5. It may lead to a false branch and convergence cannot be guaranteed. The RSM 

using the vector projection sampling technique used in the study can effectively avoid this 

drawback. 
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Fig. 3 Comparison of the CDFs of performance function obtained from the 2nd, 3rd and 4th order 

SRSMs with x1 and x2 being normal random variables 
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Fig. 4 Comparison of probabilities of failure obtained from different methods with x1 and x2 being 

exponential random variables 
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Fig. 5 Comparison between approximate response surfaces and the actual limit state surface in the X 

and U spaces with x1 and x2 being exponential random variables 

 
 
4.2 Example # 2: Frame structure 
 

Unlike the previous example that only involves two random variables, a 21- dimensional and 

implicit frame structural reliability problem is investigated to further explore the differences 

between these two methods in fitting the performance function and estimating the probability of 

failure and statistical moments. A three-bay five-storey rigid frame structure as shown in Fig. 6 is 

used. This structure was analyzed by Bucher and Bourgund (1990), Nguyen et al. (2009) and 

Roussouly et al. 2013. The structural properties associated with the beam elements are listed in 

Table 3. The statistical parameters of the basic random variables are summarized in Table 4. Note 

that lognormal distributions are used to avoid negative values of the geometrical and material 

properties. Some variables are assumed to be correlated. All loads are correlated with a correlation  

coefficient of ,i jF F = 0.95. All the cross-sectional properties are correlated with correlation 

coefficients of ,i jA A = ,i jI I = ,i jA I = 0.13. Two different modulus of elasticity E1 and E2 are 

correlated with a correlation coefficient of 
1 2,E E = 0.9. The other variables are assumed to be  

independent. 
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Table 3 Frame element properties for Example #2 

Element Modulus of elasticity Moment of inertia Cross section 

1 E1 I5 A5 

2 E1 I6 A6 

3 E1 I7 A7 

4 E1 I8 A8 

5 E2 I1 A1 

6 E2 I2 A2 

7 E2 I3 A3 

8 E2 I4 A4 

 

7.625 9.15 7.625

3.66
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3.66
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4.88

1 2 1

1 2 1
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Fig. 6 Structural system for Example #2 (Unit: m) (after Bucher and Bourgund 1990) 

 

Table 4 Statistical parameters of basic random variables for Example #2 

Variable Distribution Unit Mean value Standard deviation 

F1 Gumbel max kN 133.454 40.04 

F2 Gumbel max kN 88.97 35.59 

F3 Gumbel max kN 71.175 28.47 

E1 Lognormal kN/m
2
 2.173752×10

7
 1.9152×10

6
 

E2 Lognormal kN/m
2
 2.379636×10

7
 1.9152×10

6
 

I1 Lognormal m
4
 0.813443×10

-2
 1.08344×10

-3
 

I2 Lognormal m
4
 1.150936×10

-2
 1.298048×10

-3
 

I3 Lognormal m
4
 2.137452×10

-2
 2.59609×10

-3
 

I4 Lognormal m
4
 2.596095×10

-2
 3.028778×10

-3
 

I5 Lognormal m
4
 1.081076×10

-2
 2.596095×10

-3
 

I6 Lognormal m
4
 1.410545×10

-2
 3.46146×10

-3
 

I7 Lognormal m
4
 2.327853×10

-2
 5.624873×10

-3
 

I8 Lognormal m
4
 2.596095×10

-2
 6.490238×10

-3
 

A1 Lognormal m
2
 0.312564 0.055815 

A2 Lognormal m
2
 0.3721 0.07442 

A3 Lognormal m
2
 0.50606 0.093025 
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Table 4 Continued 

A4 Lognormal m
2
 0.55815 0.11163 

A5 Lognormal m
2
 0.253028 0.093025 

A6 Lognormal m
2
 0.29116825 0.10232275 

A7 Lognormal m
2
 0.37303 0.1209325 

A8 Lognormal m
2
 0.4186 0.195375 
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Fig. 7 Comparison of probabilities of failure obtained from different methods 

 

 

The unsatisfactory performance underlying this problem is defined as the horizontal 

displacement at point A of the top floor exceeding the maximum allowable displacement h/320 

=0.061 m (Bucher and Bourgund 1990). Thus the performance function regarding the structural 

safety margin is implicitly defined as 

( ) 0.061 ( )G D X X                          (10) 

where X is a random vector representing the input random variables; D(X) is the horizontal 

displacement of point A, which is calculated by structural FE analysis. It is obvious that the 

performance function shown in Eq. (10) cannot be explicitly expressed as a function of the 

physical random vector, X, but the probability of failure and statistical moments associated with 

this implicit and high dimensional realistic problem can be readily evaluated by the SRSM and 

RSM. 

Fig. 7 shows that the probabilities of failure on log scale associated with the SRSMs, RSMs and  

MCS for various values of the correlation coefficient ,i jF F  among the loads. For this reliability 

problem involving random variables with approximate normal distributions (i.e., lognomal, 

Gumbel Max), the results from the 3rd order SRSM and RSMcross are in agreement with those  

from the MCS with 10
6
 samples. For the reference case of the correlation coefficient ,i jF F  equal 

to 0.95, the probabilities of failure obtained from the 3rd order SRSM, RSMcross and MCS are 

2.42×10
-4

, 3.04×10
-4

 and 2.8×10
-4

, respectively. In contrast, the results from the 2nd order SRSM 

and RSMncross are different from those from the MCS. The probabilities of failure obtained from 

the 2nd order SRSM and RSMncross are 4.7×10
-5

 and 4.54×10
-4

. Compared with the MCS, the 

corresponding relative errors are 83.2% and 62.1%, respectively. The numbers of structural FE 

runs in Fig. 7 are used to compare the calculation efficiency of the SRSM and RSM. As discussed  
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Fig. 8 Comparison of first four statistical moments of performance function obtained from different 

methods 

 

 

previously, both the 3rd order SRSM and RSMcross can produce accurate probabilities of failure, 

but the former is less efficient than the later for such a high-dimensional reliability problem. As 

can be seen from Fig. 7, a total of 2200 runs of structural FE analysis are required for the 3rd order 

SRSM compared with 86 and 1265 runs for the RSMncross and RSMcross, respectively. 

