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Abstract.   This paper reports on the development of a minimum cost design model and its application for 
obtaining economic designs for reinforced High Strength Concrete (HSC) T-sections in bending under 
ultimate limit state conditions. Cost objective functions, behavior constraint including material nonlinearities 
of steel and HSC, conditions on strain compatibility in steel and concrete and geometric design variable 
constraints are derived and implemented within the Conjugate Gradient optimization algorithm. Particular 
attention is paid to problem formulation, solution behavior and economic considerations. A typical example 
problem is considered to illustrate the applicability of the minimum cost design model and solution 
methodology. Results are confronted to design solutions derived from conventional design office methods to 
evaluate the performance of the cost model and its sensitivity to a wide range of unit cost ratios of 
construction materials and various classes of HSC described in Eurocode2. It is shown, among others that 
optimal solutions achieved using the present approach can lead to substantial savings in the amount of 
construction materials to be used. In addition, the proposed approach is practically simple, reliable and 
computationally effective compared to standard design procedures used in current engineering practice. 
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1. Introduction 

 

Structural elements with T shaped-sections are economically more effective than rectangular 

elements and are frequently used in industrial construction (Fedghouche and Tiliouine 2012). They 

represent major components in various applications involving building and bridge structures. For 

repeated and large scale use of these components, as may be the case for precast reinforced High 

Strength Concrete (HSC) component production, special consideration should be devoted to their 

optimal design in order to make effective use of construction materials and ensure overall cost 

reduction of the project. From an economical perspective, it is desirable to integrate the numerous 

advantages of utilizing HSC in structural elements (Edward 1994, Kahleghi and Weigel 2005) 

within the optimal design procedure. By using HSC, the cross-section dimensions of the elements 

                                                 
Corresponding author, Professor, E-mail: boualem.tiliouine@g.enp.edu.dz 
a
Ph.D., E-mail: ferhat.fedghoucheb@g.enp.edu.dz 



 
 

 

 

 

 

B. Tiliouine and F. Fedghouche 

are reduced. Consequently, less concrete and less formwork are needed. At the same time, the 

amount of steel reinforcement can be reduced substantially. The net result is that the least 

expensive T-beam can be achieved with the smallest concrete cross-section, the least amount of 

reinforcement and the highest available concrete strength. 

At the present time, the cost of HSC for concrete strength class C80/95 is about 1.50 higher 

than that of ordinary concrete of strength class C30/37. For HSC with higher classes such as 

C90/105, the overcost is of the order of 1.80 (Moreno 1998, Russell et al. 2002). However, this 

overcost is rather negligible as compared to the economic advantages achieved thanks to the 

reduction in the quantities of construction materials to be used. Furthermore, this reduction will 

result in weight reduction and hence lighter and less costly foundations. 

Another important aspect in developing a cost effective design approach is the use of a 

particular suitable optimization algorithm. Various numerical methods have been used in 

engineering optimization (Nocedal and Wright 2006, Ozbay et al. 2010, Ozturk et al. 2012). 

Optimization techniques can be globally divided into three main categories: mathematical 

programming techniques (Edward 1994), methods based on optimality criteria (Adamu and 

Karihaloo 1994, Barros et al. 2005, Bonet et al. 2006, Ceranic and Fryer 2000, Bordignon and 

Kripka 2012, Choi et al. 2012) and heuristic search algorithms (Leps and Sejnoha 2003). Presently 

mathematical programming algorithms are the most commonly used in optimal design methods for 

solving constrained optimization problems based on transformation into unconstrained 

minimization problems (Raue 2006). Direct methods considering constraints directly as limiting 

surfaces in the space of design variables have been also developed. The latter class is a very active 

field of research in engineering optimization and many algorithms are available nowadays.   

This paper reports on the development of a minimum cost design model and its application for 

obtaining economic designs for High Strength Concrete (HSC) T-sections in bending under 

Ultimate Limit State (ULS) conditions using the latest version of Eurocode 2 (EC-2). Although the 

developments reported in the present paper are based on the use a specific reinforced concrete 

design code, the methodology can be easily extended to design codes used in other countries 

without major alterations. The cost optimization is formulated as a nonlinear programming 

problem and the optimization process is developed through the use of the Conjugate Gradient 

algorithm (Nocedal and Wright 2006) in the space of only a reduced number of design variables.  

For the cost optimization process, the global cost of construction materials, including costs of 

HSC, steel and formwork, represent the objective function. The set of constraints includes 

restrictions in behavior constraints, conditions on strain compatibility in steel and concrete, and 

geometric design variable constraints. Self weight of the T-beam which may contribute 

substantially to the ultimate bending moment capacity for long spans is considered variable both in 

the objective and the constraints functions. 

A typical example problem is considered to illustrate the applicability of the minimum cost 

design model and solution methodology. Results are confronted to design solutions derived from 

conventional design office methods to evaluate the performance of the cost model and its 

sensitivity to a wide range of unit cost ratios of construction materials and various classes of HSC 

described in EC-2. It is demonstrated, among others, that optimal solutions achieved using the 

present approach can lead to substantial savings in the amount of the construction materials to be 

used. In addition, the proposed approach is shown to be practically simple, reliable and both 

computationally and economically effective compared to standard design procedures used in 

current engineering practice. 
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2. Ultimate limit state design of reinforced high strength concrete T-sections 
 

Safe and economical design of a reinforced concrete structure under ultimate load conditions 

seldom depends on complex theoretical analysis. It can be achieved more by deciding on a proper 

choice for the construction site, a practical overall layout of the structure and its lateral resistant 

system, careful attention to construction detailing and sound construction practice. However, the 

overall cost reduction of the structure will strongly  depend on an adequate choice of construction 

materials to be used including labor costs, as well as on the optimal design of the individual 

structural elements (as may be the case for large scale use in precast reinforced HSC component 

production). In addition, the optimal design of such components should be based on the nonlinear 

behavior of HSC and steel reinforcement in accordance with current concrete design codes. 

In accordance with EC-2 (Eurocode2 2005), the hypotheses used at ULS for strain and stress 

distributions in the typical reinforced HSC T-beam cross section shown in Fig. 1(a) are 

respectively illustrated in Fig. 1(b) and Fig. 1(c). 

The HSC cross section dimensions are defined by the following parameters: 

b    effective width of compressive flange 

bw   web width   

h    total depth   

hf    flange depth  

The parameters d, ds and As  represent respectively: 

d    effective depth  

ds    effective cover of reinforcement.  

As    area of reinforcing steel 

In the linear strain diagram of Fig. 1(b), the symbols εc and εs designate concrete and steel 

deformations. The parameter α represents the relative depth of compressive concrete zone and the 

neutral axis is located at the distance αd from the upper fiber. In the assumed uniformly distributed 

stress diagram of Fig. 1(c), fcd=0.85 fck/γc is the design value of concrete compressive strength, γc 

the partial safety factor for concrete and fck is the characteristic concrete strength. In accordance 

with EC-2, the possibility is offered to work with a rectangular stress distribution. This requires 

the introduction of a factor λ for the depth of the compression zone and a factor η for the design 

strength. The λ and η factors are both linearly dependent on the characteristic strength fck in 

accordance with the following equations 

λ=0.8-(fck-50)/400                                                           (1) 

η =1.0-(fck-50)/200                                                          (2) 

with 50fck90MPa. Fc and Fs denote the resultants of internal forces in HSC section and 

reinforcing steel respectively. 

It should also be noted that the ultimate design of reinforced HSC cross sections requires the 

knowledge of the design stress-strain design curves (i.e., the nonlinear constitutive laws) which are 

described in the following subsections. 