Fig. 8 shows the first four statistical moments of the performance function obtained from 

different methods. In Fig. 8, the results obtained from MCS with 10
6
 samples are taken as exact 

solutions. The results obtained from the 3rd order SRSM match well with the exact solutions. The 

mean and standard deviation obtained from the 2nd order SRSM are consistent with the exact 

solutions. However, the RSMncross do not yield the first four statistical moments with a sufficient 

accuracy. The RSMcross can accurately estimate the probability of failure in Fig. 7, but it cannot 

produce an accurate mean value and kurtosis in comparison with the 3rd order SRSM. This can be 

explained in the following section. 

For representing the actual limit state surface more intuitively, only E1 and E2 are considered as 

two independent random variables with the same statistical parameters given in Table 4. The value 

of F1 is increased to 400 kN in order to make the limit state surface close to the origin and the  
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Fig. 9 Comparison between approximate response surfaces and the actual limit state surface in the X 

and U spaces 
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Fig. 10 Comparison between approximate response surfaces and the actual limit state surface in the X 

and U spaces 

 

 

remaining 18 variables are taken as their mean values. Fig. 9 shows the corresponding 

approximate response surfaces and actual limit state surface both in the X and U spaces. The 

implicit performance function is a nonlinear function of E1 and E2 in the X space, while it seems 

an approximately linear function of u1 and u2 in the U space when the tail distributions of the 

random variables are incorporated. The actual limit state surface can be well fitted by the 2nd and 

3rd order SRSMs in the entire X and U spaces, whereas it is only well fitted by the RSMncross 

and RSMcross in the vicinity of the design point, x*= (1.835×10
7
, 2.186×10

7
). 

For completeness, Fig. 10 shows the approximate response surfaces and actual limit state 

surface in these two spaces when only F1 and F2 are considered as two independent random 

variables and the other 19 variables remain at their mean values. Contrary to Fig. 9, the implicit 

performance function seems a nearly linear function of F1 and F2, while it is a nonlinear function 

of u1 and u2. The actual limit state surface can still be well fitted by the 3rd order SRSM in both 

entire spaces. Unlike Fig. 9, the actual limit state surface can also be well fitted by the RSMncross 
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and RSMcross in both entire spaces. It implies that the performance function is well fitted by the 

RSM in the entire space only when it is an approximate linear or quadratic function of variables in 

the X space. The same conclusion can also be drawn when only F1 and F3, or F2 and F3 are 

considered as random variables. These explain why the 3rd order SRSM can accurately yield both 

the probability of failure and statistical moments, whereas the RSMncross and RSMcross can only 

produce the probability of failure with a reasonable accuracy. 

 

 

5. Conclusions 
 

This paper has investigated the capabilities of two response surface methods in structural 

reliability analysis, namely the SRSM based on a linearly independent PCM and RSM using a 

vector projection sampling technique. Two numerical examples are investigated to compare the 

performances of these two methods in fitting the performance function and estimating the 

probability of failure as well as statistical moments of system output response. Several conclusions 

can be drawn from this study: 

• The RSM using the vector projection sampling technique can efficiently avoid a false branch 

of final response surface and its convergence can be guaranteed, and several iterative response 

surface adjustments are required. In contrast, a non-intrusive analysis can be achieved using the 

SRSM where the probabilistic analysis and deterministic FE analysis are accomplished 

independently. Such feature enables us to apply structural FE codes or software for reliability 

analysis more conveniently. Additionally, a convergence analysis is available for the SRSM to 

obtain exact solutions in most cases when it is nearly impossible to use the MCS to provide the 

reference solutions. 

• The probability of failure mainly reflects the accuracy of the RSF fitting the performance 

function in the vicinity of the design point, while the statistical moments reflect the accuracy of the 

RSF fitting the performance function in the entire space. The final response surfaces are compared 

both in the X and U spaces in order to account for the effect of the tail distributions of random 

variables. For normal cases with approximate normal variables, the performance function can be 

well fitted by the SRSM with an optimal order PCE in the entire spaces, while it can always be 

well fitted by the RSM in the vicinity of the design point. For a special case with strongly non-

normal variables when the performance function is highly nonlinear and bounded in a narrow 

interval, the SRSM based on Hermite polynomials cannot fit it well, whereas the RSM can still 

accommodate it well in the vicinity of the design point. 

• Both the SRSM and RSM can analyze complicated structural reliability problems with highly 

nonlinear and implicit performance functions involving multiple correlated non-normal random 

variables. The SRSM with an optimal order PCE can accurately estimate both the probability of 

failure and statistical moments, whereas the RSM can only produce the probability of failure with 

a reasonable accuracy. The SRSM is more preferable for dealing with low-dimensional reliability 

problems due to its high efficiency and accuracy. For very high-dimensional reliability problems, 

the computational costs for the SRSM will increase significantly since a large number of random 

variables are involved, and the RSM with cross-terms based on D-optimum sample design method 

is recommended if the probability of failure is of concern. 

• For reliability problems involving non-normal random variables and highly nonlinear 

performance functions, the SRSM should adopt the optimal orthogonal polynomials for strongly 

non-normal random variables to achieve good accuracy and efficiency. Also, higher order SRSMs 
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can be used to approximate highly nonlinear limit state functions. 
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