 

2.1 Nonlinear stress-strain curve of HSC for design of cross-sections 
 

Various analytically based formulations of design stress-strain curves for HSC beams are 

available in specialized literature (Eurocode2 2005, Rashid and Mansur 2005). In accordance with 

Eurocode2 (EC-2), two alternative design stress-strain curves for concrete can be considered: one  
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Fig. 1 (a) Typical T-Beam cross section (b) strains and (c) stresses 

 
Table 1 Strength classes and properties for HSC 

Class C55/67 C60/75 C70/85 C80/95 C90/105 

fck(MPa) 55 60 70 80 90 

fctm(MPa) 4.2 4.4 4.6 4.8 5.0 

εc2(‰) 2.2 2.3 2.4 2.5 2.6 

εcu2(‰) 3.1 2.9 2.7 2.6 2.6 

n 1.75 1.6 1.45 1.4 1.4 

λ 0.7875 0.775 0.7500 0.7250 0.7000 

η 0.975 0.950 0.900 0.850 0.800 

 

 
on the basis of a power law (see Fig. 2) and the other based on a bilinear relationship. In the 

present work, only the design stress-strain curve based on the power law will be retained. In this 

case, the design stress-strain relationship can be written as 

σ= fcd[1-(1-εc/εc2)
n
]                       for εc≤  εc2                                                       (3-1) 

 σ= fcd                                        for εc2≤εc≤  εcu2                                                   (3-2) 

where the parameters n, εc2 and εcu2 can be obtained from the following equations 

n=1.4+23.4[(90-fck)/100]
4                                                                                        

(4) 

εc2(‰)=2.0+0.0085(fck-50)
0.53

                                                  (5) 

εcu2(‰)=2.6+35[(90-fck)/100]
4                                                                                   

(6) 

Table 1 summarizes the values of the characteristic properties for HSC classes as prescribed by 

EC-2 provisions. 

In this table, the following definitions are used: 

εc2    Strain at the maximum stress for the (σc-εc) power law 

εcu2  Ultimate strain of the compressive concrete for (σc-εc) power law  
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Fig. 2 Design stress-strain curves for ordinary concrete and HSC 

 

 

n      Factor 

fctm   Tensile strength of concrete 

Note that the above rectangular relation for power law reduces to a parabola rectangular 

relation for ordinary concrete classes (i.e., for n=2 and fck50MPa). 

It should also be noted that HSC shows more brittle behavior as reflected by shorter horizontal 

branches for values of characteristic compressive strength 50fck90MPa.  

The limit design means that rupture is considered to crush at εcu2(‰). In accordance with 

ultimate limit state design concrete does not stand for tensile stresses. 

In the present work, for the sake of simplification the resultant forces and moment acting on a 

T-beam HSC section were computed using a uniformly distribution stress diagram as indicated in 

Fig. 1(c) and as recommended by the French annex provisions to EC-2 in bending for partially 

compressed sections in the case of Pivot B.  

 

2.2 Nonlinear stress-strain curve of reinforcing steel  
 
The representative short-term design stress-strain curve for steel reinforcement is given by the 

simplified behavior curve shown in Fig. 3. The behavior of the steel is of elastic-perfectly plastic 

type being linear in the elastic range up to the design yield strength of steel reinforcement fyd=fyk/γs 

where, fyk is the characteristic elastic limit of steeland s is the partial safety factor. It should be 

noted that EC-2 permits the use of an alternative design stress-strain curve to that shown in Fig. 3 

with an inclined top branch and the maximum strain limited to a value which is dependent on the 

class of reinforcement. However the more commonly used curve shown in Fig. 3 will be used in 

this paper.  

In the present work, the stress in the reinforcing steel was kept equal to fyd. The elastic phase 

shown in Fig. 3 is represented for completeness and only for the purpose of indicating the lower 

limit of the plastic domain. The later corresponds to the best use of steel reinforcement at the 

ultimate limit state. In addition the steel strain is considered unlimited as shown in Fig. 3 in 

accordance with to Eurocode2 provisions. 
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Fig. 3 Design stress-strain curve of reinforcing steel 

 

 

In this paper, for an optimal use of steel, the strain must be always be greater or equal to elastic 

limit strain εyd=fyd/Es where Es represents the elasticity modulus for steel. 

 

 

3. Minimum cost design model of HSC T-beams 
 

3.1 Statement problem 
 

The design variables of the model are the geometrical dimensions of the T-beam cross section: 

b, bw, d, hf, the amount of steel As, and the relative depth of compressive concrete zone α. 

To obtain the design variables b, bw, d,  hf,  As and α 

Given that: 

Beam span: L 

Ultimate bending moment capacity including selfweight:  MEd  

Ultimate shear capacity including selfweight: VEd 

Characteristic compressive cylinder strength of HSC at 28 days: fck 

Design strength factor: η  

Compressive zone depth factor:  λ  

Characteristic elastic limit for steel reinforcement: fyk 

Young’s elastic modulus: Es 

Minimum steel percentage: pmin  

Maximum steel percentage: pmax 

Total cost per unit length of HSC T-beam: C 

Unit cost of reinforcing steel: Cs   

Unit cost of HSC concrete:  Cc 

Unit cost of formwork: Cf 

 

3.2 Cost optimization of HSC T-sections and implementation of minimum cost design         
model 

 
Consider now the HSC T-beam cross section shown in Fig. 1(a), and let C be the objective 
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function representing the total cost per unit length of the beam. This function can be defined as 

C =Cc(bw d+(b-bw) hf)+CsAs+Cf[b+2(ds+d)]                                          (7) 

where unit cost ratios Cc, Cs  and Cf  as previously defined. 

In this work, cost components of construction parameters such as concrete formwork, 

construction detailing, steel forming and all relevant demands comprising supply, installation and 

implementation are implicitly included in the objective function as appropriate percentages of the 

unit costs of concrete and steel respectively. Further practical requirements involving other design 

codes and constraints as well as more sophisticated cost objective functions and other cross 

sections geometry can be implemented within the present cost optimization model without major 

alterations. 

In developing a minimum cost model, it is necessary to include in the model, design 

constraints. In general, the behavior constraints are based on design codes which may differ from 

one country to another. For illustrative purposes, the design constraints will be herein defined in 

accordance with the design code specifications of the French Annex to EC-2.  

Thus and without loss of generality, the formulation of the minimum cost design of HSC T-

beams under ultimate loads can be mathematically stated as follows:  

Find the design variables b, bw, d, hf, As, and α that minimize total cost of construction material 

per unit length of HSC T-beam such that 

C/ Cc=bwd+(b-bw)hf+(Cs /Cc )As+Cf//Cc[(b+2(ds+d)]                             (8) 

Subject to the following constraints 

(a) Behavior constraints 

MEdηfcd(b-bw)hf(d-0, 50hf)+ηλfcd.bw.d
2
α(1–0, 5λα)                                      (9) 

(External moment including selfweight  Resisting moment of the cross section) 

α=(yd/cd)(As/ηλbw.d)-(b-bw)hf/ λbw.d (Internal force equilibrium)                      (10) 

As /bwdpmin (Minimum steel percentage)                                           (11) 

As/(bw h+(b-bw)hf)  pmax         (Maximum steel percentage)                     (12) 

In Eqs. (9) and (10) above, it is assumed that the neutral axis position is under the beam flange 

which ensures that the section is behaving as the T-beam section shown in Fig. 1(a). 

Conditions on strain compatibility in steel and concrete 

εcu2((1/α)-1 )fyd / Es                                                                                            (13) 

(Optimal use of steel requires that strains in steel must be limited to plastic region at the ULS) 

λα(1–0, 5λα)µ limit   (Compression reinforcement is not required)                       (14) 

(b) Shear strength constraint 

VEdVRd,max = ν1fcdbwz/(   θ)+cotg(θ))                                            (15) 

(c)  Geometric design variables constraints including pre-design rules of current practice 

h L / 16                                                                   (16) 

d / h = 0.90                                                                 (17) 
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0.20 bw / d   0.40                                                          (18) 

(b-bw) / 2   L / 10                                                           (19) 

b/hf8                                                                    (20) 

hfhmin                                                                    (21) 

where: 

µ limit limit value of reduced moment 

θ is the angle between concrete compression struts and the main chord. 

ν1  a non dimensionnel coefficient. 

ν1=0.60(1-fck/250) 

z   lever arm, z = 0.9d 

hmin minimum depth of flange 

It should be noted that the unit cost ratios appearing in Eq. (8) and more specifically the cost 

ratio Cs/Cc varies from one country to another and may eventually depend from one region to 

another for certain countries. The values of these cost ratios can be estimated on the basis of data 

given in applicable unit price books of construction materials (Davis 2011, Pratt 2011).  

 

3.3 Solution methodology 
 
The objective function Eq. (8) and the constraints equations, Eq. (9) through Eq. (21), together 

form a nonlinear optimization problem. The reasons for the nonlinearity of this optimization 

problem are essentially due to the expressions for the cross sectional area, bending moment 

capacity and other constraints equations as well as the requirement to update iteratively the self 

weight of the T-beam, both in the constraints functions and the objective function. Both the 

objective function and the constraint functions are nonlinear in terms of the design variables. 

In order to solve this nonlinear optimization problem, the Conjugate Gradient Method (Nocedal 

and Wright 2006) is used as it is widely recognized as an efficient method for solving a relatively 

wide class of nonlinear unconstrained optimization problems. The significance of this class of 

problems stems from the fact that some of the most powerful and convenient methods of solving 

constrained problems are based on transformation of the problem to one of unconstrained 

minimization. An excellent survey of development of different versions of nonlinear conjugate 

gradient methods, with special attention to global convergences properties, is presented by Hager 

and Zhang (2006). 

All the conjugate gradient algorithms start out by searching in the steepest descent direction 

(negative of the gradient) on the first iteration. 

It turns out that, although the function decreases most rapidly along the negative of the 

gradient, this does not necessarily produce the fastest convergence. 

The general procedure for solving a problem by the conjugate gradient algorithm can be 

summarized as follows: 

Choose an initial point {X0}.  

Compute 

{G0} = { F0}                                                              (22) 

where F0 =  F0{  } and G0 = F0 are the objective function and its gradient vector calculated at 

point {  }. 
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Determine 

{S0} = {-G0}                                                                (23) 

For each iteration step, q, q=1,…, n 

Find the step size    
  to minimize 

 ({  }    {  })                                                                 (24) 

Calculate 

                                                        {    }  {  }    
 {  }                                                    (25) 

where  

{  }  {   }  
{  }

 
{  }

{    }
 
{    }

{    }                                                 (26) 

And  

{G q} = { Fq}                                                               (27) 

Since 

{  }                            {  } {  }   {    }    {  }                                   

    {  } {  }   {  }   It can be shown that for the case of a quadratic function, the conjugate 

gradient method generates a set of mutually directions {  }. Thus, theoretically the process should 

converge in n or fewer steps. 

A more detailed description of the conjugate gradient algorithm can be found in (Andrei 2013). 

 

 

4. Numerical results and discussion  
 

A typical example problem is now considered. The step by step application of the HSC T-beam 

minimum cost design model is presented, followed first by a comparison between the optimal cost 

design solution and the standard design solution using HSC, and finally by a study of the 

behaviorof minimum cost design solution. Particular attention is paid to the sensitivity of 

minimum cost design solutions to various classes of HSC and a wide range of unit cost ratios of 

construction materials. 

 

4.1 Design example 
  
The objectives of this application testare: 

(i) to evaluate the performance of the minimum cost design model and the solution 

methodology. 

(ii) to examine the characteristics of the solution in order to identifythe binding and the 

nonbinding constraints, 

(iii) to provide minimum cost design solutions  that can be used as a basis for comparison in 

future investigations. 

As previously mentioned, the design constraints are defined in accordance with the code design 

specifications of the French Annex to EC-2. The optimal solutions are compared to the standard 

design solutions obtained in accordance with EC-2 design code. To further illustrate the variability 
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of the optimal solutions (including self weight effects) with unit costsofmaterials, the optimal 

solutions are computed for given unit cost ratios. The results in terms of the corresponding gains 

are presented graphically. Increases in cost saving due to the requirement to update the cross 

section dimensions with new self weight of the optimized beams are also investigated. 

The study concrete T-beam with pined supports corresponds to a T-beam belonging to a high 

performance concrete bridge deck, simply supported at its ends and pre-designed in accordance 

with provisions of EC-2 design code. 

The corresponding pre-assigned parameters are defined as follows:  

• Beam span: L = 29m 

• Ultimate bending moment capacity:  MEd= 1.35MG+ 1.5MQ = 8MNm 

where MG and MQ designate maximum design moments under dead and live loads respectively. 

• Ultimate design shear capacity: VEd = 1.35VG+ 1.5VQ= 3MN 

where VG and VQ designate maximum design shears under dead and live loads respectively. 

Input data for HSC characteristics:  

• Strength class of concrete: C80/95. 

• Characteristic compressive cylinder strength of concrete at 28 days: fck = 80MPa. 

• Partial safety factor for concrete: c = 1.5 

• Allowable compressive stress:  fcd = 45.33MPa   

λ = 0.725 

η = 0.850 

Input data for steel characteristics:  

• Steel class: S500 

• Elastic limit: fyk = 500MPa 

• Partial safety factor for steel: s = 1.15 

• Allowable tensile stress: fyd= fyk/s = 435MPa 

• Young’s elastic modulus: Es=2×10
5
MPa 

• Minimum steel percentage: pmin= 0.26fctm/fyk= 0.002496 

• Maximum steel percentage: pmax= 4% 

• fctm= 4.4MPa 

Input data for units costs ratios of construction materials: 

Cs / Cc = 25 

Cf / Cc = 0 

 

4.2 Step by step application of minimum cost design model for HSC 
 
The preceding minimum cost design model is now applied to the design of the reinforced HSC 

T-beam cross section for which a classical design solution based on the EC-2 concrete design 

provisions is briefly presented in the appendix. Following the problem formulation developed in 

the preceding section and considering unit length of the reinforced HSC T-beam, the minimum 

cost design problem can be mathematically stated as: 

Given the above pre-assigned parameters, construction materials characteristics and unit cost 

ratios,  

Find the design variables b, bw, d, hf, As and α that minimize construction materials cost per unit 

length of HSC T-beam subject to: 

(a) Behavior constraint: 
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Table 2 Comparison between HSC classical design solution and optimal cost design solutions excluding or 

including selfweight effects 

HSC Classical  solution 
HSC Optimal  

solution 

HSC Optimal solution including  

self weight effects 

b(m)                  1.00 0.80 0.80 

bw(m)                 0.40 0.32 0.30 

h(m)                  1.70 1.80 1.80 

d(m)                  1.53 1.62 1.62 

hf(m)                  0.12 0.10 0.10 

AS(m
2
)               126×10

-4 
122×10

-4 
114×10

-4 

α                        0.159 0.236 0.214 

C/ Cc                  0.999773 0.876514 0.858287 

 

 

(b) Shear strength constraint and 

(c) Geometric design variables constraints (including pre-design rules of current practice) 

described in subsection 3.2. with a minimum flange depth:  hmin= 0.10m. 

It should be noted that the solution vector of the above problem cannot be considered as the 

final solution of the minimum cost design problem. As a matter of fact, because of the requirement 

to update the geometric dimensions of the section with the new self weight of the optimized beam, 

the degree of nonlinearity of the resulting optimization problem enhances further. The final 

optimal solution is thus obtained in two phases: 

Phase 1 is concerned with the determination of the optimal solution using the initial loading 

parameters (i.e., with initial self weight corresponding to the starting solution). 

Phase 2 is concerned with the requirement to update the self weight of the beam (both in the 

constraints functions and the objective function) with the geometric dimensions of the optimized 

section obtained inphase 1. The modified forces due to the new self weight are computed, the new 

dimensions of the beam are optimized and theprocess continued until convergence is achieved.In 

the present example, the optimal solution vector is reached after 3 cycles of iteration only. 

 

4.3 Comparison between the optimal cost design solutions and the standard design 
approach using HSC 

 
The vector of design variables including the geometric dimensions of the T-beam cross section 

and the area of tension reinforcement as obtained from the standard design approach solution and 

the optimal cost design solution using the proposed approach, are shown in Table 2. 

From the above results, it is clearly seen that the relative depth of the compressive concrete 

zone associated with the optimal solution is 48% larger than that given by the classical solution, 

thus leading to a much better use of the concrete. It is also seen from the values of the relative 

costs C/Cc associated with the classical and optimal solutions, that a significant cost saving of the 

order of 14% can be obtained by using the proposed design formulation.Note also that this cost 

saving can be increased up to 16% when comparing the standard design solution to the HSC 

optimal design solution including selfweight effects.  

 

4.4 Behavior of minimum cost design solutions 
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A study of the inequality constraints indicated that the design constraints of the beam were all 

non binding except for the behavior constraints associated with ultimate bending moment capacity 

Eq. (9); the geometrical design constraints Eq. (16); Eq. (18); Eq. (20); and Eq. (21). The values of 

the geometric design variables bw (web width), hf (flange depth) and h (total depth) were found to 

be all on the specified lower limit values.  

In order to further illustrate the variability of optimal solution with the unit cost ratio Cs/Cc , the 

optimal  solution has also been computed for various ratios Cs/Cc = 13; 25; 36; 70; 100; 130; 160; 

200.  

The overall cost reduction achieved on the T-beam for a given unit cost ratio Cs/Cc, can be 

measured as of the corresponding relative gain (in percent) defined as follows 

Gain in percent (%) = ((C classical– C optimal)/Cclassical) ×100                           (28) 

The relative gains can be determined for the various values of the unit cost ratios. The 

corresponding results are reported in Table 3 and illustrated graphically in Fig. 4 for HSC class 

C80/95. 

It can be observed from Fig. 4, that the relative gain decreases rapidly for increasing values of 

the unit cost ratio, stabilizes around an average value approximately equal to 10% for values of 

70Cs/Cc100 and then increases significantly beyond this average value. 

Furthermore, the performance and sensitivity of present HSC minimum cost design model to 

various classes of HSC and material stress ratio prescribed in EC-2 have been examined. The 

results are reported in tabular form Table 4, below, for Cs/Cc=25. It is clearly seen that for the 

example problem considered herein, the gain percentages are rather insensitive to changes in HSC 

classes and material stress ratios. This insensitivity can be interpreted the result of the compatible 

changes of mechanical properties of both steel and concrete coupled with a rational design of the 

studied HSC- T sections in flexure. Significant cost savings up to 14% (16% when including 

selfweight effects which may important for long beam spans) can be achieved for this design 

example. 

 

 
Table 3 Variation of relative gain in percent (%) versus unit cost ratio Cs/Cc of construction materials 

Cs/Cc 13 25 36 70 100 130 160 200 

Gain in percent (%) 16 14 13 10 10 12 14 18 
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Fig. 4 Variation of gain percentage versus unit cost ratio Cs/Cc 
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Table 4 Performance of HSC minimum cost design model versus HSC class and material stress ratio 

Class of HSC C55/67 C60/75 C70/85 C80/95 C90/105 

fyd /fcd 14 13 11 9 8 

Gain in percent (%) 13 14 14 14 14 

 

 

4. Conclusions 
 

A minimum cost design model is presented for the optimal design of reinforced HSC T-beams 

in bending under ultimate limit state conditions considering design stress-strain relationships used 

in Eurocode2 provisions. Cost objective functions, behavior constraints including nonlinearities of 

steel and HSC, conditions on strain compatibility in steel and concrete and geometric design 

variable constraints are derived and implemented within the Conjugate Gradient optimization 

algorithm. The optimal solution vector includes the following design variables i)-optimal 

dimensions of HSC T cross section (b, bw, h, hf)opt;  ii)-optimal area of tensile reinforcement (As)opt.; 

iii)-optimal relative depth of compressive HSC zone (α)opt, from which the optimal values of any 

related quantity can be determined. Particular attention was paid to problem formulation and 

solution methodology. The present model is applied to five different classes of HSC: C55/67; 

C60/75; C70/85; C80/95; C90/105, described in  

EC-2. In order to further illustrate the variability of optimal solution with costs of construction 

materials, the optimal solutions have been also computed for a wide range of unit cost ratios 

Cs/Cc=13; 25; 36; 70; 100; 130; 160; 200. 

- The results obtained in this work demonstrated that the Conjugate Gradient optimization 

technique can be successfully applied to the minimum cost design of High Strength Concrete T-

sections in flexure at Ultimate Limit State offering an approach that can be used without prior 

knowledge of mathematical optimization. Comparisons with the standard design approach have 

clearly shown that the optimal solutions achieved using the present cost model, will indeed reach 

the minimum quantities of construction materials to be used. 

- The optimal solutions are very sensitive to cross section initial configuration and the relative 

cost ratio Cs/Cc of construction materials to be used. 

- The gain percentage achieved using the present minimum cost design formulation isfound to 

be rather insensitive to changes in HSC classes and material stress ratios. Significant cost savings 

up to 14% (or 16% if selfweight effects are included, which may be important for long beam 

spans) can be achieved regardless of the adopted HSC grades. 

- The proposed approach is practically simple, reliable and computationally effective compared 

to standard design procedures used in current engineering practice.  

- Further practical requirements involving other design codes and manufacture constraints as 

well as more sophisticated cost objective functions and cross section geometry can be 

implemented within the present cost optimization model without major alterations. 
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Appendix. Classical design solution for design example 
 

The study concrete T-beam with pined supports corresponds to a T-beam belonging to a high 

performance concrete bridge deck, simply supported at its ends and pre-designed in accordance 

with provisions of EC-2 design code. 

Determine the area of steel reinforcement for the reinforced HSC T-beam with the cross section 

dimensions indicated below:   

b= 100cm; bw= 40cm; h= 170cm; d= 153cm;  hf= 12cm  as obtained from a preminairly design 

of the study HSC T-beam. 

 

Given the following data: 

Beam span: L = 29m 

Ultimate bending moment capacity including selfweight: MEd = 8MNm 

Ultimate shear capacity including selfweight: VEd = 3MN 

Strength class of concrete: C80/95. 

Characteristic compressive cylinder strength of concrete at 28 days: fck = 80MPa. 

Partial safety factor for concrete: c =1.5 

Allowable compressive stress:  fcd = 45.33MPa   

Design strength factor: η = 0.850 

Compressive zone depth factor:  λ = 0.725  

Steel class: S500 

Elastic limit: fyk = 500MPa 

Partial safety factor for steel: s = 1.15 

Allowable tensile stress: fyd= fyk/s  = 435MPa 

Unit cost ratios: Cs / Cc = 25; Cf / Cc= 0  

 

Moment of resistanceof the flange, Mf: 

Mf =ηbhffcd(d-0.5hf) 

Mf  = 6.7968MNm 

Mf <MEd, the stress block must extend below the flange  

µ lim=0.725αlim(1-0.3625αlim), limit value of reduced moment  

αlim = 0.5445 

µ lim = 0.317 

µ= (MEd-Mf((b-bw)/b)/bwd
2
ηfcd<0.317, compression reinforcement is not required  

µ=(MEd-Mf((b-bw)/b)/bwd
2
ηfcd = 0.109 

α = [1- (1-2µ)
0.5

]/λ = 0.159 

 

Lever arm: 

z=d(1-0.5  α),  z = 1.44m 

 

The area of tension steel As: 

As= [MEd-Mf((b-bw)/b)/zfyd]+(b-bw)hfηfcd/fyd 

As=[8-6.7968((1-0.4)/1)/1.44*435)]+(1-0.4)0.14*0.85*45.33/435 

As=126cm
2
,   

Check: As,min<As<As,max 

As,min=15cm
2
,  As,max = 245cm

2
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15<126 <245     OK 

 

Total cost per unit length of HSC T-beam:  

C= 0.999773Cc 
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